Introduction to Statistical Machine Learning with Applications in Econometrics Lecture 11: LASSO for High-dimensional Sparse Linear Models

Instructor: Ma, Jun

Renmin University of China

December 1, 2021

High-dimensional sparse models

 \blacktriangleright In the model

$$
Y_i = \beta_1 X_{i,1} + \cdots + \beta_k X_{i,k} + U_i,
$$

the number of potential regressors *k* can be of comparable order to the sample size *n*. In some applications, *k* can be larger than *n*.

- \triangleright Statistical analysis of high-dimensional models abandons the assumption that $n \uparrow \infty$ but *k* is fixed. Instead we assume that $k \uparrow \infty$.
- \blacktriangleright In a sparse model, only a few regressors have non-zero coefficients.
- \triangleright Such statistical analysis requires advanced mathematical tools. We present one of the most basic results.
- The list of non-zero coefficients is $\mathcal{A} = \{j : \beta_j \neq 0\}$.
- \triangleright The \mathcal{L}^0 norm: $\|\beta\|_0 = |\mathcal{A}|$, where $|\mathcal{A}|$ denotes the number of elements in \mathcal{A} .
- **►** The simplest sparse model assumption is that $\|\beta\|_0$ is a fixed number although *n k* ↑ ∞ number, although $n, k \uparrow \infty$.
- \triangleright Note that in the following statistical analysis, we do not treat LASSO as an algorithm for high-performance out-of-sample prediction. Our objective is to see what selection rule for the penalty parameter λ results in high-quality estimation of the parameters β.

Performance of LASSO

- Assume the model is homoskedastic: $E[U_i^2 | X] = \sigma^2$.
- \triangleright We consider the following measure of distance between *b* and *β*:

$$
\frac{1}{n} ||\mathbf{X}(b-\beta)||^2 = (b-\beta)^{\top} \left(\frac{1}{n} \mathbf{X}^{\top} \mathbf{X}\right) (b-\beta),
$$

which is like a weighted \mathscr{L}^2 norm.

If you know the identities of the zero coefficients (A) , the oracle estimator can be computed:

$$
\widehat{\beta}_{\text{oracle}} = \operatorname*{argmin}_{b \in \mathbb{R}^k, b_j = 0, j \in \mathcal{A}^c} \|\mathbf{Y} - \mathbf{X}b\|^2,
$$

where " $b_j = 0, j \in \mathcal{A}^{c}$ " ($\mathcal{A}^c = \{j : \beta_j = 0\}$) is a constraint such that all out-of- \mathcal{A} coordinates of h are constrained to be zero. that all out-of-A coordinates of *b* are constrained to be zero.

 \blacktriangleright It is easy to see that

$$
\mathbf{E}\left[\frac{1}{n}\left\|\mathbf{X}\left(\widehat{\beta}_{\text{oracle}} - \beta\right)\right\|^2\right] = \sigma^2 \frac{\|\beta\|_0}{n}.
$$

 $n^{-1}\left\| \mathbf{X}\left(\widehat{\beta}_{\text{oracle}} - \beta \right) \right\|$ 2 behaves like a stochastic sequence of order n^{-1} and $\left\| \widehat{\beta}_{\text{oracle}} - \beta \right\|$ is of order $n^{-1/2}$. \blacktriangleright The LASSO:

$$
\widehat{\beta}_{\lambda} = \underset{b \in \mathbb{R}^k}{\operatorname{argmin}} \frac{1}{n} ||\mathbf{Y} - \mathbf{X}b||^2 + \lambda ||b||_1.
$$

- \blacktriangleright We can show that if λ is properly chosen so that large enough penalty is imposed, $n^{-1} \left\| \mathbf{X} \left(\widehat{\beta}_\lambda - \beta \right) \right\|$ 2 behaves like a stochastic sequence of order $\log(k)/n$ and $\left\| \widehat{\beta}_\lambda - \beta \right\|_1$ is like $\sqrt{\log(k)/n}$.
- \blacktriangleright Price of not knowing $\mathcal A$ is a log (*k*) loss in convergence speed. \triangleright No other procedure achieves faster convergence speed without requiring knowledge of \mathcal{A} .

Consistency of LASSO and rate of λ

- \triangleright We sketch an even weaker result: consistency of LASSO and the required rate for λ .
- **F** Remember the matrix form of the model $Y = X\beta + U$. We can show

$$
\frac{1}{n} \left\| \mathbf{X} \left(\widehat{\beta}_{\lambda} - \beta \right) \right\|^2 + \lambda \left\| \widehat{\beta}_{\lambda} \right\|_1 \leq 2 \frac{\mathbf{U}^{\top} \mathbf{X}}{n} \left(\widehat{\beta}_{\lambda} - \beta \right) + \lambda \left\| \beta \right\|_1.
$$

 \blacktriangleright Then.

$$
\left|\frac{\mathbf{U}^{\top}\mathbf{X}}{n}\left(\widehat{\beta}_{\lambda}-\beta\right)\right|\leq 2\cdot\left(\max_{1\leq j\leq k}\left|\frac{1}{n}\sum_{i=1}^{n}U_{i}X_{i,j}\right|\right)\left\|\widehat{\beta}_{\lambda}-\beta\right\|_{1}.
$$

If λ dominates the noise $\lambda > 2 \left(\max_{1 \le j \le k} \left| \frac{1}{n} \sum_{i=1}^n U_i X_{i,j} \right| \right)$ with high probability, then

$$
\frac{1}{n} \left\| \mathbf{X} \left(\widehat{\beta}_{\lambda} - \beta \right) \right\|^2 \leq 2 \lambda \left\| \beta \right\|_1,
$$

with high probability.

- If $\lambda \downarrow 0$ as $n \uparrow \infty$ and at the same time $\lambda > 2 \left(\max_{1 \le j \le k} \left| \frac{1}{n} \sum_{i=1}^{n} U_i X_{i,j} \right| \right)$ with high probability, we have consistency $n^{-1} \left\| \mathbf{X} \left(\widehat{\beta}_\lambda - \beta \right) \right\|$ ² \rightarrow _p 0.
- \blacktriangleright Assume that the regressors are normalized so that $n^{-1} \sum_{i=1}^{n} X_{i,j}^2 = 1$. By CLT, $n^{-1/2} \sum_{i=1}^{n} U_i X_{i,j} \stackrel{a}{\sim} N(0, \sigma^2)$. So if *n* is large enough, $n^{-1/2} \sum_{i=1}^{n} U_i X_{i,j}$ behaves like an N $(0, \sigma^2)$
random variable random variable.
- In general, if $n^{-1} \sum_{i=1}^{n} X_{i,j}^2 \neq 1$, we use weighted LASSO: the penalty term is $\lambda \sum_{j=1}^{k} w_j |b_j|$ with $w_j = \sqrt{n^{-1} \sum_{i=1}^{n} X_{i,j}^2}$.
- $\epsilon_1, \xi_2, ..., \xi_k$ are N $(0, \sigma^2)$ random variables, then $E[\max_{1 \le i \le k} |\xi_i|] \le \sqrt{2\sigma^2 \log(2k)}$. The maximum of *k* normal
random variables with zero mean and variance σ^2 diverges to o random variables with zero mean and variance σ^2 diverges to ∞ at the speed $\sqrt{\log(k)}$ at the speed $\sqrt{\log(k)}$.
- Find Therefore, $\max_{1 \leq j \leq k} |n^{-1/2} \sum_{i=1}^n U_i X_{i,j}|$ is stochastically bounded by $\sqrt{2\sigma^2 \log(2k)}$, or

$$
\frac{\max_{1 \le j \le k} |n^{-1/2} \sum_{i=1}^n U_i X_{i,j}|}{\sqrt{2\sigma^2 \log(2k)}} = O_p(1).
$$

- \blacktriangleright When the number of regressors is large, the penalty parameter λ needs to be adjusted by including $\sqrt{\log(k)}$ and σ^2 .
- \blacktriangleright We choose the penalty parameter λ to be slightly dominating the noise component 2 $\left(\max_{1 \le j \le k} \left| \frac{1}{n} \sum_{i=1}^{n} U_i X_{i,j} \right| \right)$), since large λ results in a heavily constrained model and higher bias.

 \triangleright We can choose the penalty parameter as

$$
\lambda = 2\sigma \sqrt{\frac{2\log{(kn)}}{n}}.
$$

 \blacktriangleright Then,

$$
\Pr\left[2\left(\max_{1\leq j\leq k}\left|\frac{1}{n}\sum_{i=1}^{n}U_{i}X_{i,j}\right|\right)<\lambda\right]
$$
\n
$$
=\Pr\left[\max_{1\leq j\leq k}\left|\frac{1}{\sqrt{n}}\sum_{i=1}^{n}U_{i}X_{i,j}\right|<\sqrt{2\sigma^{2}\log(kn)}\right]
$$
\n
$$
=\Pr\left[\frac{\max_{1\leq j\leq k}\left|\frac{1}{\sqrt{n}}\sum_{i=1}^{n}U_{i}X_{i,j}\right|}{\sqrt{2\sigma^{2}\log(2k)}}<\frac{\sqrt{\log(kn)}}{\sqrt{\log(2k)}}\right]\to 1.
$$

► With the same choice of λ , n^{-1} $\left\| \mathbf{X} \left(\widehat{\beta}_\lambda - \beta \right) \right\|$ 2 converges to zero at the speed $\log(k)/n$.

Square root LASSO

- The penalty parameter λ needs to be adjusted for the variance σ^2 of the error term of the error term.
- Estimation of σ^2 can be difficult if $k > n$.
- \blacktriangleright Belloni, Chernozhukov and Wang (2011) proposed a modified LASSO procedure that removes the dependence on σ^2 .
The LASSO problem can be unitten as
- \triangleright The LASSO problem can be written as

$$
\widehat{\beta}_{\lambda} = \underset{b \in \mathbb{R}^k}{\text{argmin}} \frac{1}{n} RSS(b) + \lambda ||b||_1
$$

RSS(b) =
$$
||\mathbf{Y} - \mathbf{X}b||^2.
$$

 \blacktriangleright It is easy to check:

$$
\begin{pmatrix}\n\frac{1}{2} \frac{\partial n^{-1} RSS(\beta)}{\partial b_1} \\
\vdots \\
\frac{1}{2} \frac{\partial n^{-1} RSS(\beta)}{\partial b_k}\n\end{pmatrix} = \begin{pmatrix}\n\frac{1}{n} \sum_{i=1}^n U_i X_{i,1} \\
\vdots \\
\frac{1}{n} \sum_{i=1}^n U_i X_{i,k}\n\end{pmatrix}.
$$

- ► We should choose λ to dominate $\max_{1 \le j \le k} |\partial n^{-1}RSS(\beta)/\partial b_j|$, the order of which depends on σ^2 the order of which depends on σ^2 .
- Consider the square root LASSO:

$$
\widehat{\beta}_{\lambda}^{\text{SR}} = \underset{b \in \mathbb{R}^k}{\text{argmin}} \sqrt{\frac{1}{n} RSS(b)} + \lambda \left\| b \right\|_1.
$$

 \blacktriangleright Then,

$$
\begin{pmatrix}\n\frac{\partial \sqrt{n^{-1}RSS(\beta)}}{\partial b_1} \\
\vdots \\
\frac{\partial \sqrt{n^{-1}RSS(\beta)}}{\partial b_k}\n\end{pmatrix} = \begin{pmatrix}\n\frac{1}{2\sqrt{n^{-1}RSS(\beta)}} \frac{\partial n^{-1}RSS(\beta)}{\partial b_1} \\
\vdots \\
\frac{1}{2\sqrt{n^{-1}RSS(\beta)}} \frac{\partial n^{-1}RSS(\beta)}{\partial b_k}\n\end{pmatrix} = \begin{pmatrix}\n\frac{n^{-1} \sum_{i=1}^{n} U_i X_{i,1}}{\sqrt{n^{-1} \sum_{i=1}^{n} U_i^2}} \\
\vdots \\
\frac{n^{-1} \sum_{i=1}^{n} U_i X_{i,k}}{\sqrt{n^{-1} \sum_{i=1}^{n} U_i^2}}\n\end{pmatrix}
$$

and $n^{-1} \sum_{i=1}^{n} U_i^2 \to_p \sigma^2$.

\blacktriangleright Now

$$
\frac{n^{-1}\sum_{i=1}^{n}U_{i}X_{i,j}}{\sqrt{n^{-1}\sum_{i=1}^{n}U_{i}^{2}}}\approx\frac{1}{n}\sum_{i=1}^{n}\frac{U_{i}}{\sigma}X_{i,j}
$$

and $n^{-1/2} \sum_{i=1}^{n} (U_i / \sigma) X_{i,j} \rightarrow_d N(0, 1)$.

• For the square root LASSO, we can choose the penalty term as

$$
\lambda = \sqrt{\frac{2\log(kn)}{n}},
$$

which dominates $\max_{1 \leq j \leq k} \left| \partial f_j \right|$ $\sqrt{n^{-1}RSS(\beta)}/\partial b_j$ and is independent from σ^2 .