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High-dimensional sparse models

» In the model
=B X1+ -+ B Xix + U,

the number of potential regressors k can be of comparable order
to the sample size n. In some applications, k can be larger than n.
» Statistical analysis of high-dimensional models abandons the
assumption that n T oo but £ is fixed. Instead we assume that
k T oo.
» In a sparse model, only a few regressors have non-zero
coeflicients.

» Such statistical analysis requires advanced mathematical tools.
We present one of the most basic results.
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» The list of non-zero coeflicients is A = { J:Bi# 0}.

> The .Z° norm: |||, = |A|, where |A| denotes the number of
elements in A.

The simplest sparse model assumption is that || 5] is a fixed
number, although n, k T co.

Note that in the following statistical analysis, we do not treat
LASSO as an algorithm for high-performance out-of-sample
prediction. Our objective is to see what selection rule for the
penalty parameter A results in high-quality estimation of the
parameters f5.
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Performance of LASSO

» Assume the model is homoskedastic: E [U12 | X] =02

» We consider the following measure of distance between b and S:
1 2 T 1 T
SIXG-BIP = 6-p) (-XTX|(0-B).

which is like a weighted .#’ norm.

» If you know the identities of the zero coefficients (A), the oracle
estimator can be computed:

—~ ) )
Boracle = argmin Y = Xb||~,
beRK,b;=0,jeAC

where “b; = 0,j € A" (A = {j (B = O}) is a constraint such
that all out-of-A coordinates of b are constrained to be zero.
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It is easy to see that
1 ~ 2 18]l
E [_ ’X (ﬁoracle _IB)H } = O'ZTO'

- 2
n! HX (ﬁorade - ﬁ)‘ behaves like a stochastic sequence of order

1/2.

n~! and |,80,ac|e - ﬁ‘ is of order n~

The LASSO:
- 1
Ba = argmin— [[Y = Xb||* + A 1], .
beRK
We can show that if A is properly chosen so that large enough
- 2
penalty is imposed, n~! HX (,8 1 — ,8)” behaves like a stochastic

1 is like +/log (k) /n.

Price of not knowing A is a log (k) loss in convergence speed.

sequence of order log (k) /n and H,E/z - ﬁ’

No other procedure achieves faster convergence speed without
requiring knowledge of A.
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Consistency of LASSO and rate of 4

> We sketch an even weaker result: consistency of LASSO and the
required rate for A.
» Remember the matrix form of the model Y = X8 + U. We can
show
.

% HX (E/I —,3)H2 +/lHEAH1 < YX (E/l —/3) + Bl -
» Then,

U™X

(Bi-p)| <2 B,

(lrzlja<x _ZUX”

» If A dominates the noise 4 > 2 (maXIS_isk |% 2?21 U,-Xi,j}) with
high probability, then

1 ~ 2
~|x (-8 < 21081,
with high probability.
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» If 1 | Oasn T oo and at the same time

A>2 (maXISjsk H A UiXi’j|) with high probability, we have

consistency n~! ||X (E/l —,8)“2 —p 0.

> Assume that the regressors are normalized so that
n' Y X7 = 1. ByCLT, n”' 2 3L, UiX;; “ N (0,02). Soifn
is large enough, n~1/2 :‘:1 U; X; ;j behaves like an N (0, 0'2)
random variable.

» In general, if n~! 1 Xl.% L F 1, we use weighted LASSO: the

penalty term is A Zle w; |bj| with w; = \fn=t 3, Xl.%j.
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> £1,86, .., & are N (0, 0'2) random variables, then

E [max; <;<x |&]] < v2021log (2k) . The maximum of k normal
random variables with zero mean and variance % diverges to co

at the speed +/log (k).

» Therefore, max<j<k |n

by v/202log (2k), or

—-1/2 yvn
max ’” / i=1 UiXi’j}
1<j<k

V20 2log (2k)

» When the number of regressors is large, the penalty parameter A
needs to be adjusted by including +/log (k) and o-2.

» We choose the penalty parameter A to be slightly dominating the

-1/2 ?: L UiX;, j| is stochastically bounded

=0,(1).

noise component 2 (maxlg <k |% Z?:l U,»X,-,j|), since large A
results in a heavily constrained model and higher bias.
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» We can choose the penalty parameter as

1220 [2log (kn).
n

;ZUXU

1 n
— > UiX; | < yJ202log (kn
\/ﬁ; iAi,j g( )]
max

1<j<k |V Zi-1 U‘X”J| vlog (kn)
<
20 2log (2K) oz (2k)

» Then,

<A

max
1<j<k

= Pr | max

I<j<k

=Pr

. 2
» With the same choice of A, n™! HX (,8,1 - ,8) H converges to zero
at the speed log (k) /n.
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Square root LASSO

| 4

The penalty parameter A needs to be adjusted for the variance o2

of the error term.
Estimation of o-2 can be difficult if k > n.

Belloni, Chernozhukov and Wang (2011) proposed a modified

LASSO procedure that removes the dependence on o-2.

The LASSO problem can be written as

~ 1
Ba = argmin—RSS (b)+ 4D,

beRk
RSS(b) = |Y-Xb|>.
It is easy to check:
1 on"'RSS(B)
A T 7 Limt UiXiy
10n"'RSS(B) %2111 Ui Xix

27 obx
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> We should choose A to dominate max <; <k |(9n‘1RSS B) /6bj|,

the order of which depends on o2.

» Consider the square root LASSO:

1
AER = argmin4 [ —RSS (b) + A |||, .
beRk n

» Then,
O\n~1RSS(B) 1 9n"'RSS(B) 712,"1U, il
— b 2AnRSS(B) 9P NS 121 U
Vn-TRSS(8) 1 "' RSS(B) n! Zf’nUx ik
3bx 2\n-Rss(@B) 9Pk NN

—1yn 72 2
and n Ur—p o,
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> Now
Lyr Ui 1
no iz Vidiy 1 Ui

-1 n 2 —
n i=1 Ui i=1

and n 2 3" (Ui/o) Xij —a N(0,1).
» For the square root LASSO, we can choose the penalty term as

1= [2log (kn),
n

dyn~'RSS (ﬁ)/abj| and is

which dominates max <;<x

independent from o2,
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