Introduction to Statistical Machine Learning with Applications in Econometrics Lecture 11: LASSO for High-dimensional Sparse Linear Models

Instructor: Ma, Jun

Renmin University of China

December 1, 2021

High-dimensional sparse models

► In the model

$$Y_i = \beta_1 X_{i,1} + \dots + \beta_k X_{i,k} + U_i,$$

the number of potential regressors k can be of comparable order to the sample size n. In some applications, k can be larger than n.

- Statistical analysis of high-dimensional models abandons the assumption that n ↑ ∞ but k is fixed. Instead we assume that k ↑ ∞.
- In a sparse model, only a few regressors have non-zero coefficients.
- Such statistical analysis requires advanced mathematical tools.
 We present one of the most basic results.

- The list of non-zero coefficients is $\mathcal{A} = \{j : \beta_j \neq 0\}.$
- The \mathscr{L}^0 norm: $\|\beta\|_0 = |\mathcal{A}|$, where $|\mathcal{A}|$ denotes the number of elements in \mathcal{A} .
- The simplest sparse model assumption is that ||β||₀ is a fixed number, although n, k ↑∞.
- Note that in the following statistical analysis, we do not treat LASSO as an algorithm for high-performance out-of-sample prediction. Our objective is to see what selection rule for the penalty parameter λ results in high-quality estimation of the parameters β.

Performance of LASSO

- Assume the model is homoskedastic: $E[U_i^2 | \mathbf{X}] = \sigma^2$.
- We consider the following measure of distance between b and β :

$$\frac{1}{n} \|\mathbf{X}(b-\beta)\|^2 = (b-\beta)^{\top} \left(\frac{1}{n} \mathbf{X}^{\top} \mathbf{X}\right) (b-\beta),$$

which is like a weighted \mathscr{L}^2 norm.

► If you know the identities of the zero coefficients (A), the oracle estimator can be computed:

$$\widehat{\beta}_{\text{oracle}} = \underset{b \in \mathbb{R}^k, b_j = 0, j \in \mathcal{A}^c}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{X}b\|^2,$$

where " $b_j = 0, j \in \mathcal{A}^c$ " ($\mathcal{A}^c = \{j : \beta_j = 0\}$) is a constraint such that all out-of- \mathcal{A} coordinates of *b* are constrained to be zero.

► It is easy to see that

$$\mathbf{E}\left[\frac{1}{n}\left\|\mathbf{X}\left(\widehat{\beta}_{\text{oracle}}-\beta\right)\right\|^{2}\right] = \sigma^{2}\frac{\|\beta\|_{0}}{n}$$

 $n^{-1} \left\| \mathbf{X} \left(\widehat{\beta}_{\text{oracle}} - \beta \right) \right\|^2 \text{ behaves like a stochastic sequence of order}$ $n^{-1} \text{ and } \left\| \widehat{\beta}_{\text{oracle}} - \beta \right\| \text{ is of order } n^{-1/2}.$ The LASSO:

$$\widehat{\beta}_{\lambda} = \underset{b \in \mathbb{R}^k}{\operatorname{argmin}} \frac{1}{n} \|\mathbf{Y} - \mathbf{X}b\|^2 + \lambda \|b\|_1.$$

- ► We can show that if λ is properly chosen so that large enough penalty is imposed, $n^{-1} \| \mathbf{X} (\widehat{\beta}_{\lambda} \beta) \|^2$ behaves like a stochastic sequence of order log (k) / n and $\| \widehat{\beta}_{\lambda} \beta \|_1$ is like $\sqrt{\log(k) / n}$.
- ▶ Price of not knowing \mathcal{A} is a log (k) loss in convergence speed.
- ► No other procedure achieves faster convergence speed without requiring knowledge of *A*.

Consistency of LASSO and rate of λ

- We sketch an even weaker result: consistency of LASSO and the required rate for λ .
- ► Remember the matrix form of the model $\mathbf{Y} = \mathbf{X}\beta + \mathbf{U}$. We can show

$$\frac{1}{n} \left\| \mathbf{X} \left(\widehat{\beta}_{\lambda} - \beta \right) \right\|^{2} + \lambda \left\| \widehat{\beta}_{\lambda} \right\|_{1} \leq 2 \frac{\mathbf{U}^{\top} \mathbf{X}}{n} \left(\widehat{\beta}_{\lambda} - \beta \right) + \lambda \left\| \beta \right\|_{1}.$$

► Then,

$$\left|\frac{\mathbf{U}^{\mathsf{T}}\mathbf{X}}{n}\left(\widehat{\beta}_{\lambda}-\beta\right)\right| \leq 2 \cdot \left(\max_{1\leq j\leq k}\left|\frac{1}{n}\sum_{i=1}^{n}U_{i}X_{i,j}\right|\right)\left\|\widehat{\beta}_{\lambda}-\beta\right\|_{1}.$$

• If λ dominates the noise $\lambda > 2\left(\max_{1 \le j \le k} \left|\frac{1}{n} \sum_{i=1}^{n} U_i X_{i,j}\right|\right)$ with high probability, then

$$\frac{1}{n} \left\| \mathbf{X} \left(\widehat{\beta}_{\lambda} - \beta \right) \right\|^2 \le 2\lambda \, \|\beta\|_1 \,,$$

with high probability.

- ► If $\lambda \downarrow 0$ as $n \uparrow \infty$ and at the same time $\lambda > 2 \left(\max_{1 \le j \le k} \left| \frac{1}{n} \sum_{i=1}^{n} U_i X_{i,j} \right| \right)$ with high probability, we have consistency $n^{-1} \left\| \mathbf{X} \left(\widehat{\beta}_{\lambda} - \beta \right) \right\|^2 \rightarrow_p 0$.
- Assume that the regressors are normalized so that $n^{-1} \sum_{i=1}^{n} X_{i,j}^2 = 1$. By CLT, $n^{-1/2} \sum_{i=1}^{n} U_i X_{i,j} \stackrel{a}{\sim} N(0, \sigma^2)$. So if *n* is large enough, $n^{-1/2} \sum_{i=1}^{n} U_i X_{i,j}$ behaves like an N $(0, \sigma^2)$ random variable.
- ► In general, if $n^{-1} \sum_{i=1}^{n} X_{i,j}^2 \neq 1$, we use weighted LASSO: the penalty term is $\lambda \sum_{j=1}^{k} w_j |b_j|$ with $w_j = \sqrt{n^{-1} \sum_{i=1}^{n} X_{i,j}^2}$.

- ► $\xi_1, \xi_2, ..., \xi_k$ are N $(0, \sigma^2)$ random variables, then E $[\max_{1 \le i \le k} |\xi_i|] \le \sqrt{2\sigma^2 \log(2k)}$. The maximum of *k* normal random variables with zero mean and variance σ^2 diverges to ∞ at the speed $\sqrt{\log(k)}$.
- ► Therefore, $\max_{1 \le j \le k} |n^{-1/2} \sum_{i=1}^{n} U_i X_{i,j}|$ is stochastically bounded by $\sqrt{2\sigma^2 \log (2k)}$, or

$$\frac{\max_{1 \le j \le k} \left| n^{-1/2} \sum_{i=1}^{n} U_i X_{i,j} \right|}{\sqrt{2\sigma^2 \log\left(2k\right)}} = O_p\left(1\right).$$

- When the number of regressors is large, the penalty parameter λ needs to be adjusted by including $\sqrt{\log(k)}$ and σ^2 .
- We choose the penalty parameter λ to be slightly dominating the noise component $2\left(\max_{1 \le j \le k} \left| \frac{1}{n} \sum_{i=1}^{n} U_i X_{i,j} \right| \right)$, since large λ results in a heavily constrained model and higher bias.

We can choose the penalty parameter as

$$\lambda = 2\sigma \sqrt{\frac{2\log\left(kn\right)}{n}}.$$

► Then,

$$\Pr\left[2\left(\max_{1\leq j\leq k}\left|\frac{1}{n}\sum_{i=1}^{n}U_{i}X_{i,j}\right|\right)<\lambda\right]$$
$$=\Pr\left[\max_{1\leq j\leq k}\left|\frac{1}{\sqrt{n}}\sum_{i=1}^{n}U_{i}X_{i,j}\right|<\sqrt{2\sigma^{2}\log\left(kn\right)}\right]$$
$$=\Pr\left[\frac{\max_{1\leq j\leq k}\left|\frac{1}{\sqrt{n}}\sum_{i=1}^{n}U_{i}X_{i,j}\right|}{\sqrt{2\sigma^{2}\log\left(2k\right)}}<\frac{\sqrt{\log\left(kn\right)}}{\sqrt{\log\left(2k\right)}}\right]\rightarrow 1.$$

• With the same choice of λ , $n^{-1} \left\| \mathbf{X} \left(\widehat{\beta}_{\lambda} - \beta \right) \right\|^2$ converges to zero at the speed $\log(k)/n$.

Square root LASSO

- The penalty parameter λ needs to be adjusted for the variance σ² of the error term.
- Estimation of σ^2 can be difficult if k > n.
- Belloni, Chernozhukov and Wang (2011) proposed a modified LASSO procedure that removes the dependence on σ².
- ► The LASSO problem can be written as

$$\widehat{\beta}_{\lambda} = \operatorname{argmin}_{b \in \mathbb{R}^{k}} \frac{1}{n} RSS(b) + \lambda \|b\|_{1}$$

RSS(b) = $\|\mathbf{Y} - \mathbf{X}b\|^{2}$.

► It is easy to check:

$$\begin{pmatrix} \frac{1}{2} \frac{\partial n^{-1} RSS(\beta)}{\partial b_1} \\ \vdots \\ \frac{1}{2} \frac{\partial n^{-1} RSS(\beta)}{\partial b_k} \end{pmatrix} = \begin{pmatrix} \frac{1}{n} \sum_{i=1}^n U_i X_{i,1} \\ \vdots \\ \frac{1}{n} \sum_{i=1}^n U_i X_{i,k} \end{pmatrix}$$

- ► We should choose λ to dominate $\max_{1 \le j \le k} |\partial n^{-1} RSS(\beta) / \partial b_j|$, the order of which depends on σ^2 .
- Consider the square root LASSO:

$$\widehat{\beta}_{\lambda}^{\mathsf{SR}} = \underset{b \in \mathbb{R}^{k}}{\operatorname{argmin}} \sqrt{\frac{1}{n} RSS\left(b\right)} + \lambda \left\|b\right\|_{1}.$$

► Then,

$$\begin{pmatrix} \frac{\partial \sqrt{n^{-1}RSS(\beta)}}{\partial b_{1}} \\ \vdots \\ \frac{\partial \sqrt{n^{-1}RSS(\beta)}}{\partial b_{k}} \end{pmatrix} = \begin{pmatrix} \frac{1}{2\sqrt{n^{-1}RSS(\beta)}} \frac{\partial n^{-1}RSS(\beta)}{\partial b_{1}} \\ \vdots \\ \frac{1}{2\sqrt{n^{-1}RSS(\beta)}} \frac{\partial n^{-1}RSS(\beta)}{\partial b_{k}} \end{pmatrix} = \begin{pmatrix} \frac{n^{-1}\sum_{i=1}^{n}U_{i}X_{i,i}}{\sqrt{n^{-1}\sum_{i=1}^{n}U_{i}^{2}}} \\ \vdots \\ \frac{n^{-1}\sum_{i=1}^{n}U_{i}X_{i,k}}{\sqrt{n^{-1}\sum_{i=1}^{n}U_{i}^{2}}} \end{pmatrix}$$

and $n^{-1} \sum_{i=1}^{n} U_i^2 \rightarrow_p \sigma^2$.

► Now

$$\frac{n^{-1}\sum_{i=1}^{n}U_{i}X_{i,j}}{\sqrt{n^{-1}\sum_{i=1}^{n}U_{i}^{2}}} \approx \frac{1}{n}\sum_{i=1}^{n}\frac{U_{i}}{\sigma}X_{i,j}$$

and $n^{-1/2} \sum_{i=1}^{n} (U_i / \sigma) X_{i,j} \to_d N(0, 1).$

► For the square root LASSO, we can choose the penalty term as

$$\lambda = \sqrt{\frac{2\log\left(kn\right)}{n}},$$

which dominates $\max_{1 \le j \le k} \left| \partial \sqrt{n^{-1}RSS(\beta)} / \partial b_j \right|$ and is independent from σ^2 .