Introduction to Statistical Machine Learning with Applications in Econometrics

Lecture 12: Double LASSO for Linear Causal Model with High-dimensional Controls

Instructor: Ma, Jun

Renmin University of China

December 1, 2021

Post-LASSO estimation

- ► The LASSO estimator is always biased if $\lambda \neq 0$.
- ► Recall that when $\mathbf{X}^{\top}\mathbf{X}/n = \mathbf{I}_k$, the LASSO estimator $\widehat{\beta}_{j,\lambda} = \operatorname{sgn}\left(\widetilde{\beta}_j\right)\left(\left|\widetilde{\beta}_j\right| \lambda\right)_+$ shrinks the OLS estimator $\widetilde{\beta}_j$ towards zero.
- ► We can use post-LASSO:
 - Select regressors using LASSO;
 - Regress the dependent variable against regressors that survived LASSO selection (i.e., nonzero LASSO regression coefficients in the first step).
- ► The post-LASSO procedure uses the first-stage LASSO as a model selection step.

Linear Model with High-dimensional Controls

► Consider the model:

$$Y_i = \alpha D_i + X_i^{\mathsf{T}} \beta + U_i,$$

where $X_i = (X_{i,1}, X_{i,2}, ..., X_{i,k})^{\top}$ and

- ► *D_i*: the main explanatory variable of interest which is always included;
- X_i: potential control variables which are included to avoid the omitted variable bias.
- ▶ When the dimension of X_i is high (possibly $k \approx n$ or even k > n), we are forced to do model selection, since otherwise the OLS estimator of α is of low precision (high variance) and can not be computed if k > n.
- ▶ Under the sparse model assumption $\beta_j \neq 0$ for only a small number of j's, we can use LASSO to select the variables in the list X_i of potential variables and then do post-LASSO.

- Let $\mathcal{A} = \{j : \beta_j \neq 0\}$ denote the list of relevant controls. Note that \mathcal{A} is unknown.
- ► Let

$$\left(\widehat{\alpha}_{\lambda}, \widehat{\beta}_{1,\lambda}, ..., \widehat{\beta}_{k,\lambda}\right) =$$

$$\underset{a,b_1,...,b_k}{\operatorname{argmin}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - aD_i - \sum_{j=1}^{k} b_j X_{i,j} \right)^2 + \lambda \sum_{j=1}^{k} \left| b_j \right| \right\}.$$

- \blacktriangleright $(\widehat{\alpha}_{\lambda}, \widehat{\beta}_{1,\lambda}, ..., \widehat{\beta}_{k,\lambda})$ are biased.
- the sub-vector of X_i with only the controls in $\widehat{\mathcal{A}}$. Similarly, $X_{i,\mathcal{A}}$ denotes the vector of controls in \mathcal{A} .

 A post-LASSO estimator $\widehat{\alpha}\left(\widehat{\mathcal{A}}\right)$ of α is the OLS regression

► The selected controls are $\widehat{\mathcal{A}} = \{j : \widehat{\beta}_{j,\lambda} \neq 0\}$. Let $X_{i,\widehat{\mathcal{A}}}$ denote

coefficient of D_i of the regression of Y_i against $\left(D_i, X_{i,\widehat{\mathcal{A}}}\right)$. Let $\widehat{\alpha}$ (\mathcal{A}) denote the oracle estimator when \mathcal{A} is known: the OLS regression coefficient of D_i of the regression of Y_i against $(D_i, X_{i,\mathcal{A}})$.

- ▶ If we are concerned with only the standard asymptotic normality theory, $\widehat{\alpha}\left(\widehat{\mathcal{A}}\right)$ can be as good as $\widehat{\alpha}\left(\mathcal{A}\right)$.
- $ightharpoonup \widehat{\alpha}(\mathcal{A})$ is asymptotically normal:

$$\sqrt{n}\left(\widehat{\alpha}\left(\mathcal{A}\right)-\alpha\right)\rightarrow_{d}\mathrm{N}\left(0,\omega^{2}\left(\mathcal{A}\right)\right),$$

where $\omega^2(\mathcal{A}) > 0$ denotes the asymptotic variance.

• Under proper choice of the penalty parameter λ , e.g., in a homoskedastic model,

$$\lambda = 2\sigma \sqrt{\frac{2\log(kn)}{n}},$$

we have model selection consistency: $\Pr\left[\widehat{\mathcal{A}} = \mathcal{A}\right] \to 1$ as $n \uparrow \infty$.

We can show that if $\widehat{\mathcal{A}}$ consistently estimates \mathcal{A} , where $\widehat{\mathcal{A}}$ is constructed by LASSO or other high-quality model selection procedure (e.g., the square root LASSO), we have the oracle property

$$\sqrt{n}\left(\widehat{\alpha}\left(\widehat{\mathcal{A}}\right)-\alpha\right)\rightarrow_{d}\mathbf{N}\left(0,\omega^{2}\left(\mathcal{A}\right)\right).$$

- Can we ignore the error in $\widehat{\mathcal{A}}$ and proceed as if we know the true model \mathcal{A} ? The oracle property may not be reliable for the purpose of statistical inference on α , in real applications where the sample size n is fixed.
- ► The oracle property states that $\sqrt{n} \left(\widehat{\alpha} \left(\widehat{\mathcal{A}} \right) \alpha \right) \stackrel{a}{\sim} N \left(0, \omega^2 \left(\mathcal{A} \right) \right)$ or $\widehat{\alpha} \left(\widehat{\mathcal{A}} \right) \stackrel{a}{\sim} N \left(\alpha, \omega^2 \left(\mathcal{A} \right) / n \right)$, when n is large. But in real applications, the exact distribution of $\sqrt{n} \left(\widehat{\alpha} \left(\widehat{\mathcal{A}} \right) \alpha \right)$ may be very different from $N \left(0, \omega^2 \left(\mathcal{A} \right) \right)$.
- ▶ Typically, this happens when some of the true coefficients β are nonzero but close to zero. This is the case when there are many potential controls and some of them have small effects on the explained variable.
- Note the potential conflict: it is hard to shrink regression coefficients of irrelevant regressors to zero (large λ) while detect relevant regressors with small coefficients (small λ) and leave them out.

Problem with small coefficients and naive post-LASSO

- ▶ The oracle property is based on the fact of model selection consistency, which requires LASSO to detect the relevant controls with probability approaching one as $n \uparrow \infty$.
- ► Suppose that k < n, $\mathbf{X}^{\top}\mathbf{X}/n = \mathbf{I}_k$ and $\widehat{\beta}_{j,\lambda} = \operatorname{sgn}\left(\widetilde{\beta}_j\right)\left(\left|\widetilde{\beta}_j\right| \lambda\right)_+$ with

$$\lambda = 2\sigma \sqrt{\frac{2\log(kn)}{n}}.$$

• We use alternative asymptotic theory as a tool to illustrate the problem. In the asymptotic analysis framework, the magnitude of the coefficient β_j should be made relative to the sample size n. We model "small coefficient" as

$$\beta_j = \frac{c}{\sqrt{n}},$$

where $c \neq 0$ is a constant.

▶ In the asymptotic analysis framework, we formally take $\beta_j = 0$, $\beta_j = c/\sqrt{n}$ and $\beta_j \neq 0$ as the definitions of zero, small and large coefficients.

- ► In reality, *n* is fixed. The assumption $\beta_j = c/\sqrt{n}$ is a tautology: we can always find *c* such that $\beta_j = c/\sqrt{n}$ holds.
- ▶ Under $\beta_j = c/\sqrt{n}$, we may derive different limiting distribution or probability that better approximates the exact distribution or probability. We use this assumption as a tool to illustrate the problem.
- ▶ Note that when $\beta_i = 0$,

$$\Pr\left[\widehat{\beta}_{j,\lambda} = 0\right] = \Pr\left[\left|\widetilde{\beta}_{j}\right| < 2\sigma\sqrt{\frac{2\log\left(kn\right)}{n}}\right]$$
$$= \Pr\left[\left|\sqrt{n}\widetilde{\beta}_{j}\right| < 2\sigma\sqrt{2\log\left(kn\right)}\right] \to 1,$$

since $\sqrt{n}\widetilde{\beta}_j$ behaves like a normal random variable when n is large.

▶ When $\beta_j \neq 0$, since $\left| \widetilde{\beta}_j - \beta_j \right| + \left| \widetilde{\beta}_j \right| \geq \left| \beta_j \right|$ and

$$\frac{2\sigma\sqrt{2\log\left(kn\right)}+\left|\sqrt{n}\left(\widetilde{\beta}_{j}-\beta_{j}\right)\right|}{\sqrt{n}}\rightarrow_{p}0,$$

$$0 \le \Pr\left[\widehat{\beta}_{j,\lambda} = 0\right] = \Pr\left[\left|\widetilde{\beta}_{j}\right| < 2\sigma\sqrt{\frac{2\log\left(kn\right)}{n}}\right]$$

$$\le \Pr\left[\left|\beta_{j}\right| < \frac{2\sigma\sqrt{2\log\left(kn\right)} + \left|\sqrt{n}\left(\widetilde{\beta}_{j} - \beta_{j}\right)\right|}{\sqrt{n}}\right] \to 0.$$

► LASSO detects a large β_i with high probability.

However, when β_j is small, it is possible that the exact probability $\Pr\left[\widehat{\beta}_{j,\lambda} = 0\right]$ corresponding to a fixed n is not close to zero, as illustrated by the limit of $\Pr\left[\widehat{\beta}_{j,\lambda} = 0\right]$ with the assumption $\beta_j = c/\sqrt{n}$ imposed: since $\left|\widetilde{\beta}_j - \beta_j\right| + \left|\beta_j\right| \ge \left|\widetilde{\beta}_j\right|$ and $\sqrt{2\log(kn)} \uparrow \infty$,

$$\Pr\left[\widehat{\beta}_{j,\lambda} = 0\right] = \Pr\left[\left|\widetilde{\beta}_{j}\right| < 2\sigma\sqrt{\frac{2\log\left(kn\right)}{n}}\right]$$

$$\geq \Pr\left[\left|\widetilde{\beta}_{j} - \beta_{j}\right| + \left|\beta_{j}\right| < 2\sigma\sqrt{\frac{2\log\left(kn\right)}{n}}\right]$$

$$\geq \Pr\left[\left|\sqrt{n}\left(\widetilde{\beta}_{j} - \beta_{j}\right)\right| < 2\sigma\sqrt{2\log\left(kn\right)} - |c|\right] \to 1.$$

When β_j is small, the probability of $\widehat{\beta}_{j,\lambda} = 0$ so that LASSO fails to detect it can be large, since it shows that $\Pr\left[\widehat{\beta}_{j,\lambda} = 0\right]$ can be close to the limit 1 under $\beta_j = c/\sqrt{n}$ rather than 0.

- ► Consider the simple example $Y_i = \alpha D_i + \beta X_i + U_i$ with a single potential control X_i and a small coefficient β (the true model is $\mathcal{A} = \{X_i\}$).
- ► Let $\widehat{\mathcal{A}}$ denote the LASSO estimator of \mathcal{A} . Then,

$$\widehat{\alpha}\left(\widehat{\mathcal{A}}\right) = 1\left(\widehat{\mathcal{A}} = \emptyset\right)\widehat{\alpha}\left(\emptyset\right) + 1\left(\widehat{\mathcal{A}} = \left\{X_i\right\}\right)\widehat{\alpha}\left(\left\{X_i\right\}\right).$$

▶ Suppose that $\beta = c/\sqrt{n}$. With a non-negligible probability in finite samples, LASSO leaves X_i out and estimate $\widehat{\mathcal{A}} = \emptyset$. In this case, there is omitted variable bias. The post-LASSO estimator of α is

$$\widehat{\alpha}(\emptyset) = \frac{\sum_{i=1}^{n} D_{i} Y_{i}}{\sum_{i=1}^{n} D_{i}^{2}} = \alpha + \beta \frac{\sum_{i=1}^{n} D_{i} X_{i}}{\sum_{i=1}^{n} D_{i}^{2}} + \frac{\sum_{i=1}^{n} D_{i} U_{i}}{\sum_{i=1}^{n} D_{i}^{2}}$$

and then

$$\sqrt{n}\left(\widehat{\alpha}\left(\emptyset\right) - \alpha\right) = c \frac{\sum_{i=1}^{n} D_{i} X_{i}}{\sum_{i=1}^{n} D_{i}^{2}} + \frac{n^{-1/2} \sum_{i=1}^{n} D_{i} U_{i}}{n^{-1} \sum_{i=1}^{n} D_{i}^{2}}.$$

Note that

$$\widehat{\rho} = \frac{\sum_{i=1}^{n} D_i X_i}{\sum_{i=1}^{n} D_i^2}$$

is the OLS estimator in the simple regression of X_i against D_i and $\widehat{\rho} \to_{\mathcal{P}} \rho = \mathbb{E}[D_i X_i] / \mathbb{E}[D_i^2]$.

 \blacktriangleright When *n* is large,

$$\sqrt{n} \left(\widehat{\alpha} \left(\emptyset \right) - \alpha \right) \stackrel{a}{\sim} N \left(c \rho, E \left[D_i^2 U_i^2 \right] / \left(E \left[D_i^2 \right] \right)^2 \right)$$

and the distribution of $\sqrt{n}\left(\widehat{\alpha}\left(\widehat{\mathcal{A}}\right) - \alpha\right)$ is close to a mixture of $N\left(c\rho, \mathbb{E}\left[D_i^2U_i^2\right]/\left(\mathbb{E}\left[D_i^2\right]\right)^2\right)$ and the limiting distribution of $\sqrt{n}\left(\widehat{\alpha}\left(\mathcal{A}\right) - \alpha\right)$.

▶ When ρ is large, the post LASSO estimator can be substantially biased.