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Post-LASSO estimation

I The LASSO estimator is always biased if _ ≠ 0.
I Recall that when X>X/= = I: , the LASSO estimator
V̂ 9,_ = sgn

(
Ṽ 9

) (���Ṽ 9

��� − _)
+
shrinks the OLS estimator Ṽ 9 towards

zero.
I We can use post-LASSO:

I Select regressors using LASSO;
I Regress the dependent variable against regressors that survived

LASSO selection (i.e., nonzero LASSO regression coefficients in
the first step).

I The post-LASSO procedure uses the first-stage LASSO as a
model selection step.
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Linear Model with High-dimensional Controls
I Consider the model:

.8 = U�8 + ->8 V +*8 ,

where -8 =
(
-8,1, -8,2, ..., -8,:

)> and
I �8: the main explanatory variable of interest which is always

included;
I -8: potential control variables which are included to avoid the

omitted variable bias.
I When the dimension of -8 is high (possibly : ≈ = or even
: > =), we are forced to do model selection, since otherwise the
OLS estimator of U is of low precision (high variance) and can
not be computed if : > =.

I Under the sparse model assumption V 9 ≠ 0 for only a small
number of 9’s, we can use LASSO to select the variables in the
list -8 of potential variables and then do post-LASSO.
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I Let A =
{
9 : V 9 ≠ 0

}
denote the list of relevant controls. Note

that A is unknown.
I Let(

Û_, V̂1,_, ..., V̂:,_

)
=

argmin
0,11,...,1:


1
=

=∑
8=1

©­«.8 − 0�8 −
:∑
9=1

1 9-8, 9
ª®¬

2

+ _
:∑
9=1

��1 9

�� .

I
(
Û_, V̂1,_, ..., V̂:,_

)
are biased.

I The selected controls are Â =

{
9 : V̂ 9,_ ≠ 0

}
. Let -

8,Â denote

the sub-vector of -8 with only the controls in Â. Similarly, -8,A
denotes the vector of controls in A.

I A post-LASSO estimator Û
(
Â

)
of U is the OLS regression

coefficient of �8 of the regression of .8 against
(
�8 , -8,Â

)
.

I Let Û (A) denote the oracle estimator when A is known: the
OLS regression coefficient of �8 of the regression of .8 against(
�8 , -8,A

)
.
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I If we are concerned with only the standard asymptotic normality
theory, Û

(
Â

)
can be as good as Û (A).

I Û (A) is asymptotically normal:
√
= (Û (A) − U) →3 N

(
0,l2 (A)

)
,

where l2 (A) > 0 denotes the asymptotic variance.
I Under proper choice of the penalty parameter _, e.g., in a

homoskedastic model,

_ = 2f
√

2log (:=)
=

,

we have model selection consistency: Pr
[
Â = A

]
→ 1 as

= ↑ ∞.
I We can show that if Â consistently estimates A, where Â is

constructed by LASSO or other high-quality model selection
procedure (e.g., the square root LASSO), we have the oracle
property √

=

(
Û

(
Â

)
− U

)
→3 N

(
0,l2 (A)

)
.
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I Can we ignore the error in Â and proceed as if we know the true
model A? The oracle property may not be reliable for the
purpose of statistical inference on U, in real applications where
the sample size = is fixed.

I The oracle property states that
√
=

(
Û

(
Â

)
− U

)
0∼ N

(
0,l2 (A)

)
or Û

(
Â

)
0∼ N

(
U,l2 (A) /=

)
, when = is large. But in real

applications, the exact distribution of
√
=

(
Û

(
Â

)
− U

)
may be

very different from N
(
0,l2 (A)

)
.

I Typically, this happens when some of the true coefficients V are
nonzero but close to zero. This is the case when there are many
potential controls and some of them have small effects on the
explained variable.

I Note the potential conflict: it is hard to shrink regression
coefficients of irrelevant regressors to zero (large _) while detect
relevant regressors with small coefficients (small _) and leave
them out.
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Problem with small coefficients and naive post-LASSO
I The oracle property is based on the fact of model selection

consistency, which requires LASSO to detect the relevant
controls with probability approaching one as = ↑ ∞.

I Suppose that : < =, X>X/= = I: and V̂ 9,_ = sgn
(
Ṽ 9

) (���Ṽ 9

��� − _)
+

with

_ = 2f
√

2log (:=)
=

.

I We use alternative asymptotic theory as a tool to illustrate the
problem. In the asymptotic analysis framework, the magnitude of
the coefficient V 9 should be made relative to the sample size =.
We model “small coefficient” as

V 9 =
2
√
=

,

where 2 ≠ 0 is a constant.
I In the asymptotic analysis framework, we formally take V 9 = 0,
V 9 = 2/

√
= and V 9 ≠ 0 as the definitions of zero, small and large

coefficients.
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I In reality, = is fixed. The assumption V 9 = 2/
√
= is a tautology:

we can always find 2 such that V 9 = 2/
√
= holds.

I Under V 9 = 2/
√
=, we may derive different limiting distribution

or probability that better approximates the exact distribution or
probability. We use this assumption as a tool to illustrate the
problem.

I Note that when V 9 = 0,

Pr
[
V̂ 9,_ = 0

]
= Pr

[���Ṽ 9

��� < 2f
√

2log (:=)
=

]
= Pr

[���√=Ṽ 9

��� < 2f
√

2log (:=)
]
→ 1,

since
√
=Ṽ 9 behaves like a normal random variable when = is

large.
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I When V 9 ≠ 0, since
���Ṽ 9 − V 9

��� + ���Ṽ 9

��� ≥ ��V 9

�� and
2f

√
2log (:=) +

���√= (
Ṽ 9 − V 9

)���
√
=

→? 0,

0 ≤ Pr
[
V̂ 9,_ = 0

]
= Pr

[���Ṽ 9

��� < 2f
√

2log (:=)
=

]

≤ Pr


��V 9

�� < 2f
√

2log (:=) +
���√= (

Ṽ 9 − V 9

)���
√
=

 → 0.

I LASSO detects a large V 9 with high probability.
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I However, when V 9 is small, it is possible that the exact
probability Pr

[
V̂ 9,_ = 0

]
corresponding to a fixed = is not close

to zero, as illustrated by the limit of Pr
[
V̂ 9,_ = 0

]
with the

assumption V 9 = 2/
√
= imposed: since

���Ṽ 9 − V 9

��� + ��V 9

�� ≥ ���Ṽ 9

��� and√
2log (:=) ↑ ∞,

Pr
[
V̂ 9,_ = 0

]
= Pr

[���Ṽ 9

��� < 2f
√

2log (:=)
=

]
≥ Pr

[���Ṽ 9 − V 9

��� + ��V 9

�� < 2f
√

2log (:=)
=

]
≥ Pr

[���√= (
Ṽ 9 − V 9

)��� < 2f
√

2log (:=) − |2 |
]
→ 1.

I When V 9 is small, the probability of V̂ 9,_ = 0 so that LASSO fails
to detect it can be large, since it shows that Pr

[
V̂ 9,_ = 0

]
can be

close to the limit 1 under V 9 = 2/
√
= rather than 0.
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I Consider the simple example .8 = U�8 + V-8 +*8 with a single
potential control -8 and a small coefficient V (the true model is
A = {-8}).

I Let Â denote the LASSO estimator of A. Then,

Û

(
Â

)
= 1

(
Â = ∅

)
Û (∅) + 1

(
Â = {-8}

)
Û ({-8}) .

I Suppose that V = 2/
√
=. With a non-negligible probability in

finite samples, LASSO leaves -8 out and estimate Â = ∅. In this
case, there is omitted variable bias. The post-LASSO estimator
of U is

Û (∅) =
∑=

8=1 �8.8∑=
8=1 �

2
8

= U + V
∑=

8=1 �8-8∑=
8=1 �

2
8

+
∑=

8=1 �8*8∑=
8=1 �

2
8

and then

√
= (Û (∅) − U) = 2

∑=
8=1 �8-8∑=
8=1 �

2
8

+
=−1/2 ∑=

8=1 �8*8

=−1 ∑=
8=1 �

2
8

.
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I Note that
d̂ =

∑=
8=1 �8-8∑=
8=1 �

2
8

is the OLS estimator in the simple regression of -8 against �8

and d̂ →? d = E [�8-8] /E
[
�2

8

]
.

I When = is large,

√
= (Û (∅) − U) 0∼ N

(
2d, E

[
�2

8*
2
8

]
/
(
E

[
�2

8

] )2
)

and the distribution of
√
=

(
Û

(
Â

)
− U

)
is close to a mixture of

N
(
2d, E

[
�2

8
*2
8

]
/
(
E

[
�2

8

] )2
)
and the limiting distribution of

√
= (Û (A) − U).

I When d is large, the post LASSO estimator can be substantially
biased.
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