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Post-LASSO estimation

I The LASSO estimator is always biased if _ ≠ 0.
I Recall that when X>X/= = I: , the LASSO estimator
V̂ 9,_ = sgn

(
Ṽ 9

) (���Ṽ 9 ��� − _)
+
shrinks the OLS estimator Ṽ 9 towards

zero.
I We can use post-LASSO:

I Select regressors using LASSO;
I Regress the dependent variable against regressors that survived

LASSO selection (i.e., nonzero LASSO regression coefficients in
the first step).

I The post-LASSO procedure uses the first-stage LASSO as a
model selection step.
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Linear model with high-dimensional controls
I Consider the model:

.8 = U�8 + ->8 V +*8 ,

where -8 =
(
-8,1, -8,2, ..., -8,:

)> and
I �8: the main explanatory variable of interest which is always

included;
I -8: potential control variables which are included to avoid the

omitted variable bias.
I When the dimension of -8 is high (possibly : ≈ = or even
: > =), we are forced to do model selection, since otherwise the
OLS estimator of U is of low precision (high variance) and can
not be computed if : > =.

I Under the sparse model assumption V 9 ≠ 0 for only a small
number of 9’s, we can use LASSO to select the variables in the
list -8 of potential variables and then do post-LASSO.
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I Let A =
{
9 : V 9 ≠ 0

}
denote the list of relevant controls. Note

that A is unknown.
I Let(

Û_, V̂1,_, ..., V̂:,_

)
=

argmin
0,11,...,1:


1
=

=∑
8=1

©­«.8 − 0�8 −
:∑
9=1

1 9-8, 9
ª®¬

2

+ _
:∑
9=1

��1 9 �� .

I
(
Û_, V̂1,_, ..., V̂:,_

)
are biased.

I The selected controls are Â =

{
9 : V̂ 9,_ ≠ 0

}
. Let -

8,Â denote

the sub-vector of -8 with only the controls in Â. Similarly, -8,A
denotes the vector of controls in A.

I A post-LASSO estimator Û
(
Â

)
of U is the OLS regression

coefficient of �8 of the regression of .8 against
(
�8 , -8,Â

)
.

I Let Û (A) denote the oracle estimator when A is known: the
OLS regression coefficient of �8 of the regression of .8 against(
�8 , -8,A

)
.
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I If we are concerned with only the standard asymptotic normality
theory, Û

(
Â

)
can be as good as Û (A).

I Û (A) is asymptotically normal:
√
= (Û (A) − U) →3 N

(
0,l2 (A)

)
,

where l2 (A) > 0 denotes the asymptotic variance.
I Under proper choice of the penalty parameter _, e.g., in a

homoskedastic model,

_ = 2f
√

2log (:=)
=

,

we have model selection consistency: Pr
[
Â = A

]
→ 1 as

= ↑ ∞.
I We can show that if Â consistently estimates A, where Â is

constructed by LASSO or other high-quality model selection
procedure (e.g., the square root LASSO), we have the oracle
property √

=

(
Û

(
Â

)
− U

)
→3 N

(
0,l2 (A)

)
.
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I Can we ignore the error in Â and proceed as if we know the true
model A? The oracle property may not be reliable for the
purpose of statistical inference on U, in real applications where
the sample size = is fixed.

I The oracle property states that
√
=

(
Û

(
Â

)
− U

)
0∼ N

(
0,l2 (A)

)
or Û

(
Â

)
0∼ N

(
U,l2 (A) /=

)
, when = is large. But in real

applications, the exact distribution of
√
=

(
Û

(
Â

)
− U

)
may be

very different from N
(
0,l2 (A)

)
.

I Typically, this happens when some of the true coefficients V are
nonzero but close to zero. This is the case when there are many
potential controls and some of them have small effects on the
explained variable.

I Note the potential conflict: it is hard to shrink regression
coefficients of irrelevant regressors to zero (large _) while detect
relevant regressors with small coefficients (small _) and leave
them out.
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Problem with small coefficients and naive post-LASSO
I The oracle property is based on the fact of model selection

consistency, which requires LASSO to detect the relevant
controls with probability approaching one as = ↑ ∞.

I Suppose that : < =, X>X/= = I: and V̂ 9,_ = sgn
(
Ṽ 9

) (���Ṽ 9 ��� − _)
+

with

_ = 2f
√

2log (:=)
=

.

I We use alternative asymptotic theory as a tool to illustrate the
problem. In the asymptotic analysis framework, the magnitude of
the coefficient V 9 should be made relative to the sample size =.
We model “small coefficient” as

V 9 =
2
√
=

,

where 2 ≠ 0 is a constant.
I The notation V 9 � b= means that V 9 is equal to a nonzero

constant multiplied by b=.
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I In the asymptotic analysis framework, we formally take V 9 = 0,
V 9 � =−1/2 and V 9 � 1 as the definitions of zero, small and large
coefficients.

I In reality, = is fixed. The assumption V 9 = 2/
√
= is a tautology:

we can always find 2 such that V 9 = 2/
√
= holds.

I Under V 9 = 2/
√
=, we may derive different limiting distribution

or probability that better approximates the exact distribution or
probability. We use this assumption as a tool to illustrate the
problem.

I Note that when V 9 = 0,

Pr
[
V̂ 9,_ = 0

]
= Pr

[���Ṽ 9 ��� < 2f
√

2log (:=)
=

]
= Pr

[���√=Ṽ 9 ��� < 2f
√

2log (:=)
]
→ 1,

since
√
=Ṽ 9 behaves like a normal random variable when = is

large.
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I When V 9 ≠ 0, since
���Ṽ 9 − V 9 ��� + ���Ṽ 9 ��� ≥ ��V 9 �� and

2f
√

2log (:=) +
���√= (

Ṽ 9 − V 9
)���

√
=

→? 0,

0 ≤ Pr
[
V̂ 9,_ = 0

]
= Pr

[���Ṽ 9 ��� < 2f
√

2log (:=)
=

]

≤ Pr


��V 9 �� < 2f

√
2log (:=) +

���√= (
Ṽ 9 − V 9

)���
√
=

 → 0.

I LASSO detects a large V 9 with high probability.
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I However, when V 9 is small, it is possible that the exact
probability Pr

[
V̂ 9,_ = 0

]
corresponding to a fixed = is not close

to zero, as illustrated by the limit of Pr
[
V̂ 9,_ = 0

]
with the

assumption V 9 = 2/
√
= imposed: since

���Ṽ 9 − V 9 ��� + ��V 9 �� ≥ ���Ṽ 9 ��� and√
2log (:=) ↑ ∞,

Pr
[
V̂ 9,_ = 0

]
= Pr

[���Ṽ 9 ��� < 2f
√

2log (:=)
=

]
≥ Pr

[���Ṽ 9 − V 9 ��� + ��V 9 �� < 2f
√

2log (:=)
=

]
≥ Pr

[���√= (
Ṽ 9 − V 9

)��� < 2f
√

2log (:=) − |2 |
]
→ 1.

I When V 9 is small, the probability of V̂ 9,_ = 0 so that LASSO fails
to detect it can be large, since it shows that Pr

[
V̂ 9,_ = 0

]
can be

close to the limit 1 under V 9 = 2/
√
= rather than 0.
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I Consider the simple example .8 = U�8 + V-8 +*8 with a single
potential control -8 and a small coefficient V (the true model is
A = {-8}).

I Let Â denote the LASSO estimator of A. Then,

Û

(
Â

)
= 1

(
Â = ∅

)
Û (∅) + 1

(
Â = {-8}

)
Û ({-8}) .

I Suppose that V = 2/
√
=. With a non-negligible probability in

finite samples, LASSO leaves -8 out and estimate Â = ∅. In this
case, there is omitted variable bias. The post-LASSO estimator
of U is

Û (∅) =
∑=
8=1 �8.8∑=
8=1 �

2
8

= U + V
∑=
8=1 �8-8∑=
8=1 �

2
8

+
∑=
8=1 �8*8∑=
8=1 �

2
8

and then

√
= (Û (∅) − U) = 2

∑=
8=1 �8-8∑=
8=1 �

2
8

+
=−1/2 ∑=

8=1 �8*8

=−1 ∑=
8=1 �

2
8

.
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I Note that
d̂ =

∑=
8=1 �8-8∑=
8=1 �

2
8

is the OLS estimator in the simple regression of -8 against �8
and d̂ →? d = E [�8-8] /E

[
�2
8

]
.

I When = is large,

√
= (Û (∅) − U) 0∼ N

(
2d,

E
[
�2
8
*2
8

](
E

[
�2
8

] )2

)
⇐⇒ Û (∅) 0∼ N

(
U + 2d,

E
[
�2
8
*2
8

]
=
(
E

[
�2
8

] )2

)
.

I The distribution of
√
=

(
Û

(
Â

)
− U

)
is close to a mixture of

N
(
2d, E

[
�2
8
*2
8

]
/
(
E

[
�2
8

] )2
)
and the limiting distribution of

√
= (Û (A) − U).
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I The the asymptotic bias is 2 × d:
I 2: the coefficient of the omitted control in the linear

structural/causal model;
I d: the coefficient of the the omitted control -8 in the linear

projection of �8 against -8 , i.e.,

d = argmin
A ∈R

E
[
(�8 − A-8)2

]
.

I When d is large, the asymptotic bias 2d of the post LASSO
estimator can be substantial.

I If d is small (i.e., d � =−1/2) or zero, the asymptotic bias is
negligible.
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Double LASSO
I The double LASSO procedure of Belloni, Chernozhukov and

Hansen (2014): since the bias of the naive post-Lasso depends on
the magnitude of the correlation between the main regressor �8
and the controls -8 , one can run LASSO of �8 against -8 to
detect correlated controls.
I Adaptive LASSO tries to simultaneously estimate the causal

effects well and identify relevant regressors in the classical low
dimensional context;

I Double LASSO pursues high-quality estimation of the effect of
the main regressor with a large number of potential controls but
does not pursue precise variable selection for the controls.

I Consider the linear projection model:

�8 =

:∑
9=1

d 9-8, 9 + [8 ,

where (d1, ..., d:) = argminA E
[ (
�8 − ->8 A

)2
]
and [8 is defined

to be the difference �8 −
∑:
9=1 d 9-8, 9 so that the equation above

holds automatically.
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I We run a LASSO regression of �8 against -8: let(
d̂1,_, ..., d̂:,_

)
= argmin
11,...,1:


1
=

=∑
8=1

©­«�8 −
:∑
9=1

1 9-8, 9
ª®¬

2

+ _
:∑
9=1

��1 9 �� .

I Large d 9 =⇒ -8, 9 will be detected by LASSO (assigned a nonzero
coefficient);

I Small or zero d 9 =⇒ -8, 9 will be dropped by LASSO (assigned a
zero coefficient).

I We should keep -8, 9 with large d 9 for robustness to avoid omitted
variable bias.

I We write a reduced-form equation:

.8 = U�8 +
:∑
9=1

V 9-8, 9 +*8

= U
©­«
:∑
9=1

d 9-8, 9 + [8
ª®¬ +

:∑
9=1

V 9-8, 9 +*8 =
:∑
9=1
c 9-8, 9 + n8 ,

where we define c 9 = Ud 9 + V 9 and n8 = U[8 +*8 .
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I We run LASSO regression of .8 against -8:

(
ĉ1,_, ..., ĉ:,_

)
= argmin
11,...,1:


1
=

=∑
8=1

©­«.8 −
:∑
9=1

1 9-8, 9
ª®¬

2

+ _
:∑
9=1

��1 9 �� .

I If d 9 is small, c 9 is large only if V 9 is large. -8, 9 will be detected
by LASSO.

I If d 9 is small, c 9 is small only if V 9 is small. -8, 9 will be dropped
by LASSO.

I -8, 9 is dropped in both LASSO regressions, only if d 9 is small
and V 9 is small. In such a case, the bias is negligible.
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Double LASSO procedure

1. Run LASSO regression of �8 against -8 . Let
Â� =

{
9 : d̂ 9,_ ≠ 0

}
be the selected controls.

2. Run LASSO regression of .8 against -8 . Let
Â. =

{
9 : ĉ 9,_ ≠ 0

}
be the selected controls.

3. Estimate U by OLS regression of .8 against �8 and controls in
Â� ∪ Â. .
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An alternative method: partialling out
I XA : the = × |A| matrix of observations only on the relevant

controls; D: the vector of (�1, ...,�=)>.
I By the partition regression theorem, we have

Û (A) = D>MAY
D>MAD

=
D̃>Ỹ
D̃>D̃

,

where MA = I= −XA
(
X>AXA

)−1
X>A , Ỹ = MAY and

D̃ = MAD.
I Ỹ and D̃ are regression residuals:

D̃ = D −XA
(
X>AXA

)−1 X>AD

Ỹ = Y −XA
(
X>AXA

)−1 X>AY,

where
(
X>AXA

)−1
X>AD and

(
X>AXA

)−1
X>AY are OLS

coefficients.
I In case of unknown A, we use LASSO and post-LASSO to

create residuals.
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The partialling out procedure

1. Run LASSO regression of �8 against -8 . Let
Â� =

{
9 : d̂ 9,_ ≠ 0

}
be the selected controls.

2. Run post-LASSO of �8 against -8,Â� and generate the OLS
residual �̃8 .

3. Run LASSO regression of .8 against -8 . Let
Â. =

{
9 : ĉ 9,_ ≠ 0

}
be the selected controls.

4. Run post-LASSO of .8 against -8,Â. and generate the OLS
residual .̃8 .

5. Estimate U by the OLS regression of .̃8 against �̃8 .
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Comparison with naive post-LASSO
I Let

(
Ûnaive, V̂naive

1 , ..., V̂naive
:

)
denote the naive post-LASSO

estimator:(
Ûnaive, V̂naive

1 , ..., V̂naive
:

)
= argmin
0,11,...,1: :1 9=0, 9∉Â

=∑
8=1

©­«.8 − 0�8 −
:∑
9=1

1 9-8, 9
ª®¬

2

.

I By the first-order condition,

=∑
8=1

�8
©­«.8 − Ûnaive�8 −

:∑
9=1

V̂naive
9 -8, 9

ª®¬ = 0

=⇒ Ûnaive =

∑=
8=1 �8

(
.8 −

∑:
9=1 V̂

naive
9

-8, 9

)
∑=
8=1 �

2
8

=

∑=
8=1 �8

(
*8 −

∑:
9=1

(
V̂naive
9
− V 9

)
-8, 9

)
∑=
8=1 �

2
8

.
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I Then,

√
=
(
Ûnaive − U

)
=
=−1/2 ∑=

8=1 �8*8

=−1 ∑=
8=1 �

2
8

+ 1
=−1 ∑=

8=1 �
2
8

:∑
9=1

√
=

(
V̂naive
9 − V 9

) (
1
=

=∑
8=1

�8-8, 9

)
.

I If V 9 = 2/
√
=, LASSO drops -8, 9 so that 9 ∉ Â and V̂naive

9
= 0.

Then,

√
=

(
V̂naive
9 − V 9

) (
1
=

=∑
8=1

�8-8, 9

)
= −2

(
=−1

=∑
8=1

�8-8, 9

)
and =−1 ∑=

8=1 �8-8, 9 →? E
[
�8-8, 9

]
, which is the source of the

asymptotic bias when E
[
�8-8, 9

]
≠ 0.
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I Let Ṽpo denote the post-LASSO OLS estimator of .8 against
-
8,Â. :

(
Ṽ

po
1 , ..., Ṽpo

:

)
= argmin
11,...,1: :1 9=0, 9∉Â.

=∑
8=1

©­«.8 −
:∑
9=1

1 9-8, 9
ª®¬

2

.

and let Ûpo denote the OLS estimator of .̃8 against �̃8 .
I Then,

√
=
(
Ûpo − U

)
=
=−1/2 ∑=

8=1 �̃8*8

=−1 ∑=
8=1 �̃

2
8

+ 1
=−1 ∑=

8=1 �̃
2
8

:∑
9=1

√
=

(
Ṽ

po
9
− V 9

) (
1
=

=∑
8=1

�̃8-8, 9

)
.
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I If V 9 is small, Ṽpo
9
is constrained to be zero if and only if d 9 is

small or zero. In this case, it can be shown that∑=
8=1 �̃8-8, 9/

∑=
8=1 �̃

2
8
is negligible.

I For example, in the case of : = 1, if d is small or zero, the first
step LASSO drops -8 and �̃8 = �8 . Then,∑=

8=1 �̃8-8∑=
8=1 �̃

2
8

=

∑=
8=1 �8-8∑=
8=1 �

2
8

≈ E [�8-8]
E

[
�2
8

] = d.

I If V 9 is large, Ṽpo
9
is constrained to be zero if and only if d 9 is

large. In this case, -8, 9 is selected in the first step (d̂ 9,_ ≠ 0) with
high probability and by construction,

∑=
8=1 �̃8-8, 9 = 0.
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Comparison with double LASSO

I By the partition regression theorem, the double LASSO
estimator is

Ûdl =

∑=
8=1
¥�8 ¥.8∑=

8=1
¥�2
8

,

where ¥�8 and ¥.8 are regression residuals from OLS regressions
of �8 and .8 against controls in Â� ∪ Â. .

I Partialling out:

Ûpo =

∑=
8=1 �̃8.̃8∑=
8=1 �̃

2
8

,

where �̃8 and .̃8 may be constructed using different controls,
since in general Â� ≠ Â. .

I Double LASSO is more conservative, since more controls are
used to construct residuals.
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Standard errors

I The asymptotic variance of Ûdl is

f2 =

E
[ (
.8 − U�8 − ->8 V

)2 (
�8 − ->8 d

)2
]

(
E

[ (
�8 − ->8 d

)2
] )2 ,

i.e.,
√
=
(
Ûdl − U

)
→3 N

(
0,f2) .

I The standard error f̂/
√
= can be constructed by replacing U, V, d

with their post-LASSO estimators
(
Ûpl, V̂pl, d̂pl

)
:

f2 =

=−1 ∑=
8=1

(
.8 − Ûpl�8 − ->8 V̂pl

)2 (
�8 − ->8 d̂pl)2(

=−1 ∑=
8=1

(
�8 − ->8 d̂pl

)2
)2 .
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