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Instrumental variable

» Consider

Yi = Bo+BiXi+ei,
E [el—] =0
Cov [X;,e;] # O.

» An instrument is an variable Z; which satisfies the following
conditions:

1. The IV is exogenous: Cov [Z;, e;] = 0.
2. The IV determines the endogenous regressor: Cov [Z;, X;] # 0.

» When an IV variable satisfying those conditions is available, it
allows us to estimate the effect of X on Y consistently:

Cov [Y;, Z;] = p1Cov [X;, Z;] + Cov [e;, Z;]
Cov [Y;, Z;]

- BiCov [X,.Z, S ALY
B1Cov [ =5 Cov [X,.Z]
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Sources of endogeneity

There are several possible sources of endogeneity:

1. Omitted explanatory variables.
2. Simultaneity.
3. Errors in variables.

All result in regressors correlated with the errors.
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Omitted explanatory variables

» Suppose that the true model is
log (Wage;) = Bo + B1Education; + B2 Ability; +V;,

where V; is uncorrelated with Education and Ability.

» Since Ability is unobservable, the econometrician regresses
log (Wage) against Education, and By Ability goes into the
error part:

Bo + B1Education; + U;,
BaAbility; +V;.

log (Wage;)
U;

» FEducation is correlated with Ability: we can expect that
Cov (Education;, Ability;) > 0, 8, > 0, and therefore
Cov (Education;, U;) > 0.
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Simultaneity

» Consider the following demand-supply system:

Demand: Q9 = ¢ +BIP+U?,
Supply:  Q° =g+ p{P+U",

where: Q¢ =quantity demanded, Q* =quantity supplied,
P=price.
» The quantity and price are determined simultaneously in the
equilibrium:
0'=0"=0.
> Note that Q¢ and Q° are not observed separately, we observe
only the equilibrium values Q.
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0! = pl+piP+U“,
Q% = By+piP+U°,
0! = 0°=0.

» Solving for P, we obtain

0= (,Bg—ﬁg)+(ﬁf—ﬂ;)P+(Ud—US),
or
BBy ul-ue
Bl-B; B{-B

» Thus,
Cov (P, Ud) +0and Cov (P, U*) # 0.

The demand-supply equations cannot be estimated by OLS.
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Consider the following labour supply model for married women:

Hours; = By + B1Children; + Other Factors + U,

where Hours=hours of work, Children=number of children.

It is reasonable to assume that women decide simultaneously
how much time to devote to career and family.

Thus, while we may be mainly interested in the effect of family
size on labour supply, there is another equation:

Children; = yo+ y1Hours; + Other Factors + V;,

and Children and Hours are determined simultaneously in an
equilibrium.

As aresult, Cov (Children;, U;) # 0, and the effect of family
size cannot be estimated by OLS.
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Errors in variables

» Consider the following model:
Yi = Bo+BiX; +Vi,

where X/ is the true regressor.

> Suppose that X is not directly observable. Instead, we observe
X; that measures X" with an error &;:

X; = Xl-*+8i.

> Since X/ is unobservable, the econometrician has to regress Y;
against X;.
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X;
Y;

Xl-*+8[,
Bo+p1X; +V;.

» The model for Y; as a function of X; can be written as

Y; Bo+p1 (Xi—&i)+V;

= Po+BiXi+V; - e,

or

==
|

Bo+p1X; +e;,
Vi - Bi&;.

D
Il

9/37



Yi = Bo+pB1Xi+e,
e; = Vi—-piei,
X; = X,'*+8i-

» We can assume that
Cov [X;‘,V,-] = Cov [lek,si] =Cov [&;,V;] = 0.

» However,

Cov | X +&:,Vi - Bi&i]
Cov [X;,Vi]| = BiCov [ X}, &i]
+Cov [g;, Vi] — B1Cov [&;, &;]

Cov [Xi,el-]

» Thus, X; is enodgenous and 3 cannot be estimated by OLS.
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Example: Compulsory schooling laws and return to
education

> Angrist and Krueger, 1991, QJE, suggested using school start
age policy to estimate 3 in
log (Wage;) = Bo+ B1Education; + B, Ability; +V;.

» We need to find an IV variable Z such that Cov (Ability;, Z;) =0
and Cov (Education;, Z;) # 0.

» They argue that due to compulsory schooling laws, the season of
birth variable satisfies the IV conditions:

» A child has to attend the school until he reaches a certain drop-out
age.

» Students born in the first quarter of the year, reach the legal
drop-out age before their classmates who were born later in the
year.

» The quarter of birth dummy variable is correlated with education.

» The quarter of birth is uncorrelated with ability.
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Example: Sibling-sex composition and labor supply

» Angrist and Evans, 1998, AER, argue that the parents’
preferences for a mixed sibling-sex composition can be used to
estimate B in Hours; = Bo+ B1Children; + . ..+ U;.

» We need to find an IV Z such that Cov [U;, Z;] = 0 and
Cov (Children;, Z;) # 0.

» Consider a dummy variable that takes on the value one if the sex
of the second child matches the sex of the first child.

> If the parents prefer a mixed sibling-sex composition, they are
more likely to have another child if their first two children are of
the same sex.

» The same-sex dummy is correlated with the number of children.

> Since sex mix is randomly determined, the same sex dummy is
exogenous.
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Instrumental variable model

» Consider the following model:
Yi=yo+niXa+...+viXiktBi1Dit + ...+ BuDim+Ui,

where

> Y; is the dependent variable.
> v, is the coefficient on the constant regressor: E [U;] = 0.

> Xi1,..., X, are the k exogenous regressors:
Cov [Xilv Ul'] =...=Cov [Xik’ Ul'] =0.
» Dii,...,Dj, are the m endogenous regressors:

Cov [D;1,U;] #0,...,Cov [D;,,U;] #0.
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» Suppose that the econometrician observes [ additional exogenous
variables (IVs) Z;1,...,Z;

» We assume that the IVs Z;1, . .., Z;; are excluded from the
structural equation:

Yi=yo+viXan+...+ X +B1Dian+...+ BuDim + Ui,

so we still have k + 1 + m structural coefficients to estimate.

» The necessary condition for identification is that the number of
IVs is at least as large as the number of unknowns or [ > m.
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2SLS

» Consider the first-stage projection models:

Di] = 7,1 +7Z'1712i1 +.. -+7Tl,lzil

+r X+ T Xik + Vi,

Dy = mom+mimZion+...+101mZ;

0 mXit + o+ T mXik + Vi,

where (71,1, 71,1, ..., Ti+k,m) are projection coefficients.
» All right-hand side variables are exogenous.

» The first stage coefficients n’s can be estimated consistently by
OLS by regressing Y’s against Z’s and X’’s.
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» After estimating 7r’s, obtain the fitted values for D’s:

Dil = 7o, +7T1’1Zi1 + ... +7T1,1Zi1

i X+ o+ T Xk

Dim = ﬁo’m + ﬁl,mZil +...+ ﬁl,mZﬂ
At mXil + o+ Tkem Xik-
» In the second stage, regress (OLS) the dependent variable Y
against a constant, X’s, and D’s obtained in the first stage:

Y; = 78S|s +,5;§S|SX“ +. +yk5|sX +I§.’fsllel +. ﬁ sIlem + Ul-

» One can show that the resulting 2SLS estimators
yosis ysls L yRss, AfS'S, ..., B% are consistent and

asymptotically normal.
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2SLS estimation with many IVs
» We consider the simple model (0 intercept):
Y = aD;+U;
E[Ui]] = 0
Cov|[D;,U;] # 0.
> Suppose that we have [ IVs Z; € R (Z; = (Zi1, Ziz, ... Zi)) ")
which satisfies Cov [U;, Z;] = 0.
» The first-stage of 2SLS uses the projection model of D; on Z;:
D; = Z'n+V;
E[zVi] = 0
n = argminE [(D,- - Z;a)z] .

a

» Then,
Yi=aD;+U; _ T
Dl-=ZiT7r+Vl- = Yi=aZ n+aVi+U; .

Regression of ¥; on Z 7 consistently estimates «.
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Z: the n x [ matrix of IVs; D = (D, D>, ..., D,)";

Y=(.Y,..Y)" ;U= (U,Us, ..U, ; V=(Vi,V,..,V,)".

Since 7 is unknown, we replace it with 7 = (Z7Z)"' Z7D:

_oss _ D"PzY _ vt n 'DTPLU
DTPzD n~'DTPzD’

where Pz =Z(Z72)"' 7.
n~'DTPzD is less variable when #n and [ are both large. The bias
of @®"® mainly depends on the numerator n~'DT PzU.

Suppose that E[UVT | Z] = oyvy], and Z'Z = 1;, then

1 )
E [—DszU | Z] =0yvy —.
n n

When the number of IVs is large and comparable to the sample
size n, the bias can be substantial.
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In the context of a small and fixed number of I'Vs, adding one
more IV reduces the variance of the 2SLS estimator.
However, if there are too many IVs, the bias becomes
non-negligible and we have to selection a small subset of best
IVs out of the long list of potential I'Vs.

Under an alternative asymptotic analysis, when the number of
IVs [ is assumed to be growing [/ = [,, T co as n T oo such that
ln/n — ¢ > 0, the 2SLS estimator is inconsistent.

LASSO is used for data-driven IV selection.
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Optimal instrument

>

Suppose that E [U; | Z;] = 0, then for any function f,
Cov[f (Z;),U;] =0and ¢; = f (Z;) can be used as an TV:

n
- LY
E [lel] =aE [{lDl] =1 a?'v = M
i=1 GiDi
Denote D = PzD.

oy _DTPZY _DTY _ S, DY
DTPZD ﬁTD Z?:] EiDi ’

where D; = Z!7 and 7 are the first-stage OLS coefficients.

@' can be viewed as an IV estimator using estimated projection

Z! 7 in lieu of the unknown true projection Z rr; as the
instrument.

@' summarizes the information in all intruments Z; and uses a

single IV Z .
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Assume that the model is homoskedastic: E [Ul2 | D,»] =02 We
can show that the optimal IV estimator is the one @* that uses
(P =E[D;| Z]:

Vi (@* - a) -4 N|0,

E|@)
and

\/ﬁ(&iv —CX) —d N 0,

B[4 )
(E[¢¢7])°
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Approximation to the optimal instrument

> The 2SLS uses a linear projection Z 7 to approximate
E[D;| Z]:

n argminE [(Di - Zl-Ta)z]
a

argminE [(E [D; | Z;] - ZiTa)z] )
a
> We generate a dictionary W; = (W;y, ..., W; )T e R”:

Wi = (Zi1, Zios s Zit, 2 2 Zins s Z Zat, 7, ) :

whose dimension p can be larger than n.
> We can also use the linear projection W' § to approximate
E[D; | Z;], where

0

argminE [(Di - Win)2]
b

argminE [(E [D; | Z;] - Win)z] :
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It is easy to show that
2 2
E|(E(D: | Zi] - W[ 6’| <B|(E(D: | Z:] - 77 n)?|.

We assume that if p is very large, then the approximation error is
very much close to zero and W' 6 is the optimal instrument.

If p < n, we can regress D; on W; to get the OLS coefficient 5
and uses the estimated optimal instrument W," 5.
This procedure is equivalent to 2SLS using all variables in W; as

instruments. We showed that when p is large, the 2SLS estimator
may be substantially biased.

When p > n, the 2SLS estimator is not computable. We are
forced to select a subset from W;.
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» We assume that the conditional expectation model

p
WIs+Vi= ) 6, Wij+V;

J=1

D;

E[V;il|Z] = 0

is sparse: [* = |A| is a small number, where | A| denotes the
number of elements in A = {j 16 # 0} (6 = (61,62, ...,6,)
although p is very large.

T

),

» The IVs in A are called the effective IVs. Dropping ineffective
IVs would not result in loss of efficiency.

» Clearly, there is no difference between the I'V estimator using
W 26a Wia={Wij:jeA}and6a=1{5;:j € A})and
the IV estimator using W' 6.

» However, we do not know A (identities of the effective IVs). We
use LASSO selection to find them.

24/37



Algorithm
1. LASSO regression of D; against W;:

2
_ _ 1 & p P
(61,,1,...,6p,,1)=argmin ZZ Di—ijWij +/12|bj| .
1 j=1 Jj=1

i=1

Let A = { J: 5 it O} be the selected controls.

» The dropped IVs are either ineffective or have small coefficients
(6; < n~'/2). In the latter case, it can be shown that such
variables do not contribute to the asymptotic variance, so we can
drop them without loss of efficiency.
2. Post-LASSO of D; against W. a and get the OLS coeflicients

{ 5‘;' 1 j € A } Generate the fitted value as the estimated optimal
L e pl
IV: ¢ = Zjeﬁdj/‘jvij‘
3. Estimate « using ¢} as the IV:
~x [ Zr EZZLI Z?)G
a (ﬂ) Dl Z*D-'
i=16; i
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Model with controls

» The structural model with controls X; = (Xi1, Xi2, ..., Xix) '

Y, = aDi+X/B+U;
E[U; | Xi,Zi] = 0.

» The intercept is typically one of the elements in X;.

» Controls X; have to be included in the first stage. Consider 2SLS
and the following projection models:

D; = Zl.Tﬂ'+XiTy+V,-
Z;
(%)) - o
and
D; = Z'7+V;

oo}
=
N
I
o
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> It is easy to show that 7 = @y, where
®=(E[zZ]) E|zX]]
Vi=Di-Z 7=V, +(X] -270) 7.

‘7,- is not correlated with Z; but it is correlated with X;.

» If we drop X; from the first stage,

Y,-:a/D,-+Xl.T,B+U,-
D;=ZT7+V;
= Y=o (ZT74Vi)+ X[ B+ Ui = a (Z]7) + X] p+aV; + Ui

The residual a/‘7,- + U; is correlated with X;.

> Regression of ¥; against Z" 7 and X; does not give consistent
estimator for a.
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» The 2SLS can be written as an IV estimator:
L, -
(Z ( D; ) Y,
. X;
i=1

DAsaE

i=1

—~

() - (225

i=

bl

—~

ST

i=1

where D; = Z!'m+ Xy denotes the first-stage fitted value.
» The optimal IV: £ = E [D; | X;, Z;] and the optimal IV
estimator:

(5 )-[2(E)(5))

> We need to approximate ;.
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Many IVs and few controls

» The conditional expectation model for D;:

D; Wis+X y+V;
E[VilXi,Z] = 0,

where the dictionary W; contains many polynomials of Z; and
interactions between Z; and X;. In this case, we need selection
over W; but need no selection over the controls X;.

» In the first-stage regression, we force inclusion of X; by assigning
no penalty weights to their coefficients.

» In the second stage, we run IV regression by using the
post-LASSO fitted value as the IV.
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Algorithm
1. LASSO regression of D; against W; and X;:

(61,/1’ eeey 6;7,1’ 5’\1,/1, seesy Yk,/l)

1 n p k 2 p
= argmin —Z Di_zbjWij_Zdeij +/12|bj|
Biysbpdisdi | = = =

Let A = { J: 5 it O} be the selected controls.
2. Run post LASSO of D; against the instruments in
W a= {W~~ 1J € ﬁ} and X; to get OLS coefficients
{ 1 j € &11} { . ,yk} Construct

k
Spl 2 : =pl
6]‘ Wij+ yj Xij-
J=1 J=1

M
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3. Estimate (a, 8) by using Zl* as the IV:

(5B

i=

2y

Jr).

B
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Partialling out
> Let Mx = I, - X (X7X) "' X7 be the projection matrix on the
space that is orthogonal to the column space of X: MxX = 0.

> Write
Y, = aDi+X/B+U;
D, = W/6+X y+V;
in the matrix form
Y = aD+Xg+U

D = W6+Xy+V.
» Multiply both sides by Mx to get

Y = aD+U
D = Ws+V,
where Y = MxY, D = MxD, W = MxW, U = MxU and

V =MxV.
» By transforming (Y, D, W) into the residuals against X, we have

another numerically equivalent way to compute the IV estimator.



The partialling out algorithm

_ — \T —_
1. Run LASSO regression of D = (Dl, Dn) against W (W;;

denotes its i j-th element of the n X p matrix W) to get

—~ T ~ -
(61,,1, ...,61,,,1) .Let A = {j 10ja 0} be the selected controls.

2. Run post LASSO regression of D against the [Vs in Ato get
OLS coefficients {5?' 1 j € ﬁ} Construct the estimated optimal
- i
IV = Zjeﬁéj Wi;.
3. Estimate @ by using Zl* as the IV:

n o pxy
~ _ 2uj=1 Y
a —

?:1 Zjﬁi
—_ —_ —\T
where Y = (Yl, Yn) .
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Few IVs and many controls
» In the model

Yi = aDl-+XiT,8+Ul-
E[U; | Xi.Z;]] = O
D; = Zn+X/y+V;

E[Vi|Xi,Zi] = 0,

the dimension of X; is large but the number of IVs is small and
we do not use its polynomials and interactions to approximate the
optimal IV E [D; | X;, Z;].

» This is the case, for example, when there is only one binary
instrument (a dummy variable, all polynomials are equal) and we
do not use its interactions with X;.

» We assume the outcome equation is sparse: the set of relevant
controls A = {j (B # 0} is small.

» In this case, we need to perform LASSO selection over X; only.

> We apply the partialling out approach by using LASSO and post
LASSO over over X;.
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The partialling out algorithm

1. Perform LASSO and post LASSO of D; against X; to generate
the residual D',

2. Perform I:ASSO and post LASSO of ¥; against X; to generate the
residual Yipl.

3. Perform LASSO and post LASSO of Z;; against X; to generate
the residual Zf’}' forj=1,2,..,L

4. Run OLS of 5?' against Z"

i1

(71, ..., ;) and the estimated optimal IV Z;‘ = Zi.:l miZij.

" lell to get the OLS coefficients

5. Estimate a by
~ =0l
L, ILaY
a = I ——t
i & D7
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Many IVs and many controls
» In the model

Y, = aD;+X;B+U;
E[Ui| Xi,Zi]] = 0
D; = W/ s+X y+V;

E[Vi|Xi,Zi] = 0,

where the dictionary W; contains high-dimensional
transformations (polynomials) of the primitive instruments Z;
and interactions of Z; and X;.

» Both W; and X; are high-dimensional. We need to perform
LASSO selections over both.

» The previous partialling out procedure is not practically
implementable, since the LASSO and post-LASSO partialling
out of many controls from many IVs is computationally hard.

» We do LASSO selection on W; first to estimate the equation
D; =W+ Xy +V; and find the effective IVs. We then partial

out the effects from X;.
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The partialling out algorithm

1. Perform LASSO and post LASSO of D; against X; to generate
the residual 5?'.

2. Perform LASSO and post LASSO of ¥; against X; to generate the
residual f’ipl.

3. Perform LASSO and post LASSO of D; against W; and X; to
generate the fitted value ;' (estimated optimal IV). This step
selects a subset from W;.

4. Perform LASSO and post LASSO of Zl* against X; to partial out
the effect from X; and get the residual Z:p !

5. Estimate a by

n ZP'ZP'

~% _ i=1 5

T yn FpPIpel
i=1 gi Di
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