Introduction to Statistical Machine Learning with Applications in Econometrics

Lecture 13: LASSO for Instrumental Variable Models

Instructor: Ma, Jun

Renmin University of China

December 16, 2021

Instrumental variable

► Consider

$$Y_i = \beta_0 + \beta_1 X_i + e_i,$$

$$E[e_i] = 0$$

$$Cov[X_i, e_i] \neq 0.$$

- An instrument is an variable Z_i which satisfies the following conditions:
 - 1. The IV is exogenous: Cov $[Z_i, e_i] = 0$.
 - 2. The IV determines the endogenous regressor: Cov $[Z_i, X_i] \neq 0$.
- ▶ When an IV variable satisfying those conditions is available, it allows us to estimate the effect of *X* on *Y* consistently:

$$Cov [Y_i, Z_i] = \beta_1 Cov [X_i, Z_i] + Cov [e_i, Z_i]$$
$$= \beta_1 Cov [X_i, Z_i] \Longrightarrow \beta_1 = \frac{Cov [Y_i, Z_i]}{Cov [X_i, Z_i]}.$$

Sources of endogeneity

There are several possible sources of endogeneity:

- 1. Omitted explanatory variables.
- 2. Simultaneity.
- 3. Errors in variables.

All result in regressors correlated with the errors.

Omitted explanatory variables

► Suppose that the true model is

$$\log (Wage_i) = \beta_0 + \beta_1 Education_i + \beta_2 Ability_i + V_i,$$

where V_i is uncorrelated with *Education* and *Ability*.

► Since *Ability* is unobservable, the econometrician regresses log(Wage) against *Education*, and $\beta_2 Ability$ goes into the error part:

$$\log (Wage_i) = \beta_0 + \beta_1 Education_i + U_i,$$

$$U_i = \beta_2 Ability_i + V_i.$$

► Education is correlated with Ability: we can expect that Cov (Education_i, Ability_i) > 0, β_2 > 0, and therefore Cov (Education_i, U_i) > 0.

Simultaneity

► Consider the following demand-supply system:

Demand:
$$Q^d = \beta_0^d + \beta_1^d P + U^d$$
,
Supply: $Q^s = \beta_0^s + \beta_1^s P + U^s$,

where: Q^d =quantity demanded, Q^s =quantity supplied, P=price.

► The quantity and price are determined simultaneously in the equilibrium:

$$Q^d = Q^s = Q.$$

Note that Q^d and Q^s are not observed separately, we observe only the equilibrium values Q.

$$\begin{split} Q^d &= \beta_0^d + \beta_1^d P + U^d, \\ Q^s &= \beta_0^s + \beta_1^s P + U^s, \\ Q^d &= Q^s = Q. \end{split}$$

 \triangleright Solving for P, we obtain

$$0 = \left(\beta_0^d - \beta_0^s\right) + \left(\beta_1^d - \beta_1^s\right)P + \left(U^d - U^s\right),$$

or

$$P = -\frac{\beta_0^d - \beta_0^s}{\beta_1^d - \beta_1^s} - \frac{U^d - U^s}{\beta_1^d - \beta_1^s}.$$

► Thus,

$$\operatorname{Cov}\left(P,U^{d}\right)\neq0$$
 and $\operatorname{Cov}\left(P,U^{s}\right)\neq0$.

The demand-supply equations cannot be estimated by OLS.

► Consider the following labour supply model for married women:

$$Hours_i = \beta_0 + \beta_1 Children_i + Other Factors + U_i$$
,

where *Hours*=hours of work, *Children*=number of children.

- ► It is reasonable to assume that women decide simultaneously how much time to devote to career and family.
- ► Thus, while we may be mainly interested in the effect of family size on labour supply, there is another equation:

$$Children_i = \gamma_0 + \gamma_1 Hours_i + Other Factors + V_i$$
,

and *Children* and *Hours* are determined simultaneously in an equilibrium.

► As a result, Cov $(Children_i, U_i) \neq 0$, and the effect of family size cannot be estimated by OLS.

Errors in variables

► Consider the following model:

$$Y_i = \beta_0 + \beta_1 X_i^* + V_i,$$

where X_i^* is the true regressor.

▶ Suppose that X_i^* is not directly observable. Instead, we observe X_i that measures X_i^* with an error ε_i :

$$X_i = X_i^* + \varepsilon_i.$$

► Since X_i^* is unobservable, the econometrician has to regress Y_i against X_i .

$$X_i = X_i^* + \varepsilon_i,$$

$$Y_i = \beta_0 + \beta_1 X_i^* + V_i.$$

 \blacktriangleright The model for Y_i as a function of X_i can be written as

$$Y_i = \beta_0 + \beta_1 (X_i - \varepsilon_i) + V_i$$

= \beta_0 + \beta_1 X_i + V_i - \beta_1 \varepsilon_i,

or

$$Y_i = \beta_0 + \beta_1 X_i + e_i,$$

$$e_i = V_i - \beta_1 \varepsilon_i.$$

$$Y_i = \beta_0 + \beta_1 X_i + e_i,$$

$$e_i = V_i - \beta_1 \varepsilon_i,$$

$$X_i = X_i^* + \varepsilon_i.$$

▶ We can assume that

$$\operatorname{Cov}\left[X_{i}^{*}, V_{i}\right] = \operatorname{Cov}\left[X_{i}^{*}, \varepsilon_{i}\right] = \operatorname{Cov}\left[\varepsilon_{i}, V_{i}\right] = 0.$$

► However,

$$Cov [X_i, e_i] = Cov [X_i^* + \varepsilon_i, V_i - \beta_1 \varepsilon_i]$$

$$= Cov [X_i^*, V_i] - \beta_1 Cov [X_i^*, \varepsilon_i]$$

$$+ Cov [\varepsilon_i, V_i] - \beta_1 Cov [\varepsilon_i, \varepsilon_i]$$

▶ Thus, X_i is enodgenous and β_1 cannot be estimated by OLS.

Example: Compulsory schooling laws and return to education

- ► Angrist and Krueger, 1991, *QJE*, suggested using school start age policy to estimate β_1 in $\log(Wage_i) = \beta_0 + \beta_1 Education_i + \beta_2 Ability_i + V_i$.
- ▶ We need to find an IV variable Z such that Cov $(Ability_i, Z_i) = 0$ and Cov $(Education_i, Z_i) \neq 0$.
- ► They argue that due to compulsory schooling laws, the season of birth variable satisfies the IV conditions:
 - A child has to attend the school until he reaches a certain drop-out age.
 - Students born in the first quarter of the year, reach the legal drop-out age before their classmates who were born later in the year.
 - ► The quarter of birth dummy variable is correlated with education.
 - ► The quarter of birth is uncorrelated with ability.

Example: Sibling-sex composition and labor supply

- Angrist and Evans, 1998, *AER*, argue that the parents' preferences for a mixed sibling-sex composition can be used to estimate β_1 in $Hours_i = \beta_0 + \beta_1 Children_i + ... + U_i$.
- ▶ We need to find an IV Z such that $Cov[U_i, Z_i] = 0$ and $Cov(Children_i, Z_i) \neq 0$.
- ► Consider a dummy variable that takes on the value one if the sex of the second child matches the sex of the first child.
 - ► If the parents prefer a mixed sibling-sex composition, they are more likely to have another child if their first two children are of the same sex.
 - ► The same-sex dummy is correlated with the number of children.
 - Since sex mix is randomly determined, the same sex dummy is exogenous.

Instrumental variable model

► Consider the following model:

$$Y_i = \gamma_0 + \gamma_1 X_{i1} + \ldots + \gamma_k X_{ik} + \beta_1 D_{i1} + \ldots + \beta_m D_{im} + U_i$$

where

- $ightharpoonup Y_i$ is the dependent variable.
- γ_0 is the coefficient on the constant regressor: E $[U_i] = 0$.
- $ightharpoonup X_{i1}, \ldots, X_{ik}$ are the *k* exogenous regressors:

$$Cov[X_{i1}, U_i] = ... = Cov[X_{ik}, U_i] = 0.$$

▶ $D_{i1}, ..., D_{im}$ are the *m* endogenous regressors:

$$Cov[D_{i1}, U_i] \neq 0, ..., Cov[D_{im}, U_i] \neq 0.$$

- ▶ Suppose that the econometrician observes l additional exogenous variables (IVs) Z_{i1}, \ldots, Z_{il}
- ▶ We assume that the IVs $Z_{i1}, ..., Z_{il}$ are excluded from the structural equation:

$$Y_i = \gamma_0 + \gamma_1 X_{i1} + \ldots + \gamma_k X_{ik} + \beta_1 D_{i1} + \ldots + \beta_m D_{im} + U_i,$$

so we still have k + 1 + m structural coefficients to estimate.

▶ The necessary condition for identification is that the number of IVs is at least as large as the number of unknowns or $l \ge m$.

2SLS

► Consider the first-stage projection models:

$$D_{i1} = \pi_{0,1} + \pi_{1,1} Z_{i1} + \ldots + \pi_{l,1} Z_{il} + \pi_{l+1,1} X_{i1} + \ldots + \pi_{l+k,1} X_{ik} + V_{i1},$$

$$\vdots \quad \vdots \quad \vdots$$

$$D_{im} = \pi_{0,m} + \pi_{1,m} Z_{i1} + \ldots + \pi_{l,m} Z_{il} + \pi_{l+1,m} X_{i1} + \ldots + \pi_{l+k,m} X_{ik} + V_{im},$$

where $(\pi_{0,1}, \pi_{1,1}, ..., \pi_{l+k,m})$ are projection coefficients.

- ► All right-hand side variables are exogenous.
- ► The first stage coefficients π 's can be estimated consistently by OLS by regressing Y's against Z's and X's.

• After estimating π 's, obtain the fitted values for D's:

$$\widehat{D}_{i1} = \widehat{\pi}_{0,1} + \widehat{\pi}_{1,1} Z_{i1} + \ldots + \widehat{\pi}_{l,1} Z_{il}
+ \widehat{\pi}_{l+1,1} X_{i1} + \ldots + \widehat{\pi}_{l+k,1} X_{ik},
\vdots \vdots \vdots \vdots
\widehat{D}_{im} = \widehat{\pi}_{0,m} + \widehat{\pi}_{1,m} Z_{i1} + \ldots + \widehat{\pi}_{l,m} Z_{il}
+ \widehat{\pi}_{l+1,m} X_{i1} + \ldots + \widehat{\pi}_{l+k,m} X_{ik}.$$

▶ In the second stage, regress (OLS) the dependent variable Y against a constant, X's, and \widehat{D} 's obtained in the first stage:

$$Y_i = \widehat{\gamma}_0^{2\mathrm{sls}} + \widehat{\gamma}_1^{2\mathrm{sls}} X_{i1} + \ldots + \widehat{\gamma}_k^{2\mathrm{sls}} X_{ik} + \widehat{\beta}_1^{2\mathrm{sls}} \widehat{D}_{i1} + \ldots + \widehat{\beta}_m^{2\mathrm{sls}} \widehat{D}_{im} + \widehat{U}_i.$$

• One can show that the resulting 2SLS estimators $\widehat{\gamma}_0^{2\text{sls}}, \widehat{\gamma}_1^{2\text{sls}}, \dots, \widehat{\gamma}_k^{2\text{sls}}, \widehat{\beta}_1^{2\text{sls}}, \dots, \widehat{\beta}_m^{2\text{sls}}$ are consistent and asymptotically normal.

2SLS estimation with many IVs

► We consider the simple model (0 intercept):

$$\begin{array}{rcl} Y_i &=& \alpha D_i + U_i \\ \mathrm{E}\left[U_i\right] &=& 0 \\ \mathrm{Cov}\left[D_i, U_i\right] &\neq& 0. \end{array}$$

- Suppose that we have l IVs $Z_i \in \mathbb{R}^l$ $(Z_i = (Z_{i1}, Z_{i2}, ..., Z_{il})^\top)$ which satisfies Cov $[U_i, Z_i] = 0$.
- ▶ The first-stage of 2SLS uses the projection model of D_i on Z_i :

$$D_{i} = Z_{i}^{\mathsf{T}} \pi + V_{i}$$

$$E[Z_{i}V_{i}] = 0$$

$$\pi = \operatorname{argmin} E\left[\left(D_{i} - Z_{i}^{\mathsf{T}} a\right)^{2}\right].$$

► Then,

$$\begin{array}{ll} Y_i = \alpha D_i + U_i \\ D_i = Z_i^\top \pi + V_i \end{array} \implies Y_i = \alpha Z_i^\top \pi + \alpha V_i + U_i \ .$$

Regression of Y_i on $Z_i^{\top} \pi$ consistently estimates α .

- ▶ **Z**: the $n \times l$ matrix of IVs; **D** = $(D_1, D_2, ..., D_n)^{\top}$; **Y** = $(Y_1, Y_2, ..., Y_n)^{\top}$; **U** = $(U_1, U_2, ..., U_n)^{\top}$; **V** = $(V_1, V_2, ..., V_n)^{\top}$.
- Since π is unknown, we replace it with $\widehat{\pi} = (\mathbf{Z}^{\top}\mathbf{Z})^{-1}\mathbf{Z}^{\top}\mathbf{D}$:

$$\widehat{\alpha}^{2\mathsf{sls}} = \frac{\mathbf{D}^{\top} P_{\mathbf{Z}} \mathbf{Y}}{\mathbf{D}^{\top} P_{\mathbf{Z}} \mathbf{D}} = \alpha + \frac{n^{-1} \mathbf{D}^{\top} P_{\mathbf{Z}} \mathbf{U}}{n^{-1} \mathbf{D}^{\top} P_{\mathbf{Z}} \mathbf{D}},$$

where $P_{\mathbf{Z}} = \mathbf{Z} (\mathbf{Z}^{\top} \mathbf{Z})^{-1} \mathbf{Z}^{\top}$.

- ▶ $n^{-1}\mathbf{D}^{\mathsf{T}}P_{\mathbf{Z}}\mathbf{D}$ is less variable when n and l are both large. The bias of $\widehat{\alpha}^{2\mathsf{sls}}$ mainly depends on the numerator $n^{-1}\mathbf{D}^{\mathsf{T}}P_{\mathbf{Z}}\mathbf{U}$.
- ► Suppose that $E[\mathbf{U}\mathbf{V}^{\top} \mid \mathbf{Z}] = \sigma_{UV}\mathbf{I}_n$ and $\mathbf{Z}^{\top}\mathbf{Z} = \mathbf{I}_l$, then

$$\mathrm{E}\left[\frac{1}{n}\mathbf{D}^{\mathsf{T}}\boldsymbol{P}_{\mathbf{Z}}\mathbf{U}\mid\mathbf{Z}\right] = \sigma_{UV}\frac{l}{n}.$$

 \blacktriangleright When the number of IVs is large and comparable to the sample size n, the bias can be substantial.

- ► In the context of a small and fixed number of IVs, adding one more IV reduces the variance of the 2SLS estimator.
- ► However, if there are too many IVs, the bias becomes non-negligible and we have to selection a small subset of best IVs out of the long list of potential IVs.
- ▶ Under an alternative asymptotic analysis, when the number of IVs l is assumed to be growing $l = l_n \uparrow \infty$ as $n \uparrow \infty$ such that $l_n/n \rightarrow c > 0$, the 2SLS estimator is inconsistent.
- ► LASSO is used for data-driven IV selection.

Optimal instrument

Suppose that $E[U_i \mid Z_i] = 0$, then for any function f, $Cov[f(Z_i), U_i] = 0$ and $\zeta_i = f(Z_i)$ can be used as an IV:

$$E\left[\zeta_{i}Y_{i}\right] = \alpha E\left[\zeta_{i}D_{i}\right] \Longrightarrow \widehat{\alpha}^{\mathsf{iv}} = \frac{\sum_{i=1}^{n} \zeta_{i}Y_{i}}{\sum_{i=1}^{n} \zeta_{i}D_{i}}.$$

► Denote $\widehat{\mathbf{D}} = P_{\mathbf{Z}}\mathbf{D}$.

$$\widehat{\alpha}^{2\mathsf{sls}} = \frac{\mathbf{D}^{\mathsf{T}} P_{\mathbf{Z}} \mathbf{Y}}{\mathbf{D}^{\mathsf{T}} P_{\mathbf{Z}} \mathbf{D}} = \frac{\widehat{\mathbf{D}}^{\mathsf{T}} \mathbf{Y}}{\widehat{\mathbf{D}}^{\mathsf{T}} \mathbf{D}} = \frac{\sum_{i=1}^{n} \widehat{D}_{i} Y_{i}}{\sum_{i=1}^{n} \widehat{D}_{i} D_{i}},$$

where $\widehat{D}_i = Z_i^{\mathsf{T}} \widehat{\pi}$ and $\widehat{\pi}$ are the first-stage OLS coefficients.

- $\widehat{\alpha}^{2\text{sls}}$ can be viewed as an IV estimator using estimated projection $Z_i^{\top}\widehat{\pi}$ in lieu of the unknown true projection $Z_i^{\top}\pi_i$ as the instrument.
- ▶ $\widehat{\alpha}^{2\text{sls}}$ summarizes the information in all intruments Z_i and uses a single IV $Z_i^{\top} \pi$.

Assume that the model is homoskedastic: $E\left[U_i^2 \mid D_i\right] = \sigma^2$. We can show that the optimal IV estimator is the one $\widehat{\alpha}^*$ that uses $\zeta_i^* = E\left[D_i \mid Z_i\right]$:

$$\sqrt{n} \left(\widehat{\alpha}^* - \alpha \right) \to_d N \left(0, \frac{\sigma^2}{E\left[\left(\zeta_i^* \right)^2 \right]} \right)$$

and

$$\sqrt{n} \left(\widehat{\alpha}^{\mathsf{iv}} - \alpha \right) \to_d \mathbf{N} \left(0, \frac{\sigma^2 \mathbf{E} \left[\zeta_i^2 \right]}{\left(\mathbf{E} \left[\zeta_i \zeta_i^* \right] \right)^2} \right).$$

Approximation to the optimal instrument

► The 2SLS uses a linear projection $Z_i^{\top} \pi$ to approximate $E[D_i \mid Z_i]$:

$$\pi = \underset{a}{\operatorname{argminE}} \left[\left(D_i - Z_i^{\mathsf{T}} a \right)^2 \right]$$
$$= \underset{a}{\operatorname{argminE}} \left[\left(\operatorname{E} \left[D_i \mid Z_i \right] - Z_i^{\mathsf{T}} a \right)^2 \right].$$

• We generate a dictionary $W_i = (W_{i1}, ..., W_{ip})^{\top} \in \mathbb{R}^p$:

$$W_i = \left(Z_{i1}, Z_{i2}, ..., Z_{il}, Z_{i1}^2, Z_{i1}Z_{i2}, ..., Z_{i1}Z_{il}, Z_{i2}^2, ...\right),$$

whose dimension p can be larger than n.

▶ We can also use the linear projection $W_i^{\top} \delta$ to approximate $\mathbb{E}[D_i \mid Z_i]$, where

$$\delta = \underset{b}{\operatorname{argminE}} \left[\left(D_i - W_i^{\mathsf{T}} b \right)^2 \right]$$
$$= \underset{a}{\operatorname{argminE}} \left[\left(\operatorname{E} \left[D_i \mid Z_i \right] - W_i^{\mathsf{T}} b \right)^2 \right].$$

► It is easy to show that

$$\mathrm{E}\left[\left(\mathrm{E}\left[D_i\mid Z_i\right] - W_i^{\top}\delta\right)^2\right] < \mathrm{E}\left[\left(\mathrm{E}\left[D_i\mid Z_i\right] - Z_i^{\top}\pi\right)^2\right].$$

- ▶ We assume that if p is very large, then the approximation error is very much close to zero and $W_i^{\mathsf{T}} \delta$ is the optimal instrument.
- ▶ If p < n, we can regress D_i on W_i to get the OLS coefficient $\widehat{\delta}$ and uses the estimated optimal instrument $W_i^{\top} \widehat{\delta}$.
- ▶ This procedure is equivalent to 2SLS using all variables in W_i as instruments. We showed that when p is large, the 2SLS estimator may be substantially biased.
- ▶ When p > n, the 2SLS estimator is not computable. We are forced to select a subset from W_i .

► We assume that the conditional expectation model

$$D_i = W_i^{\top} \delta + V_i = \sum_{j=1}^{p} \delta_j W_{ij} + V_i$$

$$\mathbb{E}[V_i \mid Z_i] = 0$$

is sparse: $l^* = |\mathcal{A}|$ is a small number, where $|\mathcal{A}|$ denotes the number of elements in $\mathcal{A} = \{j : \delta_j \neq 0\}$ $(\delta = (\delta_1, \delta_2, ..., \delta_p)^\top)$, although p is very large.

- ▶ The IVs in \mathcal{A} are called the effective IVs. Dropping ineffective IVs would not result in loss of efficiency.
- ► Clearly, there is no difference between the IV estimator using $W_{i,\mathcal{A}}^{\top}\delta_{\mathcal{A}}$ ($W_{i,\mathcal{A}} = \{W_{ij} : j \in \mathcal{A}\}$ and $\delta_{\mathcal{A}} = \{\delta_j : j \in \mathcal{A}\}$) and the IV estimator using $W_i^{\top}\delta$.
- ► However, we do not know \mathcal{A} (identities of the effective IVs). We use LASSO selection to find them.

Algorithm

1. LASSO regression of D_i against W_i :

$$\left(\widehat{\delta}_{1,\lambda},...,\widehat{\delta}_{p,\lambda}\right) = \underset{b_1,...,b_p}{\operatorname{argmin}} \left\{ \frac{1}{n} \sum_{i=1}^n \left(D_i - \sum_{j=1}^p b_j W_{ij} \right)^2 + \lambda \sum_{j=1}^p \left| b_j \right| \right\}.$$

Let $\widehat{\mathcal{A}} = \left\{ j : \widehat{\delta}_{j,\lambda} \neq 0 \right\}$ be the selected controls.

- ▶ The dropped IVs are either ineffective or have small coefficients $(\delta_j \sim n^{-1/2})$. In the latter case, it can be shown that such variables do not contribute to the asymptotic variance, so we can drop them without loss of efficiency.
- 2. Post-LASSO of D_i against $W_{i,\widehat{\mathcal{A}}}$ and get the OLS coefficients $\left\{\widehat{\delta}_j^{\mathrm{pl}}: j \in \widehat{\mathcal{A}}\right\}$. Generate the fitted value as the estimated optimal IV: $\widehat{\zeta}_i^* = \sum_{i \in \widehat{\mathcal{A}}} \widehat{\delta}_j^{\mathrm{pl}} W_{ij}$.
- 3. Estimate α using $\widehat{\zeta}_i^*$ as the IV:

$$\widehat{\alpha}^* \left(\widehat{\mathcal{A}} \right) = \frac{\sum_{i=1}^n \widehat{\zeta}_i^* Y_i}{\sum_{i=1}^n \widehat{\zeta}_i^* D_i}.$$

Model with controls

► The structural model with controls $X_i = (X_{i1}, X_{i2}, ..., X_{ik})^{\top}$:

$$\begin{aligned} Y_i &=& \alpha D_i + X_i^\top \beta + U_i \\ \mathrm{E}\left[U_i \mid X_i, Z_i\right] &=& 0. \end{aligned}$$

- ▶ The intercept is typically one of the elements in X_i .
- ightharpoonup Controls X_i have to be included in the first stage. Consider 2SLS and the following projection models:

$$D_{i} = Z_{i}^{\top} \pi + X_{i}^{\top} \gamma + V_{i}$$

$$E\left[V_{i} \begin{pmatrix} Z_{i} \\ X_{i} \end{pmatrix}\right] = 0$$

and

$$\begin{aligned} D_i &=& Z_i^\top \widetilde{\pi} + \widetilde{V}_i \\ \mathbb{E}\left[\widetilde{V}_i Z_i\right] &=& 0. \end{aligned}$$

► It is easy to show that $\tilde{\pi} = \Theta \gamma$, where

$$\Theta = \left(\mathbb{E} \left[Z_i Z_i^\top \right] \right)^{-1} \mathbb{E} \left[Z_i X_i^\top \right]$$

$$\widetilde{V}_i = D_i - Z_i^\top \widetilde{\pi} = V_i + \left(X_i^\top - Z_i^\top \Theta \right) \gamma.$$

 \widetilde{V}_i is not correlated with Z_i but it is correlated with X_i .

▶ If we drop X_i from the first stage,

$$\begin{split} Y_i &= \alpha D_i + X_i^\top \beta + U_i \\ D_i &= Z_i^\top \widetilde{\pi} + \widetilde{V}_i \\ \Longrightarrow Y_i &= \alpha \left(Z_i^\top \widetilde{\pi} + \widetilde{V}_i \right) + X_i^\top \beta + U_i = \alpha \left(Z_i^\top \widetilde{\pi} \right) + X_i^\top \beta + \alpha \widetilde{V}_i + U_i. \end{split}$$

The residual $\alpha \widetilde{V}_i + U_i$ is correlated with X_i .

► Regression of Y_i against $Z_i^{\top} \widetilde{\pi}$ and X_i does not give consistent estimator for α .

► The 2SLS can be written as an IV estimator:

$$\left(\begin{array}{c} \widehat{\alpha}^{2 \text{sls}} \\ \widehat{\beta}^{2 \text{sls}} \end{array} \right) = \left(\sum_{i=1}^{n} \left(\begin{array}{c} \widehat{D}_{i} \\ X_{i} \end{array} \right) \left(\begin{array}{c} D_{i} \\ X_{i} \end{array} \right)^{\top} \right)^{-1} \left(\sum_{i=1}^{n} \left(\begin{array}{c} \widehat{D}_{i} \\ X_{i} \end{array} \right) Y_{i} \right),$$

$$= \left(\sum_{i=1}^{n} \left(\begin{array}{c} \widehat{D}_{i} \\ X_{i} \end{array} \right) \left(\begin{array}{c} D_{i} \\ X_{i} \end{array} \right)^{\top} \right)^{-1} \left(\sum_{i=1}^{n} \left(\begin{array}{c} \widehat{D}_{i} \\ X_{i} \end{array} \right) Y_{i} \right),$$

where $\widehat{D}_i = Z_i^{\mathsf{T}} \widehat{\pi} + X_i^{\mathsf{T}} \widehat{\gamma}$ denotes the first-stage fitted value.

► The optimal IV: $\zeta_i^* = \mathbb{E}[D_i \mid X_i, Z_i]$ and the optimal IV estimator:

$$\left(\begin{array}{c} \widehat{\alpha}^* \\ \widehat{\beta}^* \end{array} \right) = \left(\sum_{i=1}^n \left(\begin{array}{c} \zeta_i^* \\ X_i \end{array} \right) \left(\begin{array}{c} D_i \\ X_i \end{array} \right)^{\mathsf{T}} \right)^{-1} \left(\sum_{i=1}^n \left(\begin{array}{c} \zeta_i^* \\ X_i \end{array} \right) Y_i \right).$$

• We need to approximate ζ_i^* .

Many IVs and few controls

▶ The conditional expectation model for D_i :

$$\begin{aligned} D_i &= W_i^\top \delta + X_i^\top \gamma + V_i \\ \mathbb{E}\left[V_i \mid X_i, Z_i\right] &= 0, \end{aligned}$$

where the dictionary W_i contains many polynomials of Z_i and interactions between Z_i and X_i . In this case, we need selection over W_i but need no selection over the controls X_i .

- ▶ In the first-stage regression, we force inclusion of X_i by assigning no penalty weights to their coefficients.
- ► In the second stage, we run IV regression by using the post-LASSO fitted value as the IV.

Algorithm

1. LASSO regression of D_i against W_i and X_i :

$$\begin{split} &\left(\widehat{\delta}_{1,\lambda},...,\widehat{\delta}_{p,\lambda},\widehat{\gamma}_{1,\lambda},...,\widehat{\gamma}_{k,\lambda}\right) \\ &= \underset{b_1,...,b_p,d_1,...,d_k}{\operatorname{argmin}} \left\{ \frac{1}{n} \sum_{i=1}^n \left(D_i - \sum_{j=1}^p b_j W_{ij} - \sum_{j=1}^k d_j X_{ij} \right)^2 + \lambda \sum_{j=1}^p \left| b_j \right| \right\}. \end{split}$$

Let $\widehat{\mathcal{A}} = \left\{ j : \widehat{\delta}_{j,\lambda} \neq 0 \right\}$ be the selected controls.

2. Run post LASSO of D_i against the instruments in $W_{i,\widehat{\mathcal{A}}} = \left\{ W_{ij} : j \in \widehat{\mathcal{A}} \right\}$ and X_i to get OLS coefficients $\left\{ \widehat{\delta}_j^{\mathsf{pl}} : j \in \widehat{\mathcal{A}} \right\} \cup \left\{ \widehat{\gamma}_1^{\mathsf{pl}}, ..., \widehat{\gamma}_k^{\mathsf{pl}} \right\}$. Construct

$$\widehat{\zeta}_i^* = \sum_{j=1}^p \widehat{\delta}_j^{\mathsf{pl}} W_{ij} + \sum_{j=1}^k \widehat{\gamma}_j^{\mathsf{pl}} X_{ij}.$$

3. Estimate (α, β) by using $\widehat{\zeta}_i^*$ as the IV:

$$\left(\begin{array}{c} \widehat{\alpha}^* \\ \widehat{\beta}^* \end{array} \right) = \left(\sum_{i=1}^n \left(\begin{array}{c} \widehat{\zeta}_i^* \\ X_i \end{array} \right) \left(\begin{array}{c} D_i \\ X_i \end{array} \right)^\top \right)^{-1} \left(\sum_{i=1}^n \left(\begin{array}{c} \widehat{\zeta}_i^* \\ X_i \end{array} \right) Y_i \right).$$

Partialling out

- ► Let $M_X = \mathbf{I}_n \mathbf{X} (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top$ be the projection matrix on the space that is orthogonal to the column space of \mathbf{X} : $M_X \mathbf{X} = \mathbf{0}$.
- ► Write

$$Y_{i} = \alpha D_{i} + X_{i}^{\top} \beta + U_{i}$$

$$D_{i} = W_{i}^{\top} \delta + X_{i}^{\top} \gamma + V_{i}$$

in the matrix form

$$\mathbf{Y} = \alpha \mathbf{D} + \mathbf{X}\beta + \mathbf{U}$$
$$\mathbf{D} = \mathbf{W}\delta + \mathbf{X}\gamma + \mathbf{V}.$$

ightharpoonup Multiply both sides by M_X to get

$$\widetilde{\mathbf{Y}} = \alpha \widetilde{\mathbf{D}} + \widetilde{\mathbf{U}}$$

$$\widetilde{\mathbf{D}} = \widetilde{\mathbf{W}} \delta + \widetilde{\mathbf{V}}$$

where $\widetilde{\mathbf{Y}} = M_{\mathbf{X}}\mathbf{Y}$, $\widetilde{\mathbf{D}} = M_{\mathbf{X}}\mathbf{D}$, $\widetilde{\mathbf{W}} = M_{\mathbf{X}}\mathbf{W}$, $\widetilde{\mathbf{U}} = M_{\mathbf{X}}\mathbf{U}$ and $\widetilde{\mathbf{V}} = M_{\mathbf{X}}\mathbf{V}$.

ightharpoonup By transforming (Y, D, W) into the residuals against X, we have another numerically equivalent way to compute the IV estimator.

The partialling out algorithm

- 1. Run LASSO regression of $\widetilde{\mathbf{D}} = \left(\widetilde{D}_1, ..., \widetilde{D}_n\right)^{\top}$ against $\widetilde{\mathbf{W}}$ (\widetilde{W}_{ij} denotes its ij-th element of the $n \times p$ matrix $\widetilde{\mathbf{W}}$) to get $\left(\widehat{\delta}_{1,\lambda}, ..., \widehat{\delta}_{p,\lambda}\right)^{\top}$. Let $\widehat{\mathcal{A}} = \left\{j : \widehat{\delta}_{j,\lambda} \neq 0\right\}$ be the selected controls.
- 2. Run post LASSO regression of $\widetilde{\mathbf{D}}$ against the IVs in $\widehat{\mathcal{A}}$ to get OLS coefficients $\left\{\widehat{\delta}_{j}^{\mathsf{pl}}: j \in \widehat{\mathcal{A}}\right\}$. Construct the estimated optimal IV $\widehat{\zeta}_{i}^{*} = \sum_{j \in \widehat{\mathcal{A}}} \widehat{\delta}_{j}^{\mathsf{pl}} \widetilde{W}_{ij}$.
- 3. Estimate α by using $\widehat{\zeta}_i^*$ as the IV:

$$\widehat{\alpha}^* = \frac{\sum_{i=1}^n \widehat{\zeta}_i^* \widetilde{Y}_i}{\sum_{i=1}^n \widehat{\zeta}_i^* \widetilde{D}_i},$$

where
$$\widetilde{\mathbf{Y}} = \left(\widetilde{Y}_1, ..., \widetilde{Y}_n\right)^{\top}$$
.

Few IVs and many controls

► In the model

$$Y_i = \alpha D_i + X_i^{\top} \beta + U_i$$

$$E[U_i \mid X_i, Z_i] = 0$$

$$D_i = Z_i^{\top} \pi + X_i^{\top} \gamma + V_i$$

$$E[V_i \mid X_i, Z_i] = 0,$$

the dimension of X_i is large but the number of IVs is small and we do not use its polynomials and interactions to approximate the optimal IV $E[D_i \mid X_i, Z_i]$.

- ▶ This is the case, for example, when there is only one binary instrument (a dummy variable, all polynomials are equal) and we do not use its interactions with X_i .
- ► We assume the outcome equation is sparse: the set of relevant controls $\mathcal{A} = \{j : \beta_j \neq 0\}$ is small.
- ▶ In this case, we need to perform LASSO selection over X_i only.
- ► We apply the partialling out approach by using LASSO and post LASSO over over *X_i*.

The partialling out algorithm

- 1. Perform LASSO and post LASSO of D_i against X_i to generate the residual \widetilde{D}_i^{pl} .
- 2. Perform LASSO and post LASSO of Y_i against X_i to generate the residual \widetilde{Y}_i^{pl} .
- 3. Perform LASSO and post LASSO of Z_{ij} against X_i to generate the residual \widetilde{Z}_{ij}^{pl} , for j = 1, 2, ..., l.
- 4. Run OLS of $\widetilde{D}_i^{\text{pl}}$ against $\widetilde{Z}_{i1}^{\text{pl}},...,\widetilde{Z}_{il}^{\text{pl}}$ to get the OLS coefficients $(\widehat{\pi}_1,...,\widehat{\pi}_l)$ and the estimated optimal IV $\widehat{\zeta}_i^* = \sum_{i=1}^l \widehat{\pi}_i \widetilde{Z}_{ij}$.
- 5. Estimate α by

$$\widehat{\alpha}^* = \frac{\sum_{i=1}^n \widehat{\zeta}_i^* \widetilde{Y}_i^{\mathsf{pl}}}{\sum_{i=1}^n \widehat{\zeta}_i^* \widetilde{D}_i^{\mathsf{pl}}}.$$

Many IVs and many controls

► In the model

$$Y_{i} = \alpha D_{i} + X_{i}^{\top} \beta + U_{i}$$

$$E[U_{i} \mid X_{i}, Z_{i}] = 0$$

$$D_{i} = W_{i}^{\top} \delta + X_{i}^{\top} \gamma + V_{i}$$

$$E[V_{i} \mid X_{i}, Z_{i}] = 0,$$

where the dictionary W_i contains high-dimensional transformations (polynomials) of the primitive instruments Z_i and interactions of Z_i and X_i .

- ▶ Both W_i and X_i are high-dimensional. We need to perform LASSO selections over both.
- ► The previous partialling out procedure is not practically implementable, since the LASSO and post-LASSO partialling out of many controls from many IVs is computationally hard.
- ▶ We do LASSO selection on W_i first to estimate the equation $D_i = W_i^{\top} \delta + X_i^{\top} \gamma + V_i$ and find the effective IVs. We then partial out the effects from X_i .

The partialling out algorithm

- 1. Perform LASSO and post LASSO of D_i against X_i to generate the residual \widetilde{D}_i^{pl} .
- 2. Perform LASSO and post LASSO of Y_i against X_i to generate the residual \widetilde{Y}_i^{pl} .
- 3. Perform LASSO and post LASSO of D_i against W_i and X_i to generate the fitted value $\widehat{\zeta}_i^*$ (estimated optimal IV). This step selects a subset from W_i .
- 4. Perform LASSO and post LASSO of $\widehat{\zeta}_i^*$ against X_i to partial out the effect from X_i and get the residual $\widetilde{\zeta}_i^{\text{pl}}$.
- 5. Estimate α by

$$\widehat{\alpha}^* = \frac{\sum_{i=1}^n \widetilde{\zeta}_i^{\mathsf{pl}} \widetilde{Y}_i^{\mathsf{pl}}}{\sum_{i=1}^n \widetilde{\zeta}_i^{\mathsf{pl}} \widetilde{D}_i^{\mathsf{pl}}}.$$