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Instrumental variable
I Consider

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑒𝑖 ,
E [𝑒𝑖] = 0

Cov [𝑋𝑖 , 𝑒𝑖] ≠ 0.

I An instrument is an variable 𝑍𝑖 which satisfies the following
conditions:

1. The IV is exogenous: Cov [𝑍𝑖 , 𝑒𝑖] = 0.
2. The IV determines the endogenous regressor: Cov [𝑍𝑖 , 𝑋𝑖] ≠ 0.

I When an IV variable satisfying those conditions is available, it
allows us to estimate the effect of 𝑋 on 𝑌 consistently:

Cov [𝑌𝑖 , 𝑍𝑖] = 𝛽1Cov [𝑋𝑖 , 𝑍𝑖] +Cov [𝑒𝑖 , 𝑍𝑖]

= 𝛽1Cov [𝑋𝑖 , 𝑍𝑖] =⇒ 𝛽1 =
Cov [𝑌𝑖 , 𝑍𝑖]
Cov [𝑋𝑖 , 𝑍𝑖]

.
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Sources of endogeneity

There are several possible sources of endogeneity:
1. Omitted explanatory variables.
2. Simultaneity.
3. Errors in variables.

All result in regressors correlated with the errors.
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Omitted explanatory variables

I Suppose that the true model is

log
(
Wage𝑖

)
= 𝛽0 + 𝛽1Education𝑖 + 𝛽2Ability𝑖 +𝑉𝑖 ,

where 𝑉𝑖 is uncorrelated with 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 and 𝐴𝑏𝑖𝑙𝑖𝑡𝑦.
I Since 𝐴𝑏𝑖𝑙𝑖𝑡𝑦 is unobservable, the econometrician regresses

log (𝑊𝑎𝑔𝑒) against 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, and 𝛽2𝐴𝑏𝑖𝑙𝑖𝑡𝑦 goes into the
error part:

log
(
Wage𝑖

)
= 𝛽0 + 𝛽1Education𝑖 +𝑈𝑖 ,

𝑈𝑖 = 𝛽2Ability𝑖 +𝑉𝑖 .

I 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 is correlated with 𝐴𝑏𝑖𝑙𝑖𝑡𝑦: we can expect that
Cov

[
Education𝑖 , Ability𝑖

]
> 0, 𝛽2 > 0, and therefore

Cov [Education𝑖 ,𝑈𝑖] > 0.
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Simultaneity

I Consider the following demand-supply system:

Demand: 𝑄𝑑 = 𝛽𝑑0 + 𝛽𝑑1 𝑃 +𝑈𝑑 ,
Supply: 𝑄𝑠 = 𝛽𝑠0 + 𝛽𝑠1𝑃 +𝑈𝑠,

where: 𝑄𝑑 =quantity demanded, 𝑄𝑠 =quantity supplied,
𝑃=price.

I The quantity and price are determined simultaneously in the
equilibrium:

𝑄𝑑 = 𝑄𝑠 = 𝑄.

I Note that 𝑄𝑑 and 𝑄𝑠 are not observed separately, we observe
only the equilibrium values 𝑄.
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𝑄𝑑 = 𝛽𝑑0 + 𝛽𝑑1 𝑃 +𝑈𝑑 ,
𝑄𝑠 = 𝛽𝑠0 + 𝛽𝑠1𝑃 +𝑈𝑠,
𝑄𝑑 = 𝑄𝑠 = 𝑄.

I Solving for 𝑃, we obtain

0 =

(
𝛽𝑑0 − 𝛽𝑠0

)
+

(
𝛽𝑑1 − 𝛽𝑠1

)
𝑃 +

(
𝑈𝑑 −𝑈𝑠

)
,

or

𝑃 = −
𝛽𝑑0 − 𝛽𝑠0

𝛽𝑑1 − 𝛽𝑠1
− 𝑈𝑑 −𝑈𝑠

𝛽𝑑1 − 𝛽𝑠1
.

I Thus,
Cov

[
𝑃,𝑈𝑑

]
≠ 0 and Cov [𝑃,𝑈𝑠] ≠ 0.

The demand-supply equations cannot be estimated by OLS.
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I Consider the following labour supply model for married women:

Hours𝑖 = 𝛽0 + 𝛽1Children𝑖 +Other Factors +𝑈𝑖 ,

where 𝐻𝑜𝑢𝑟𝑠 = hours of work, 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 = number of children.
I It is reasonable to assume that women decide simultaneously

how much time to devote to career and family.
I Thus, while we may be mainly interested in the effect of family

size on labour supply, there is another equation:

Children𝑖 = 𝛾0 + 𝛾1Hours𝑖 +Other Factors +𝑉𝑖 ,

and 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 and 𝐻𝑜𝑢𝑟𝑠 are determined simultaneously in an
equilibrium.

I As a result, Cov [Children𝑖 ,𝑈𝑖] ≠ 0, and the effect of family size
cannot be estimated by OLS.
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Errors in variables

I Consider the following model:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋
∗
𝑖 +𝑉𝑖 ,

where 𝑋∗
𝑖

is the true regressor.
I Suppose that 𝑋∗

𝑖
is not directly observable. Instead, we observe

𝑋𝑖 that measures 𝑋∗
𝑖

with an error 𝜀𝑖:
𝑋𝑖 = 𝑋∗

𝑖 + 𝜀𝑖 .

I Since 𝑋∗
𝑖

is unobservable, the econometrician has to regress 𝑌𝑖
against 𝑋𝑖 .
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𝑋𝑖 = 𝑋∗
𝑖 + 𝜀𝑖 ,

𝑌𝑖 = 𝛽0 + 𝛽1𝑋
∗
𝑖 +𝑉𝑖 .

I The model for 𝑌𝑖 as a function of 𝑋𝑖 can be written as

𝑌𝑖 = 𝛽0 + 𝛽1 (𝑋𝑖 − 𝜀𝑖) +𝑉𝑖
= 𝛽0 + 𝛽1𝑋𝑖 +𝑉𝑖 − 𝛽1𝜀𝑖 ,

or

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑒𝑖 ,
𝑒𝑖 = 𝑉𝑖 − 𝛽1𝜀𝑖 .
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𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑒𝑖 ,
𝑒𝑖 = 𝑉𝑖 − 𝛽1𝜀𝑖 ,
𝑋𝑖 = 𝑋∗

𝑖 + 𝜀𝑖 .

I We can assume that

Cov
[
𝑋∗
𝑖 ,𝑉𝑖

]
= Cov

[
𝑋∗
𝑖 , 𝜀𝑖

]
= Cov [𝜀𝑖 ,𝑉𝑖] = 0.

I However,

Cov [𝑋𝑖 , 𝑒𝑖] = Cov
[
𝑋∗
𝑖 + 𝜀𝑖 ,𝑉𝑖 − 𝛽1𝜀𝑖

]
= Cov

[
𝑋∗
𝑖 ,𝑉𝑖

]
− 𝛽1Cov

[
𝑋∗
𝑖 , 𝜀𝑖

]
+Cov [𝜀𝑖 ,𝑉𝑖] − 𝛽1Cov [𝜀𝑖 , 𝜀𝑖]

= −𝛽1Cov [𝜀𝑖 , 𝜀𝑖].

I Thus, 𝑋𝑖 is enodgenous and 𝛽1 cannot be estimated by OLS.
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Example: Compulsory schooling laws and return to
education

I Angrist and Krueger, 1991, QJE, suggested using school start
age policy to estimate 𝛽1 in
log

(
Wage𝑖

)
= 𝛽0 + 𝛽1Education𝑖 + 𝛽2Ability𝑖 +𝑉𝑖 .

I We need to find an IV variable 𝑍 such that Cov
[
Ability𝑖 , 𝑍𝑖

]
= 0

and Cov [Education𝑖 , 𝑍𝑖] ≠ 0.
I They argue that due to compulsory schooling laws, the season of

birth variable satisfies the IV conditions:
I A child has to attend the school until he reaches a certain drop-out

age.
I Students born in the first quarter of the year, reach the legal

drop-out age before their classmates who were born later in the
year.

I The quarter of birth dummy variable is correlated with education.
I The quarter of birth is uncorrelated with ability.
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Example: Sibling-sex composition and labor supply

I Angrist and Evans, 1998, AER, argue that the parents’
preferences for a mixed sibling-sex composition can be used to
estimate 𝛽1 in Hours𝑖 = 𝛽0 + 𝛽1Children𝑖 + . . . +𝑈𝑖 .

I We need to find an IV 𝑍 such that Cov [𝑈𝑖 , 𝑍𝑖] = 0 and
Cov [Children𝑖 , 𝑍𝑖] ≠ 0.

I Consider a dummy variable that takes on the value one if the sex
of the second child matches the sex of the first child.
I If the parents prefer a mixed sibling-sex composition, they are

more likely to have another child if their first two children are of
the same sex.

I The same-sex dummy is correlated with the number of children.
I Since sex mix is randomly determined, the same sex dummy is

exogenous.
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Instrumental variable model

I Consider the following model:

𝑌𝑖 = 𝛾0 + 𝛾1𝑋𝑖1 + . . . + 𝛾𝑘𝑋𝑖𝑘+𝛽1𝐷𝑖1 + . . . + 𝛽𝑚𝐷𝑖𝑚+𝑈𝑖 ,

where
I 𝑌𝑖 is the dependent variable.
I 𝛾0 is the coefficient on the constant regressor: E [𝑈𝑖] = 0.
I 𝑋𝑖1, . . . , 𝑋𝑖𝑘 are the 𝑘 exogenous regressors:

Cov [𝑋𝑖1,𝑈𝑖] = . . . = Cov [𝑋𝑖𝑘 ,𝑈𝑖] = 0.

I 𝐷𝑖1, . . . , 𝐷𝑖𝑚 are the 𝑚 endogenous regressors:

Cov [𝐷𝑖1,𝑈𝑖] ≠ 0, . . . , Cov [𝐷𝑖𝑚,𝑈𝑖] ≠ 0.
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I Suppose that the econometrician observes 𝑙 additional exogenous
variables (IVs) 𝑍𝑖1, . . . , 𝑍𝑖𝑙

I We assume that the IVs 𝑍𝑖1, . . . , 𝑍𝑖𝑙 are excluded from the
structural equation:

𝑌𝑖 = 𝛾0 + 𝛾1𝑋𝑖1 + . . . + 𝛾𝑘𝑋𝑖𝑘 + 𝛽1𝐷𝑖1 + . . . + 𝛽𝑚𝐷𝑖𝑚 +𝑈𝑖 ,

so we still have 𝑘 + 1 +𝑚 structural coefficients to estimate.
I The necessary condition for identification is that the number of

IVs is at least as large as the number of unknowns or 𝑙 ≥ 𝑚.
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2SLS

I Consider the first-stage projection models:

𝐷𝑖1 = 𝜋0,1 + 𝜋1,1𝑍𝑖1 + . . . + 𝜋𝑙,1𝑍𝑖𝑙

+𝜋𝑙+1,1𝑋𝑖1 + . . . + 𝜋𝑙+𝑘,1𝑋𝑖𝑘 +𝑉𝑖1,
...

...
...

𝐷𝑖𝑚 = 𝜋0,𝑚 + 𝜋1,𝑚𝑍𝑖1 + . . . + 𝜋𝑙,𝑚𝑍𝑖𝑙

+𝜋𝑙+1,𝑚𝑋𝑖1 + . . . + 𝜋𝑙+𝑘,𝑚𝑋𝑖𝑘 +𝑉𝑖𝑚,

where
(
𝜋0,1, 𝜋1,1, ..., 𝜋𝑙+𝑘,𝑚

)
are projection coefficients.

I All right-hand side variables are exogenous.
I The first stage coefficients 𝜋’s can be estimated consistently by

OLS by regressing 𝑌 ’s against 𝑍’s and 𝑋’s.
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I After estimating 𝜋’s, obtain the fitted values for 𝐷’s:

𝐷𝑖1 = 𝜋̂0,1 + 𝜋̂1,1𝑍𝑖1 + . . . + 𝜋̂𝑙,1𝑍𝑖𝑙

+𝜋̂𝑙+1,1𝑋𝑖1 + . . . + 𝜋̂𝑙+𝑘,1𝑋𝑖𝑘 ,
...

...
...

𝐷𝑖𝑚 = 𝜋̂0,𝑚 + 𝜋̂1,𝑚𝑍𝑖1 + . . . + 𝜋̂𝑙,𝑚𝑍𝑖𝑙

+𝜋̂𝑙+1,𝑚𝑋𝑖1 + . . . + 𝜋̂𝑙+𝑘,𝑚𝑋𝑖𝑘 .

I In the second stage, regress (OLS) the dependent variable 𝑌
against a constant, 𝑋’s, and 𝐷’s obtained in the first stage:

𝑌𝑖 = 𝛾̂2sls
0 + 𝛾̂2sls

1 𝑋𝑖1 + . . . + 𝛾̂2sls
𝑘

𝑋𝑖𝑘 + 𝛽2sls
1 𝐷𝑖1 + . . . + 𝛽2sls

𝑚 𝐷𝑖𝑚 +𝑈𝑖 .

I One can show that the resulting 2SLS estimators
𝛾̂2sls

0 , 𝛾̂2sls
1 , . . . , 𝛾̂2sls

𝑘
, 𝛽2sls

1 , . . . , 𝛽2sls
𝑚 are consistent and

asymptotically normal.
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2SLS estimation with many IVs
I We consider the simple model (0 intercept):

𝑌𝑖 = 𝛼𝐷𝑖 +𝑈𝑖

E [𝑈𝑖] = 0
Cov [𝐷𝑖 ,𝑈𝑖] ≠ 0.

I Suppose that we have 𝑙 IVs 𝑍𝑖 ∈ R𝑙 (𝑍𝑖 = (𝑍𝑖1, 𝑍𝑖2, ..., 𝑍𝑖𝑙)>)
which satisfies Cov [𝑈𝑖 , 𝑍𝑖] = 0.

I The first-stage of 2SLS uses the projection model of 𝐷𝑖 on 𝑍𝑖:

𝐷𝑖 = 𝑍>
𝑖 𝜋 +𝑉𝑖

E [𝑍𝑖𝑉𝑖] = 0

𝜋 = argmin
𝑎

E
[ (
𝐷𝑖 − 𝑍>

𝑖 𝑎
)2

]
.

I Then,
𝑌𝑖 = 𝛼𝐷𝑖 +𝑈𝑖

𝐷𝑖 = 𝑍>
𝑖
𝜋 +𝑉𝑖

=⇒ 𝑌𝑖 = 𝛼𝑍>
𝑖
𝜋 + 𝛼𝑉𝑖 +𝑈𝑖 .

Regression of 𝑌𝑖 on 𝑍>
𝑖
𝜋 consistently estimates 𝛼.
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I 𝑍: the 𝑛 × 𝑙 matrix of IVs; 𝐷 = (𝐷1, 𝐷2, ..., 𝐷𝑛)>;
𝑌 = (𝑌1,𝑌2, ...,𝑌𝑛)>; 𝑈 = (𝑈1,𝑈2, ...,𝑈𝑛)>; 𝑉 = (𝑉1,𝑉2, ...,𝑉𝑛)>.

I Since 𝜋 is unknown, we replace it with 𝜋̂ = (𝑍>𝑍)−1
𝑍>𝐷:

𝛼̂2sls =
𝐷>𝑷𝑍𝑌

𝐷>𝑷𝑍𝐷
= 𝛼 + 𝑛−1𝐷>𝑷𝑍𝑈

𝑛−1𝐷>𝑷𝑍𝐷
,

where 𝑷𝑍 = 𝑍 (𝑍>𝑍)−1
𝑍>.

I 𝑛−1𝐷>𝑷𝑍𝐷 is less variable when 𝑛 and 𝑙 are both large. The bias
of 𝛼̂2sls mainly depends on the numerator 𝑛−1𝐷>𝑷𝑍𝑈.

I Suppose that E [𝑈𝑉> | 𝑍] = 𝜎𝑈𝑉 𝐼𝑛 and 𝑍>𝑍 = 𝐼𝑙, then

E
[
1
𝑛
𝐷>𝑷𝑍𝑈 | 𝑍

]
= 𝜎𝑈𝑉

𝑙

𝑛
.

I When the number of IVs is large and comparable to the sample
size 𝑛, the bias can be substantial.
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I In the context of a small and fixed number of IVs, adding one
more IV reduces the variance of the 2SLS estimator.

I However, if there are too many IVs, the bias becomes
non-negligible and we have to selection a small subset of best
IVs out of the long list of potential IVs.

I Under an alternative asymptotic analysis, when the number of
IVs 𝑙 is assumed to be growing 𝑙 = 𝑙𝑛 ↑ ∞ as 𝑛 ↑ ∞ such that
𝑙𝑛/𝑛 → 𝑐 > 0, the 2SLS estimator is inconsistent.

I LASSO is used for data-driven IV selection.
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Optimal instrument
I Suppose that E [𝑈𝑖 | 𝑍𝑖] = 0, then for any function 𝑓 ,

Cov [ 𝑓 (𝑍𝑖) ,𝑈𝑖] = 0 and 𝜁𝑖 = 𝑓 (𝑍𝑖) can be used as an IV:

E [𝜁𝑖𝑌𝑖] = 𝛼E [𝜁𝑖𝐷𝑖] =⇒ 𝛼̂iv =

∑𝑛
𝑖=1 𝜁𝑖𝑌𝑖∑𝑛
𝑖=1 𝜁𝑖𝐷𝑖

.

I Denote 𝐷 = 𝑷𝑍𝐷.

𝛼̂2sls =
𝐷>𝑷𝑍𝑌

𝐷>𝑷𝑍𝐷
=

𝐷>𝑌

𝐷>𝐷
=

∑𝑛
𝑖=1 𝐷𝑖𝑌𝑖∑𝑛
𝑖=1 𝐷𝑖𝐷𝑖

,

where 𝐷𝑖 = 𝑍>
𝑖
𝜋̂ and 𝜋̂ are the first-stage OLS coefficients.

I 𝛼̂2sls can be viewed as an IV estimator using estimated projection
𝑍>
𝑖
𝜋̂ in lieu of the unknown true projection 𝑍>

𝑖
𝜋𝑖 as the

instrument.
I 𝛼̂2sls summarizes the information in all intruments 𝑍𝑖 and uses a

single IV 𝑍>
𝑖
𝜋.
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I Assume that the model is homoskedastic: E
[
𝑈2
𝑖
| 𝐷𝑖

]
= 𝜎2. We

can show that the optimal IV estimator is the one 𝛼̂∗ that uses
𝜁∗
𝑖
= E [𝐷𝑖 | 𝑍𝑖]:

√
𝑛 (𝛼̂∗ − 𝛼) →𝑑 N

©­­«0,
𝜎2

E
[ (
𝜁∗
𝑖

)2
] ª®®¬

and
√
𝑛
(
𝛼̂iv − 𝛼

)
→𝑑 N

(
0,

𝜎2E
[
𝜁2
𝑖

](
E

[
𝜁𝑖𝜁

∗
𝑖

] )2

)
.
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Approximation to the optimal instrument
I The 2SLS uses a linear projection 𝑍>

𝑖
𝜋 to approximate

E [𝐷𝑖 | 𝑍𝑖]:

𝜋 = argmin
𝑎

E
[ (
𝐷𝑖 − 𝑍>

𝑖 𝑎
)2

]
= argmin

𝑎

E
[ (

E [𝐷𝑖 | 𝑍𝑖] − 𝑍>
𝑖 𝑎

)2
]

.

I We generate a dictionary 𝑊𝑖 =
(
𝑊𝑖1, ...,𝑊𝑖 𝑝

)> ∈ R𝑝:

𝑊𝑖 =

(
𝑍𝑖1, 𝑍𝑖2, ..., 𝑍𝑖𝑙 , 𝑍2

𝑖1, 𝑍𝑖1𝑍𝑖2, ..., 𝑍𝑖1𝑍𝑖𝑙, 𝑍2
𝑖2, ...

)
,

whose dimension 𝑝 can be larger than 𝑛.
I We can also use the linear projection 𝑊>

𝑖
𝛿 to approximate

E [𝐷𝑖 | 𝑍𝑖], where

𝛿 = argmin
𝑏

E
[ (
𝐷𝑖 −𝑊>

𝑖 𝑏
)2

]
= argmin

𝑎

E
[ (

E [𝐷𝑖 | 𝑍𝑖] −𝑊>
𝑖 𝑏

)2
]

.
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I It is easy to show that

E
[ (

E [𝐷𝑖 | 𝑍𝑖] −𝑊>
𝑖 𝛿

)2
]
< E

[ (
E [𝐷𝑖 | 𝑍𝑖] − 𝑍>

𝑖 𝜋
)2

]
.

I We assume that if 𝑝 is very large, then the approximation error is
very much close to zero and 𝑊>

𝑖
𝛿 is the optimal instrument.

I If 𝑝 < 𝑛, we can regress 𝐷𝑖 on 𝑊𝑖 to get the OLS coefficient 𝛿̂
and uses the estimated optimal instrument 𝑊>

𝑖
𝛿̂.

I This procedure is equivalent to 2SLS using all variables in 𝑊𝑖 as
instruments. We showed that when 𝑝 is large, the 2SLS estimator
may be substantially biased.

I When 𝑝 > 𝑛, the 2SLS estimator is not computable. We are
forced to select a subset from 𝑊𝑖 .
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I We assume that the conditional expectation model

𝐷𝑖 = 𝑊>
𝑖 𝛿 +𝑉𝑖 =

𝑝∑︁
𝑗=1

𝛿 𝑗𝑊𝑖 𝑗 +𝑉𝑖

E [𝑉𝑖 | 𝑍𝑖] = 0

is sparse: 𝑙∗ = |A| is a small number, where |A| denotes the
number of elements in A =

{
𝑗 : 𝛿 𝑗 ≠ 0

}
(𝛿 =

(
𝛿1, 𝛿2, ..., 𝛿𝑝

)>),
although 𝑝 is very large.

I The IVs in A are called the effective IVs. Dropping ineffective
IVs would not result in loss of efficiency.

I Clearly, there is no difference between the IV estimator using
𝑊>

𝑖,A𝛿A (𝑊𝑖,A =
{
𝑊𝑖 𝑗 : 𝑗 ∈ A

}
and 𝛿A =

{
𝛿 𝑗 : 𝑗 ∈ A

}
) and

the IV estimator using 𝑊>
𝑖
𝛿.

I However, we do not know A (identities of the effective IVs). We
use LASSO selection to find them.
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Algorithm
1. LASSO regression of 𝐷𝑖 against 𝑊𝑖:(

𝛿̂1,𝜆, ..., 𝛿̂𝑝,𝜆

)
= argmin

𝑏1,...,𝑏𝑝


1
𝑛

𝑛∑︁
𝑖=1

©­«𝐷𝑖 −
𝑝∑︁
𝑗=1

𝑏 𝑗𝑊𝑖 𝑗
ª®¬

2

+ 𝜆
𝑝∑︁
𝑗=1

��𝑏 𝑗

�� .

Let Â =

{
𝑗 : 𝛿̂ 𝑗,𝜆 ≠ 0

}
be the selected controls.

I The dropped IVs are either ineffective or have small coefficients
(𝛿 𝑗 � 𝑛−1/2). In the latter case, it can be shown that such
variables do not contribute to the asymptotic variance, so we can
drop them without loss of efficiency.

2. Post-LASSO of 𝐷𝑖 against 𝑊
𝑖,Â and get the OLS coefficients{

𝛿̂
pl
𝑗

: 𝑗 ∈ Â
}
. Generate the fitted value as the estimated optimal

IV: 𝜁∗
𝑖
=

∑
𝑗∈Â 𝛿̂

pl
𝑗
𝑊𝑖 𝑗 .

3. Estimate 𝛼 using 𝜁∗
𝑖

as the IV:

𝛼̂∗
(
Â

)
=

∑𝑛
𝑖=1 𝜁

∗
𝑖
𝑌𝑖∑𝑛

𝑖=1 𝜁
∗
𝑖
𝐷𝑖

.
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Model with controls
I The structural model with controls 𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2, ..., 𝑋𝑖𝑘)>:

𝑌𝑖 = 𝛼𝐷𝑖 + 𝑋>
𝑖 𝛽 +𝑈𝑖

E [𝑈𝑖 | 𝑋𝑖 , 𝑍𝑖] = 0.

I The intercept is typically one of the elements in 𝑋𝑖 .
I Controls 𝑋𝑖 have to be included in the first stage. Consider 2SLS

and the following projection models:

𝐷𝑖 = 𝑍>
𝑖 𝜋 + 𝑋>

𝑖 𝛾 +𝑉𝑖

E
[
𝑉𝑖

(
𝑍𝑖
𝑋𝑖

)]
= 0

and

𝐷𝑖 = 𝑍>
𝑖 𝜋̃ +𝑉𝑖

E
[
𝑉𝑖𝑍𝑖

]
= 0.
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I It is easy to show that 𝜋̃ = Θ𝛾, where

Θ =
(
E

[
𝑍𝑖𝑍

>
𝑖

] )−1 E
[
𝑍𝑖𝑋

>
𝑖

]
𝑉𝑖 = 𝐷𝑖 − 𝑍>

𝑖 𝜋̃ = 𝑉𝑖 +
(
𝑋>
𝑖 − 𝑍>

𝑖 Θ
)
𝛾.

𝑉𝑖 is not correlated with 𝑍𝑖 but it is correlated with 𝑋𝑖 .
I If we drop 𝑋𝑖 from the first stage,

𝑌𝑖 = 𝛼𝐷𝑖 + 𝑋>
𝑖
𝛽 +𝑈𝑖

𝐷𝑖 = 𝑍>
𝑖
𝜋̃ +𝑉𝑖

=⇒ 𝑌𝑖 = 𝛼

(
𝑍>
𝑖 𝜋̃ +𝑉𝑖

)
+ 𝑋>

𝑖 𝛽+𝑈𝑖 = 𝛼
(
𝑍>
𝑖 𝜋̃

)
+ 𝑋>

𝑖 𝛽+𝛼𝑉𝑖 +𝑈𝑖 .

The residual 𝛼𝑉𝑖 +𝑈𝑖 is correlated with 𝑋𝑖 .
I Regression of 𝑌𝑖 against 𝑍>

𝑖
𝜋̃ and 𝑋𝑖 does not give consistent

estimator for 𝛼.
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I The 2SLS can be written as an IV estimator:(
𝛼̂2sls

𝛽2sls

)
=

(
𝑛∑︁
𝑖=1

(
𝐷𝑖

𝑋𝑖

) (
𝐷𝑖

𝑋𝑖

)>)−1 (
𝑛∑︁
𝑖=1

(
𝐷𝑖

𝑋𝑖

)
𝑌𝑖

)
,

=

(
𝑛∑︁
𝑖=1

(
𝐷𝑖

𝑋𝑖

) (
𝐷𝑖

𝑋𝑖

)>)−1 (
𝑛∑︁
𝑖=1

(
𝐷𝑖

𝑋𝑖

)
𝑌𝑖

)
,

where 𝐷𝑖 = 𝑍>
𝑖
𝜋̂ + 𝑋>

𝑖
𝛾̂ denotes the first-stage fitted value.

I The optimal IV: 𝜁∗
𝑖
= E [𝐷𝑖 | 𝑋𝑖 , 𝑍𝑖] and the optimal IV

estimator:(
𝛼̂∗

𝛽∗

)
=

(
𝑛∑︁
𝑖=1

(
𝜁∗
𝑖

𝑋𝑖

) (
𝐷𝑖

𝑋𝑖

)>)−1 (
𝑛∑︁
𝑖=1

(
𝜁∗
𝑖

𝑋𝑖

)
𝑌𝑖

)
.

I We need to approximate 𝜁∗
𝑖
.
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Many IVs and few controls

I The conditional expectation model for 𝐷𝑖:

𝐷𝑖 = 𝑊>
𝑖 𝛿 + 𝑋>

𝑖 𝛾 +𝑉𝑖
E [𝑉𝑖 | 𝑋𝑖 , 𝑍𝑖] = 0,

where the dictionary 𝑊𝑖 contains many polynomials of 𝑍𝑖 and
interactions between 𝑍𝑖 and 𝑋𝑖 . In this case, we need selection
over 𝑊𝑖 but need no selection over the controls 𝑋𝑖 .

I In the first-stage regression, we force inclusion of 𝑋𝑖 by assigning
no penalty weights to their coefficients.

I In the second stage, we run IV regression by using the
post-LASSO fitted value as the IV.
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Algorithm
1. LASSO regression of 𝐷𝑖 against 𝑊𝑖 and 𝑋𝑖:(

𝛿̂1,𝜆, ..., 𝛿̂𝑝,𝜆, 𝛾̂1,𝜆, ..., 𝛾̂𝑘,𝜆

)
= argmin

𝑏1,...,𝑏𝑝 ,𝑑1,...,𝑑𝑘


1
𝑛

𝑛∑︁
𝑖=1

©­«𝐷𝑖 −
𝑝∑︁
𝑗=1

𝑏 𝑗𝑊𝑖 𝑗 −
𝑘∑︁
𝑗=1

𝑑 𝑗𝑋𝑖 𝑗
ª®¬

2

+ 𝜆
𝑝∑︁
𝑗=1

��𝑏 𝑗

�� .

Let Â =

{
𝑗 : 𝛿̂ 𝑗,𝜆 ≠ 0

}
be the selected controls.

2. Run post LASSO of 𝐷𝑖 against the instruments in
𝑊

𝑖,Â =

{
𝑊𝑖 𝑗 : 𝑗 ∈ Â

}
and 𝑋𝑖 to get OLS coefficients{

𝛿̂
pl
𝑗

: 𝑗 ∈ Â
}
∪

{
𝛾̂

pl
1 , ..., 𝛾̂pl

𝑘

}
. Construct

𝜁∗𝑖 =

𝑝∑︁
𝑗=1

𝛿̂
pl
𝑗
𝑊𝑖 𝑗 +

𝑘∑︁
𝑗=1

𝛾̂
pl
𝑗
𝑋𝑖 𝑗 .
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3. Estimate (𝛼, 𝛽) by using 𝜁∗
𝑖

as the IV:(
𝛼̂∗

𝛽∗

)
=

(
𝑛∑︁
𝑖=1

(
𝜁∗
𝑖

𝑋𝑖

) (
𝐷𝑖

𝑋𝑖

)>)−1 (
𝑛∑︁
𝑖=1

(
𝜁∗
𝑖

𝑋𝑖

)
𝑌𝑖

)
.
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Partialling out
I Let 𝑴𝑋 = 𝐼𝑛 − 𝑋 (𝑋>𝑋)−1

𝑋> be the projection matrix on the
space that is orthogonal to the column space of 𝑋: 𝑴𝑋𝑋 = 0.

I Write

𝑌𝑖 = 𝛼𝐷𝑖 + 𝑋>
𝑖 𝛽 +𝑈𝑖

𝐷𝑖 = 𝑊>
𝑖 𝛿 + 𝑋>

𝑖 𝛾 +𝑉𝑖
in the matrix form

𝑌 = 𝛼𝐷 + 𝑋𝛽 +𝑈
𝐷 = 𝑊𝛿 + 𝑋𝛾 +𝑉 .

I Multiply both sides by 𝑴𝑋 to get

𝑌 = 𝛼𝐷 +𝑈
𝐷 = 𝑊𝛿 +𝑉 ,

where 𝑌 = 𝑴𝑋𝑌 , 𝐷 = 𝑴𝑋𝐷, 𝑊 = 𝑴𝑋𝑊 , 𝑈 = 𝑴𝑋𝑈 and
𝑉 = 𝑴𝑋𝑉 .

I By transforming (𝑌 , 𝐷,𝑊) into the residuals against 𝑋 , we have
another numerically equivalent way to compute the IV estimator.
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The partialling out algorithm

1. Run LASSO regression of 𝐷 =

(
𝐷1, ..., 𝐷𝑛

)>
against 𝑊 (𝑊𝑖 𝑗

denotes its 𝑖 𝑗-th element of the 𝑛 × 𝑝 matrix 𝑊) to get(
𝛿̂1,𝜆, ..., 𝛿̂𝑝,𝜆

)>
. Let Â =

{
𝑗 : 𝛿̂ 𝑗,𝜆 ≠ 0

}
be the selected controls.

2. Run post LASSO regression of 𝐷 against the IVs in Â to get
OLS coefficients

{
𝛿̂

pl
𝑗

: 𝑗 ∈ Â
}
. Construct the estimated optimal

IV 𝜁∗
𝑖
=

∑
𝑗∈Â 𝛿̂

pl
𝑗
𝑊𝑖 𝑗 .

3. Estimate 𝛼 by using 𝜁∗
𝑖

as the IV:

𝛼̂∗ =

∑𝑛
𝑖=1 𝜁

∗
𝑖
𝑌𝑖∑𝑛

𝑖=1 𝜁
∗
𝑖
𝐷𝑖

,

where 𝑌 =

(
𝑌1, ...,𝑌𝑛

)>
.
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Few IVs and many controls
I In the model

𝑌𝑖 = 𝛼𝐷𝑖 + 𝑋>
𝑖 𝛽 +𝑈𝑖

E [𝑈𝑖 | 𝑋𝑖 , 𝑍𝑖] = 0
𝐷𝑖 = 𝑍>

𝑖 𝜋 + 𝑋>
𝑖 𝛾 +𝑉𝑖

E [𝑉𝑖 | 𝑋𝑖 , 𝑍𝑖] = 0,

the dimension of 𝑋𝑖 is large but the number of IVs is small and
we do not use its polynomials and interactions to approximate the
optimal IV E [𝐷𝑖 | 𝑋𝑖 , 𝑍𝑖].

I This is the case, for example, when there is only one binary
instrument (a dummy variable, all polynomials are equal) and we
do not use its interactions with 𝑋𝑖 .

I We assume the outcome equation is sparse: the set of relevant
controls A =

{
𝑗 : 𝛽 𝑗 ≠ 0

}
is small.

I In this case, we need to perform LASSO selection over 𝑋𝑖 only.
I We apply the partialling out approach by using LASSO and post

LASSO over over 𝑋𝑖 .
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The partialling out algorithm

1. Perform LASSO and post LASSO of 𝐷𝑖 against 𝑋𝑖 to generate
the residual 𝐷pl

𝑖
.

2. Perform LASSO and post LASSO of 𝑌𝑖 against 𝑋𝑖 to generate the
residual 𝑌pl

𝑖
.

3. Perform LASSO and post LASSO of 𝑍𝑖 𝑗 against 𝑋𝑖 to generate
the residual 𝑍pl

𝑖 𝑗
, for 𝑗 = 1, 2, ..., 𝑙.

4. Run OLS of 𝐷pl
𝑖

against 𝑍pl
𝑖1, ..., 𝑍pl

𝑖𝑙
to get the OLS coefficients

(𝜋̂1, ..., 𝜋̂𝑙) and the estimated optimal IV 𝜁∗
𝑖
=

∑𝑙
𝑗=1 𝜋̂ 𝑗𝑍𝑖 𝑗 .

5. Estimate 𝛼 by

𝛼̂∗ =

∑𝑛
𝑖=1 𝜁

∗
𝑖
𝑌

pl
𝑖∑𝑛

𝑖=1 𝜁
∗
𝑖
𝐷

pl
𝑖

.
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Many IVs and many controls
I In the model

𝑌𝑖 = 𝛼𝐷𝑖 + 𝑋>
𝑖 𝛽 +𝑈𝑖

E [𝑈𝑖 | 𝑋𝑖 , 𝑍𝑖] = 0
𝐷𝑖 = 𝑊>

𝑖 𝛿 + 𝑋>
𝑖 𝛾 +𝑉𝑖

E [𝑉𝑖 | 𝑋𝑖 , 𝑍𝑖] = 0,

where the dictionary 𝑊𝑖 contains high-dimensional
transformations (polynomials) of the primitive instruments 𝑍𝑖
and interactions of 𝑍𝑖 and 𝑋𝑖 .

I Both 𝑊𝑖 and 𝑋𝑖 are high-dimensional. We need to perform
LASSO selections over both.

I The previous partialling out procedure is not practically
implementable, since the LASSO and post-LASSO partialling
out of many controls from many IVs is computationally hard.

I We do LASSO selection on 𝑊𝑖 first to estimate the equation
𝐷𝑖 = 𝑊>

𝑖
𝛿 + 𝑋>

𝑖
𝛾 +𝑉𝑖 and find the effective IVs. We then partial

out the effects from 𝑋𝑖 .
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The partialling out algorithm

1. Perform LASSO and post LASSO of 𝐷𝑖 against 𝑋𝑖 to generate
the residual 𝐷pl

𝑖
.

2. Perform LASSO and post LASSO of 𝑌𝑖 against 𝑋𝑖 to generate the
residual 𝑌pl

𝑖
.

3. Perform LASSO and post LASSO of 𝐷𝑖 against 𝑊𝑖 and 𝑋𝑖 to
generate the fitted value 𝜁∗

𝑖
(estimated optimal IV). This step

selects a subset from 𝑊𝑖 .
4. Perform LASSO and post LASSO of 𝜁∗

𝑖
against 𝑋𝑖 to partial out

the effect from 𝑋𝑖 and get the residual 𝜁pl
𝑖

.
5. Estimate 𝛼 by

𝛼̂∗ =

∑𝑛
𝑖=1 𝜁

pl
𝑖
𝑌

pl
𝑖∑𝑛

𝑖=1 𝜁
pl
𝑖
𝐷

pl
𝑖

.
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