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Causal forests

» The random forests method is one of the most effective machine
learning methods for prediction.

» A random forest combines a large number of regression trees.

» The algorithm of the random forests method is very complicated
due to its recursive nature and therefore makes it very difficult to
study its statistical properties.

» Athey and Imbens (2016) extended the regression tree algorithm
for causal inference.

» Wager and Athey (2018) extended the random forests method for
causal inference. This method is known as causal forests.
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Regression tree

>
>

Response Y and p different predictors X = (X1, X2, ..., XP)T.

Let X denote the set of all possible values (support) of X. This is
also called the feature space.

Our training data consist of {(X1, Y1), (X2,Y2), ..., (Xu,Ya)},
where X,' = (Xl,,', Xg,i, ceey Xp’,')—r.

X ;: the value of the j-th predictor, or input, for observation i,
wherei =1,2,..,nand j =1,2,..., p.

|T1| denotes the number of elements of I1. A partition

I1= {fl 0, o, €|H|} of X is a family of disjoint subsets (leaves)
of X such that UYL} ¢; =X and & N ¢; = 0if i # .

Let S = {1, ..., n} denote the indices of the entire sample. For
any x € X, {1 (x) = € € I1 such that x € £. {11 (x) identifies the
leaf ¢ to which x belongs.

A partition estimator of f (x) = E[Y | X = x] using the partition
ITis

1

) = {ieS:X;etnx)}

Y;.

iES:Xi an(x)
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Splitting rule

» The regression tree (RT) algorithm determines the final partition

and leaves by using the following in-sample criterion:
1 - 2
RSS () = o > (Y= 7 1)
ieS

» The RT algorithm recursives solves

min RSS (IT) ,
ITis RT-permitted

where “RT-permitted” means that in each step, the splits are
binary with respect to one feature and applied to all remaining
nodes that do not satisfy the termination rule.

» For example, in the initial root step, denote

K}—,c = {(xl,...,xp)T € X:Xj > C}
f;c {(xl,...,xp)TEX:xj<c},

Mo = {66}
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» In the initial step, we solve

min RSS (H_,;C) R
J.C

where we have

Z (Yi - (X | Hj,c))2

ieS
2
1
=Y (e )| i-——— Y ¥
ieS Hl : X; € g}—,c} i:XiEK_;L.
2
_ 1
+1(X,-e€j,c) Y- ————— > ¥
Hi:Xi eé’;c} X el

» The RT method has the distinct feature of implict feature
selection: variable that is not useful for predicting the response is
not selected in the steps of growing the RT.
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» Notice that the criterion function

> (v T )’

ieS
=3 Y X =23 v f (X | D),
ieS ieS ieS
Dlies Yi2 does not depend on II and therefore can be ignored.
> Let

~ 1
Yy = ——M Y,
[|ﬁxﬁﬂ|z’

t}(ief
denote the average response in a leaf £ € I1. We have

ZYif(Xi|H) ZYi(Zl(XiEO?e)

ieS ieS Cell

Z(ZY,-I(Xief)

Cell \ieS

Dl Xi e 0} V2

Lell

Y,
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> And

2
Zf(X,-IH)Z:Z(ZI(Xief)E)

i€S ieS \Cell
=ZZ1(X,-ef)?2=2|{izxief}|?2,
ieS Cell Cell
therefore,
— 2 —~
P(r-Feaim) =3 v2- Y Fox m?.
ieS ieS ieS

» In each step, the RT algorithm solves

max Zf(Xi | IT)2.
ieS

ITis RT-permitted
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» Athey and Imbens (2016) refers the conventional RT algorithm
as the adaptive RT to distinguish it from the honest RT algorithm
proposed in this paper.

» Such a criterion is also used in the pruning stage:

IT" = argmax Z f (X |2 +A|0],
ILII<I1 ieS

where A4 > 0 denotes the penalty parameter, IT < I1 means that IT
is the leaves of a sub-tree of the tree corresponding to IT and

M= argmax Zf(Xi | IT)2.
ITis RT-permitted ;=g
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Sample selection problem

» The conventional RT algorithm suffers from sample selection
and due to this problem it produces biased estimates of f (x).

» The selection bias is not an issue for prediction since more biased
estimators can be better predictors than less biased ones due to
the bias-variance tradeoff.

» This selection problem is due to the fact that the split point
depends on observations on the response variable and we use the
same data for estimation.

» Example from Athey and Imbens (2016):

» Suppose that X = {L, R}, Yr = |{i : X; = R}|™ Yix;=r Yi and
Yi=Wi: Xi =LY Sixer Vi
> Consider the estimated split rule:

{{L} .{R}} if [Yr-Y.|>c
{{L,R}} if [Yr-Yr|<c:

=

» Then, f(x | ﬁ) isbiased forE[Y | X = x],x € X.
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The honest approach

» To address this issue, Athey and Imbens (2016) proposes to split
the sample into the estimation sample S®! and the training
sample S, § = S*'U S" and S N ST = 0.

» The training sample is used for growing the RT and the
estimation sample is used to estimate f (x). The two samples are
mutually independent. This is called honest RT in Athey and

Imbens (2016).
» Denote
R 1
Flrsem = —r 5
|{l e Ses : Xi (S fH (x)}l iesest:Xiefn(x)
= Z:l(xea?fst

Cell

=~ 1
Yest — . Y
¢ |{zeSeS‘:Xie€}|i€S§(.€[ '

using the estimation sample and I1 should be constructed using
only the training sample.
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Honest splitting

» Denote
SO =EY[Xen®x)]=E[f(X)]X€n(x)].
» We have
Y, = ZI(XI'EK)Q’5+EI'
Cell
Elg | {1 (X;et):€ell}] = 0,
where E 71
a[:w:E[Yi|Xieg]

denotes the linear projection coefficients of ¥; on
{1(X; €?):¢ell}.

» In this case, the linear projection of ¥; on {1 (X; € £) : € € II}
and E[Y; | {1 (X; € €) : € € [1}] coincide and

fIm = Y al@el

E[Y; [{1(X;€{):tell}] S (X [1D).
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> And,

E[f(x|SeSt,H)] =E|> 1(xen) ¥

Cell

Yieses L (Xi € 0) y,.]
= > 1(xeE N e
;{ (x€?) [ ZieS“t 1(X; €t ;I (xel)ay

=f(x|1ID).

> Let (Yo, Xo) be an unseen data point which is independent of the
sample S. We compute the mean square prediction error of

—

£ (Xo | 8%410) to Yo:

E [(Yo —F(%o | Sest,n))z]

=E[(Yo- f (Xo | N))*| +E

(Foxo 15 - o 1))
since by E [f(x | Sest, n)] — (x| TI) and LIE,

E|(Yo- £ (Xo | TD) (F (X0 | S%.11) - £ (X | D) | = 0.
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» Then,

E|(Yo - f (Xo | ID))?
=E[V}]+E[f (Xo | TD*] -2-E[Yof (Xo | )]
and by LIE
E[Yof (Xo | )] =E[E[Yof (Xo | TT) | {1 (Xp € ¢) : £ € T}]]
=E[f (Xo | )?].
» Then,
E[(Yo-f (Xo | )] =E[¥3] -E[f (X | TD?].

» The honest population-level criterion takes the form

H(I) =E[f (Xo | T)?| -E [(f(xo | S°.10) - £ (Xo | H))z} ,

and we use the training data to estimate H (IT).
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Estimate the criterion
» We have

Var [f(x | Sesf,n)] E [(f(x | S TT) — f (x | H))Z]

S ienE [(17;5‘ —a/[)z]

Cell
/ est 1 Xl i 2
= ZI(XEZ)E ZZES (Xiel)e .
= 2iesest 1 (X; € 0)

> By CLT,
Sresea 1(Xi €06 a (0 1 B[g1(Xie f)])

Yiesest 1 (X; €0) |Ses (Pr(x; € €])?

and therefore,

S | E[¢1(Xi 0]
Var [f (x I S t’H):| zgll(x ef) |Sest| (PI'[Xl Ef])z '
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» By using the training sample, an estimator of
E €1 (X; €)] /Pr[X; € €]is

~2 1 — 2
PO resmxen 2 (M-fistm)
! ieST:X; el
where
Flel ST = ! Y.

. tr . .
HieS": X; € tu(x)} ieS":X; eln(x)

» An estimator for
- 2 —~
E [(f (Xo | S%411) - 7 (X | D) ] = E [Var [F (X0 | 5,1
is

1 —~
S >.5% ).

Cell
» And, since E [f(x | Str,H)] = f(x|I0),

Var [f(x | S",H)] -E [f(x | S",H)z] ~ (e [T
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> An estimator for E [ f (X | H)z] using the training sample is

> 5.

Cell

X tr
I:;Ul :E: j1 | é; |é;U|

ieStr

> An estimator for H (IT) using the training sample is

3 Fxsnn (|Str |Sest|)2n

ieSt

ﬁ (H) trl

» The honest RT algorithm recursively solves

max H(II).
IT is RT-permitted

» The conventional (adaptive) RT algorithm recursively solves

max Z]?(Xi | IT)2.

ITis RT- itted
is RT-permitte: oy
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» Disadvantages of the honest RT:

> smaller samples for feature space splitting (training sample) and
estimation (estimation sample);

> the results depend on how the data is split into the training and
estimation samples;

> the forest approach alleviates this issue by using many random
splits.
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The treatment effect model

» We consider the problem of estimating the causal effect of a
binary explanatory variable, which is referred as the treatment
effect in the literature. The treatment effect model is different
from the linear regression model.

» In econometrics, the treatment effect model is very often used for
evaluating social program/experiment.

» Example 1: Suppose that a selected set of individuals receive
training or education initiated by the government with a view to
enhancing their employment prospects. Suppose that the
government has collected the earnings data for the individuals
who received the training and for the individuals who did not.
The main purpose of methods of program evaluations is to
quantify and estimate the effect of the training program.
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» Example 2: Suppose that an education program required high
schools to agree to assign teachers and students to small (13 to 17
students) or large (22 to 26 students) classes. The government is
interested in the effect of class size on student achievement.

» Such a question can arise in various other situations. A medical
experiment studies on the effects of new treatment ask similar
questions. One group of patients has received new treatment, and
the other group has not.
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Potential outcome variables

>

Y;: outcome variable; D; € {0, 1}: the binary explanatory
variable; X, ..., X}, ;: other observed explanatory variables; €;:
unobserved explanatory factors.

The variable D; is a binary variable taking 1 if the individual has
gone through the treatment and O otherwise. The treatment here
represents the actual treatment. The econometrician usually
observes the treatment status for each individual D;.

(X1 ..., Xpp ;) represents a vector of various demographic
characteristics for individual i. E.g., the variables can be annual
income, age, gender, status of marriage, the number of children,
education, etc. These represent all the observable characteristics
of individual i.

> Suppose that Y; is generated by Y; = g (D7, X1, .. Xp i1 €)-

» ¢ is unknown and in the treatment effect model, we do not

assume g is linear.
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> The outcome variable ¥; (1) = g (1, X1, ..., X i, €) represents a
potential outcome of an individual i in the treatment state (e.g.
training is received or studying in a reduced-size class). The
variable ¥; (0) = g (0, Xi 4, ..., Xp i, €) represents a potential
outcome of the same individual i in the control state (e.g.
training is received or studying in a normal-size class).

» Thus, each individual has a random vector (¥; (1), Y; (0)) that
represents potential outcomes depending on the state (treatment
or control). Certainly, (¥; (1),Y; (0)) are correlated.

» The econometrician cannot observe the random vector
(Y; (1),Y; (0)) jointly, because for each individual, only one
potential outcome (¥; (1) or ¥; (0)) is realized, depending on
whether the individual i has gone through the treatment or not.
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The relationship between D; and (Y; (1),Y; (0))

» In a medical experiment, the individual is chosen to be in the
treatment group through some randomization device or a lottery.
In these cases, D; L (Y; (1),Y; (0)) (i.e., D; is independent of
¥; (1),Y; (0))).

» For evaluating social experiment/program with observational
data, it may not be convincing to assume D; 1L (¥; (1),Y; (0)).
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Treatment effects

>

The individual treatment effect (ITE) for each individual i is
defined as:
Y; (1) -Y; (0).

The ITE is the difference between the potential outcomes in two
different states for the same person.

The ITE is a counterfactual quantity, in the sense that in the
actual world, we cannot observe the vector (¥; (1) ,Y; (0)).

There are mainly two quantities of interest: ATE (average
treatment effect)

ATE=E[Y; (1) -Y: (0)],
and ATT (average treatment effect on the treated)
ATT=E[Y; (1) -Y; (0) | D; = 1].

The average treatment effect on the treated is the treatment effect
of the people who have gone through the treatment.
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> Note that the expectation in the definition of ATE involves the
joint distribution of (¥; (1) ,Y; (0)), and the expectation in the
definition of ATT involves the joint distribution of
¥; (1),Y; (0), D;), which are both unobserved.

» ATE or ATT can not be estimated accurately merely by
collecting a large size of samples.
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The observed information

» The econometrician observes the treatment status D; and
covariates X;. She also observes the outcome variable:

Yi=DY; (1)+(1-D;)Y; (0).

» The observed outcome variable Y; is not the same as the potential
outcomes Y; (1) or Y; (0). It is a realized outcome for an
individual i depending on whether she has received treatment (Y;
is realized to be Y; (1)) or not (¥; is realized to be Y; (0)).

» Identification of these parameters is concerned with the
following question: can we uniquely determine the value of these
parameters once we know the joint distribution of the observable
random variables?
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Randomized experiments

» In medical experiments, the treatment is performed using a
randomization device. More specifically, for patient i, a lottery is
run, and the patient is selected into the treated group with the
design probability p, and stays in the control group with the
design probability 1 — p.

> In these cases, we have D; 1L (Y; (1),Y; (0), X1, ..., Xpi)-
Randomized experiment assumption requires that knowing
whether patient i is treated or not gives one no informational
advantage in predicting the potential outcomes of i over another
who does not know whether patient i is treated or not.

» This assumption is still possibly violated in medical studies if
only those patients who have higher potential treatment effect are
selected into treatment among all the patients in the study on
purpose.

» In this case, observing D; will give information about the
treatment effect (¥; (1) —Y; (0)) for individual i.
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» We use the following result from probability theory: if V 1L W,
then for any function f,

E[f(V.W) |[W=w]=E[f(V.w)]. (D

> By (1) and the randomized experiment assumption,
D; 1L (Y; (1),Y; (0)), we have

ATE

[¥; (1) = Y; (0)]

[Y; (D] -E[¥; (0)]

[D:Y: (1)+(1-Dy)Y; (0) | D; = 1]
-E[D;Y; (1)+(1-D;)Y; (0) | D; =0]
E[Y;|D;=1]-E[Y; | D;=0].

E
E
E
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> By LIE,

E[Y;D;] = EI[E[Y;D;| D;]]
= Pr[D; =1]E[Y;D; | D; =1]
+Pr[D; =0]E[Y;D; | D; = 0]
= E[D;]E[Y: | D;=1],

where

E[Y;D; | D; =0] = E[(D:Y;(1)+(1-D;)Y;(0)) D; | D; =0]

=0
follows from ().
» Similarly, we have
E|Y; (1 - D;
ElY, | D, =0] = o= D0l

E[l-D;]
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We can write

ATE = E[Y;D;] E[)y;(1 _Di)]’
E[D;] E[1-D;]

where the right hand side depends on the joint distribution of the
observed random variables.

For estimation, we replace the population mean by the sample
mean (this is sometimes called the analogue principle):

1 yn 1 vn
__ Llyn yp, Ly v, (1-D;)
_ n &=l Ul n ~i=1"1 !
ATE = Tn ~ " iwn —
;Zizl Dl n Zi:1 (1 _Dl)

» We can check its consistency by using LLN and Slutsky’s lemma.

» This randomization assumption is not convincing when the

individuals in the social experiments are people who may select
into the treatment or not.
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Comparison with the linear regression
» It seems that D; is nothing but a dummy variable. Can we run a
regression of ¥; on D; and X1, ..., X, ; to estimate the ATE? Can
the parameter of interest, the ATE, be formulated as a coefficient
in a regression model.
» One possible assumption is that

Yi =8 (Di, X1, Xpir &) =vo+y1Di+ ) BiXji+€.

p
Jj=1

In this case, the ITE Y; (1) — ¥; (0) = y; is constant. This is very
unrealistic. We investigate alternative model assumptions.

» We first consider the following model assumption
Y; (0) =po + U; (0)
Y (1) =1 +U; (1),
where uo and u; are constants common across individuals and

assumed to be nonstochastic and (U; (0), U; (1)) are stochastic
components.
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We denote X; = (X1, ..., Xp,i)T for the vector of observed
covariates.

We assume E [U; (0) | X;] = E [U; (1) | X;], which implies
E[Y: (1) -Y; (0) | Xi] = p1 = po,

i.e., the ITE is mean independent of X; but it can be random.
And by LIE,

ATE=E[Y; (1) - Y; (0)] = 1 — po-

Weassume E [Y; (1) | D;, X;] = E[Y; (1) | X;] and

E[Y; (0) | D;, X;] = E[Y; (0) | X;], i.e., the conditional mean
independence of potential outcomes with treatment status,
conditional on demographic status X;.

When we focus on a sub-population of indivdiuals with specific
demographic status X;, ¥; (1) and ¥; (0) are both mean
independent of D;.
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> Let us write

E[Y; | Di, X;]1 = D;E[Y; (1) | D, X;]+(1 = D;) E[Y; (0) | D;, X;]
=D;E[Y; (1) -Y; (0) | Dy, X;] +E[Y; (0) | Dy, X;]
=D;E[Y; (1) -Y; (0) | X;] +E[Y; (0) | X;],

where the last equality follows from the conditional mean
independence assumption.

» By the assumption E [U; (0) | X;] = E [U; (1) | X;], we have

DE[Y; (1) =Y (0) | X;{] +E [¥; (0) | X;]
=D; (1 — po) +E[Y; (0) | X;]
= Uo +Di (/,tl —;1()) +h (Xl,i’ ...,Xp,i) .

where we denote & (X, .... X,;) = E[U; (0) | X;].
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Therefore, we have
E[Y; | Dy, Xi] = po+ (1 — o) Di+ h (X140 Xpi) -

Define
Vi=Y;-E[Y; | D;, Xi]

and now we have the following regression model:
Yi = Mo + (lul - /JO) Di +h (Xl,i5 ceey Xp,i) + ‘/l

We have E [V; | D;, X;] = 0 by definition.
We assume £ is linear in X, ..., X, ;:

P
h (X1, Xpi) = ZﬁjX.i,i’
i=1
and then
P
Y; = po+ (11— po) Di + ZB}'Xj,i +Vi.
j=1

A multiple linear regression of ¥; on D; and X ;, ..., X ;

consistently estimates ATE = (u; — o).
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» Weassume E [U; (0) | X;] = E[U; (1) | X;], which implies
E[Y; (1) =Y (0) | Xi] = 1 — po.

» This assumption implies that the conditional average treatment
effect given X; does not depend on X;, the characteristics of
individual i.

» This assumption can be unrealistic. E.g., Average treatment of
the class-size is the same between students from high-income
family and students from low-income family.
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Unconfoundedness assumption

» Unconfoundedness is the key assumption of the basic treatment
effect model.

» Unconfoundedness assumption: (¥; (1),Y; (0)) 1L D; | X;, i.e.,
(Y; (1),Y; (0)) and D; are conditionally independent given X;.

» Unconfoundedness can be thought of as an assumption that the
decision to take the treatment is purely random for individuals
with similar values of the covariates.

» Suppose that we have three random vectors V, W and X, where
(V, W) is a continuous random vector. Then we say V and W are
conditionally independent given X, if for all possible values of v,
w and x,

f(V,W>|X (v,w|x) :fVIX (v |x) fW|X (w|x).
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» Unconfoundedness is satisfied if (¥;, D;) are generated by the
model

Yi = g(Di. X1 Xpis€i)
D; m (Xl,i, ---,Xp,i,ni)

and e L n; | X140 Xp i
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More on conditional independence

» When V and W are conditionally independent given X, one can
easily see that for any function ¢,

Efp (V) [W.X]=E[e (V)| X].

I.e., once we observe X, knowledge of W does not give us any
further advantage in predicting the value of ¢ (V).

> We notice that

Jv.w.x) (v,w,x)
fx (%)
fvwx) (v,w,x) fow x) (w,x)
fow x) (w,x) fx (x)

viwxy v I w,x) fwix (w,x).

fovwyx (v,w | x)
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> Therefore, we have fy x (v | x) = fyw.x) (v | w,x),if (V,W)
are conditionally independent given X. Hence,

E[lg(V) | W=w,X=x]

/ 0 () fi 1wy (v | wyx) dv

/«p<v>fV|x<v|x>dv
E[p (V)| X =x].

» Therefore, the unconfoundedness assumption
(Y; (1),Y; (0)) L D; | X; implies the conditional mean
independence assumption:

E[Y; (1) | Di, X;] =E[Y; (1) | X;]
E[Y; (0) | D;, X;] =E[Y; (0) | X;].

> We can also show: if V L W | X,

Eln(V.W) [ X, W=w]=E[n(V,w) | X]. 2)
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The unconfoundedness and randomization assumptions

» It can be shown that the randomization assumption
(Y; (1),Y; (0), X;) L D; implies the unconfoundedness
assumption (¥; (1),Y; (0)) L D; | X;.

» The randomized experiment assumption does not allow
Xi,i, ..., Xp,;i to be correlated with D,

» The unconfounded condition allows D; to be affected by
X1,is .., Xp i, while the randomized experiment assumption does
not.
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Identification of ATE

» By LIE, we have

ATE = E[Y;(1)-Y; (0)]
E[E[Y; (D) | X:]]]-E[E[Y: (0) | X;]],  (3)

and

E[Y:D; | Xi]

E[E[Y;D; | X;, D;] | Xi]
Pr(D;=1|X]E[Y:D; | X;,D; = 1]
+Pr[D; =0 | X;]1E[Y;D; | X;,D; =0].
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» By the unconfoundedness assumption:
(¥; (1),Y; (0)) 1 D; | X;, the result (2)) and the relation
Y, = D;Y; (1) + (1 - Dl) Y; (0), we have

E[Y:D; | X;,D; = 1]
=E[(D)Y;(1)+(1-Dy)Y;(0))D; | X;,D; =1] =E[Y; (1) | X;]

and
E[Y;D; | X;,D; =0] =0.

» Therefore, we have
E[Y;D; | X;] =Pr[D; =1 | X;]E[Y; (1) | X;] 4)
and similarly,

E[Y;(1-D;) | X;]=Pr[D; =0 X;]E[Y; (0) | X;]. (5)
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» Now (3), (), (3) and LIE imply

B EY:D; | X] | _|EN:(-D))|X]
ATE = E[Pr[Di=1|X,-]] E[ Pr(D; =0 X;] ]

e YiD; Y; (1-D;)
Pr[D;=1]X;] Pr[D;=0]X;]|

Now the right hand side depends only on the joint distribution of
observed random variables.

» Denote
px)=Pr[D;=1]|X;=x].

This function is called propensity score. It is the probability of
the event that the individual belongs to the treatment group,
given that the observed characteristics are x € R”.
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Baseline estimation of ATE

> Let p (x)be an estimator of the propensity score, then we can
estimate the ATE:

ATE = EZ{ YiDi YiuA—Di)}.
ne=(pX) 1-p(X)
This is known as the inverse probability weighting (IPW)
estimator.
> It is straightforward to construct p (x) if X; is discrete:

?=1 1 (Di = I,X,' :x)
:-l:l 1 (Xi = )C)
» If X; is continuous, we specify a parametric model for the
propensity score:

Pr(D;=1|X]=®Bo+p1X1i+ +BpXp;)

px) =

as what we did for the Probit model. This gives a parametric
model for the propensity score. (Bo, ..., ) can be estimated by
MLE (denoted by (B, --., 3p)). We bootstrap the standard errors.
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The estimated propensity score is
P(X) =@ (Bo+BiXii+ - +BpXpi) -

This estimator is known to be consistent and asymptotically
normally distributed, if our propensity score model is correct.

This approach has the drawback that if our model for the
propensity score is wrong, the ATE estimator is inconsistent.

Actually, p (x) =E[D; | X; = x] can be estimated without
specifying a parametric model for it.
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k-NN estimator

>

The k-nearest neighbor (k-NN) estimator is the simplest
nonparametric estimator of p (x).

Fix x¢ and suppose that we want to estimate p (xo) at this point.
Assume that p is a smooth function, which means that its graph
does not change too much.

p (x) should be close to p (xg) when x is close enough to xg.

p (X;) would be close to p (xg) for observations X; close to xo.
We simply average these p (X;) for observations X; close to xo.
We do not observe p (X;) but use D; instead.

Let

di (x0) = 11X = x0ll =/ (X; = x0)" (Xi = x0)
denote the distance of X; to xg.

After computing the distance for all n observations in the sample,
we sort them in the increasing order

d(1y (x0) < d(2) (x0) < -+- < dny (x0) -
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Let N (xg) denote the identities of the k-nearest neighbors of xg:

N (x0) = {i : d; (x0) < dy (x0)} -

The k-NN nonparametric estimator of p (xp) is

R 1
PN N (x0) = Z Z D;.

i €N (x0)
The k-NN estimator is simply an average of the values of D;
across the k closest observations in terms of X;.

There is a data-driven procedure to select k in practical
applications.

The nonparametric ATE estimator using pynyn (X;) is consistent
and asymptotically normal. It does not require a parametric
model for the propensity score.
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