
Introduction to Statistical Machine Learning with
Applications in Econometrics

Lecture 14: Treatment Effect Model and Causal Forests

Instructor: Ma, Jun

Renmin University of China

December 30, 2021

1 / 58



Causal forests

I The random forests method is one of the most effective machine
learning methods for prediction.

I A random forest combines a large number of regression trees.
I The algorithm of the random forests method is very complicated

due to its recursive nature and therefore makes it very difficult to
study its statistical properties.

I Athey and Imbens (2016) extended the regression tree algorithm
for causal inference.

I Wager and Athey (2018) extended the random forests method for
causal inference. This method is known as causal forests.
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Regression tree
I Response . and ? different predictors - =

(
-1, -2, ..., -?

)>.
I Let X denote the set of all possible values (support) of - . This is

also called the feature space.
I Our training data consist of {(-1,.1) , (-2,.2) , ..., (-=,.=)},

where -8 =
(
-1,8 , -2,8 , ..., -?,8

)>.
I - 9,8: the value of the 9-th predictor, or input, for observation 8,

where 8 = 1, 2, ..., = and 9 = 1, 2, ..., ?.
I |Π| denotes the number of elements of Π. A partition
Π =

{
ℓ1, ℓ2, ..., ℓ |Π |

}
of X is a family of disjoint subsets (leaves)

of X such that
⋃ |Π |
9=1 ℓ 9 = X and ℓ8 ∩ ℓ 9 = ∅ if 8 ≠ 9 .

I Let S = {1, ..., =} denote the indices of the entire sample. For
any G ∈ X, ℓΠ (G) = ℓ ∈ Π such that G ∈ ℓ. ℓΠ (G) identifies the
leaf ℓ to which G belongs.

I A partition estimator of 5 (G) = E [. | - = G] using the partition
Π is

5̂ (G | Π) = 1
|{8 ∈ S : -8 ∈ ℓΠ (G)}|

∑
8∈S:-8 ∈ℓΠ (G)

.8 .
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Splitting rule
I The regression tree (RT) algorithm determines the final partition

and leaves by using the following in-sample criterion:

'(( (Π) = 1
|S|

∑
8∈S

(
.8 − 5̂ (-8 | Π)

)2
.

I The RT algorithm recursives solves

min
Π is RT-permitted

'(( (Π) ,

where “RT-permitted” means that in each step, the splits are
binary with respect to one feature and applied to all remaining
nodes that do not satisfy the termination rule.

I For example, in the initial root step, denote

ℓ+9,2 =

{(
G1, ..., G?

)> ∈ X : G 9 ≥ 2
}

ℓ−9,2 =

{(
G1, ..., G?

)> ∈ X : G 9 < 2
}

,

Π 9,2 =
{
ℓ−
9,2 , ℓ

+
9,2

}
.

4 / 58



I In the initial step, we solve

min
9,2

'((
(
Π 9,2

)
,

where we have∑
8∈S

(
.8 − 5̂

(
-8 | Π 9,2

) )2

=
∑
8∈S

1
(
-8 ∈ ℓ+9,2

) ©«.8 −
1���{8 : -8 ∈ ℓ+9,2

}��� ∑
8:-8 ∈ℓ+9,2

.8
ª®®¬

2

+1
(
-8 ∈ ℓ−9,2

) ©«.8 −
1���{8 : -8 ∈ ℓ−9,2

}��� ∑
8:-8 ∈ℓ−9,2

.8
ª®®¬

2 .

I The RT method has the distinct feature of implict feature
selection: variable that is not useful for predicting the response is
not selected in the steps of growing the RT.
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I Notice that the criterion function∑
8∈S

(
.8 − 5̂ (-8 | Π)

)2

=
∑
8∈S

.2
8 +

∑
8∈S

5̂ (-8 | Π)2 − 2
∑
8∈S

.8 5̂ (-8 | Π) ,∑
8∈S .

2
8
does not depend on Π and therefore can be ignored.

I Let
.̂ℓ =

1
|{8 : -8 ∈ ℓ}|

∑
8:-8 ∈ℓ

.8

denote the average response in a leaf ℓ ∈ Π. We have∑
8∈S

.8 5̂ (-8 | Π) =
∑
8∈S

.8

(∑
ℓ∈Π

1 (-8 ∈ ℓ) .̂ℓ

)
=

∑
ℓ∈Π

(∑
8∈S

.81 (-8 ∈ ℓ)
)
.̂ℓ

=
∑
ℓ∈Π
|{8 : -8 ∈ ℓ}| .̂2

ℓ .
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I And

∑
8∈S

5̂ (-8 | Π)2 =
∑
8∈S

(∑
ℓ∈Π

1 (-8 ∈ ℓ) .̂ℓ

)2

=
∑
8∈S

∑
ℓ∈Π

1 (-8 ∈ ℓ) .̂2
ℓ =

∑
ℓ∈Π
|{8 : -8 ∈ ℓ}| .̂2

ℓ ,

therefore,∑
8∈S

(
.8 − 5̂ (-8 | Π)

)2
=

∑
8∈S

.2
8 −

∑
8∈S

5̂ (-8 | Π)2 .

I In each step, the RT algorithm solves

max
Π is RT-permitted

∑
8∈S

5̂ (-8 | Π)2 .
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I Athey and Imbens (2016) refers the conventional RT algorithm
as the adaptive RT to distinguish it from the honest RT algorithm
proposed in this paper.

I Such a criterion is also used in the pruning stage:

Π̂∗ = argmax
Π:Π≺Π̂

∑
8∈S

5̂ (-8 | Π)2 + _ |Π| ,

where _ > 0 denotes the penalty parameter, Π ≺ Π̂ means that Π
is the leaves of a sub-tree of the tree corresponding to Π̂ and

Π̂ = argmax
Π is RT-permitted

∑
8∈S

5̂ (-8 | Π)2 .
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Sample selection problem
I The conventional RT algorithm suffers from sample selection

and due to this problem it produces biased estimates of 5 (G).
I The selection bias is not an issue for prediction since more biased

estimators can be better predictors than less biased ones due to
the bias-variance tradeoff.

I This selection problem is due to the fact that the split point
depends on observations on the response variable and we use the
same data for estimation.

I Example from Athey and Imbens (2016):
I Suppose that X = {!, '}, .' = |{8 : -8 = '}|−1 ∑

8:-8='
.8 and

. ! = |{8 : -8 = !}|−1 ∑
8:-8=!

.8;
I Consider the estimated split rule:

Π̂ =


{{!} , {'}} if

���.' −. ! ��� > 2
{{!, '}} if

���.' −. ! ��� ≤ 2;
I Then, 5̂

(
G | Π̂

)
is biased for E [. | - = G], G ∈ X.
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The honest approach
I To address this issue, Athey and Imbens (2016) proposes to split

the sample into the estimation sample Sest and the training
sample Sest, S = Sest ∪Str and Sest ∩Str = ∅.

I The training sample is used for growing the RT and the
estimation sample is used to estimate 5 (G). The two samples are
mutually independent. This is called honest RT in Athey and
Imbens (2016).

I Denote

5̂
(
G | Sest,Π

)
=

1
|{8 ∈ Sest : -8 ∈ ℓΠ (G)}|

∑
8∈Sest :-8 ∈ℓΠ (G)

.8

=
∑
ℓ∈Π

1 (G ∈ ℓ) .̂est
ℓ

.̂est
ℓ =

1
|{8 ∈ Sest : -8 ∈ ℓ}|

∑
8∈Sest :-8 ∈ℓ

.8

using the estimation sample and Π should be constructed using
only the training sample.
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Honest splitting
I Denote

5 (G | Π) = E [. | - ∈ ℓΠ (G)] = E [ 5 (-) | - ∈ ℓΠ (G)] .
I We have

.8 =
∑
ℓ∈Π

1 (-8 ∈ ℓ) Uℓ + n8

E [n8 | {1 (-8 ∈ ℓ) : ℓ ∈ Π}] = 0,

where
Uℓ =

E [.81 (-8 ∈ ℓ)]
E [1 (-8 ∈ ℓ)]

= E [.8 | -8 ∈ ℓ]

denotes the linear projection coefficients of .8 on
{1 (-8 ∈ ℓ) : ℓ ∈ Π}.

I In this case, the linear projection of .8 on {1 (-8 ∈ ℓ) : ℓ ∈ Π}
and E [.8 | {1 (-8 ∈ ℓ) : ℓ ∈ Π}] coincide and

5 (G | Π) =
∑
ℓ∈Π

Uℓ1 (G ∈ ℓ)

E [.8 | {1 (-8 ∈ ℓ) : ℓ ∈ Π}] = 5 (-8 | Π) .
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I And,

E
[
5̂
(
G | Sest,Π

) ]
= E

[∑
ℓ∈Π

1 (G ∈ ℓ) .̂est
ℓ

]
=

∑
ℓ∈Π

1 (G ∈ ℓ) E
[∑

8∈Sest 1 (-8 ∈ ℓ).8∑
8∈Sest 1 (-8 ∈ ℓ)

]
=

∑
ℓ∈Π

1 (G ∈ ℓ) Uℓ

= 5 (G | Π) .
I Let (.0, -0) be an unseen data point which is independent of the

sample S. We compute the mean square prediction error of
5̂
(
-0 | Sest,Π

)
to .0:

E
[(
.0 − 5̂

(
-0 | Sest,Π

) )2
]

= E
[
(.0 − 5 (-0 | Π))2

]
+E

[(
5̂
(
-0 | Sest,Π

)
− 5 (-0 | Π)

)2
]

,

since by E
[
5̂
(
G | Sest,Π

) ]
= 5 (G | Π) and LIE,

E
[
(.0 − 5 (-0 | Π))

(
5̂
(
-0 | Sest,Π

)
− 5 (-0 | Π)

)]
= 0.
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I Then,

E
[
(.0 − 5 (-0 | Π))2

]
= E

[
.2

0
]
+ E

[
5 (-0 | Π)2

]
− 2 · E [.0 5 (-0 | Π)]

and by LIE

E [.0 5 (-0 | Π)] = E [E [.0 5 (-0 | Π) | {1 (-0 ∈ ℓ) : ℓ ∈ Π}]]
= E

[
5 (-0 | Π)2

]
.

I Then,

E
[
(.0 − 5 (-0 | Π))2

]
= E

[
.2

0
]
− E

[
5 (-0 | Π)2

]
.

I The honest population-level criterion takes the form

� (Π) = E
[
5 (-0 | Π)2

]
− E

[(
5̂
(
-0 | Sest,Π

)
− 5 (-0 | Π)

)2
]

,

and we use the training data to estimate � (Π).
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Estimate the criterion
I We have

Var
[
5̂
(
G | Sest,Π

) ]
= E

[(
5̂
(
G | Sest,Π

)
− 5 (G | Π)

)2
]

=
∑
ℓ∈Π

1 (G ∈ ℓ) E
[(
.̂est
ℓ − Uℓ

)2
]

=
∑
ℓ∈Π

1 (G ∈ ℓ) E
[(∑

8∈Sest 1 (-8 ∈ ℓ) n8∑
8∈Sest 1 (-8 ∈ ℓ)

)2
]

.

I By CLT,∑
8∈Sest 1 (-8 ∈ ℓ) n8∑
8∈Sest 1 (-8 ∈ ℓ)

0∼ N

(
0,

1
|Sest |

E
[
n2
8
1 (-8 ∈ ℓ)

]
(Pr [-8 ∈ ℓ])2

)
,

and therefore,

Var
[
5̂
(
G | Sest,Π

) ]
≈

∑
ℓ∈Π

1 (G ∈ ℓ) 1
|Sest |

E
[
n2
8
1 (-8 ∈ ℓ)

]
(Pr [-8 ∈ ℓ])2

.
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I By using the training sample, an estimator of
E

[
n2
8
1 (-8 ∈ ℓ)

]
/Pr [-8 ∈ ℓ] is

f̂2 (ℓ) = 1
|8 ∈ Str : -8 ∈ ℓ |

∑
8∈Str :-8 ∈ℓ

(
.8 − 5̂

(
-8 | Str,Π

) )2
,

where

5̂
(
G | Str,Π

)
=

1
|{8 ∈ Str : -8 ∈ ℓΠ (G)}|

∑
8∈Str :-8 ∈ℓΠ (G)

.8 .

I An estimator for

E
[(
5̂
(
-0 | Sest,Π

)
− 5 (-0 | Π)

)2
]
= E

[
Var

[
5̂
(
-0 | Sest,Π

) ] ]
is

1
|Sest |

∑
ℓ∈Π

f̂2 (ℓ) .

I And, since E
[
5̂
(
G | Str,Π

) ]
= 5 (G | Π),

Var
[
5̂
(
G | Str,Π

) ]
= E

[
5̂
(
G | Str,Π

)2
]
− 5 (G | Π)2 .
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I An estimator for E
[
5 (-0 | Π)2

]
using the training sample is

1
|Str |

∑
8∈Str

5̂
(
-8 | Str,Π

)2 − 1
|Str |

∑
ℓ∈Π

f̂2 (ℓ) .

I An estimator for � (Π) using the training sample is

�̂ (Π) = 1
|Str |

∑
8∈Str

5̂
(
-8 | Str,Π

)2 −
(

1
|Str | +

1
|Sest |

) ∑
ℓ∈Π

f̂2 (ℓ) .

I The honest RT algorithm recursively solves

max
Π is RT-permitted

�̂ (Π) .

I The conventional (adaptive) RT algorithm recursively solves

max
Π is RT-permitted

∑
8∈S

5̂ (-8 | Π)2 .
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I Disadvantages of the honest RT:
I smaller samples for feature space splitting (training sample) and

estimation (estimation sample);
I the results depend on how the data is split into the training and

estimation samples;
I the forest approach alleviates this issue by using many random

splits.
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The treatment effect model

I We consider the problem of estimating the causal effect of a
binary explanatory variable, which is referred as the treatment
effect in the literature. The treatment effect model is different
from the linear regression model.

I In econometrics, the treatment effect model is very often used for
evaluating social program/experiment.

I Example 1: Suppose that a selected set of individuals receive
training or education initiated by the government with a view to
enhancing their employment prospects. Suppose that the
government has collected the earnings data for the individuals
who received the training and for the individuals who did not.
The main purpose of methods of program evaluations is to
quantify and estimate the effect of the training program.
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I Example 2: Suppose that an education program required high
schools to agree to assign teachers and students to small (13 to 17
students) or large (22 to 26 students) classes. The government is
interested in the effect of class size on student achievement.

I Such a question can arise in various other situations. A medical
experiment studies on the effects of new treatment ask similar
questions. One group of patients has received new treatment, and
the other group has not.
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Potential outcome variables
I .8: outcome variable; �8 ∈ {0, 1}: the binary explanatory

variable; -1,8 , ..., -?,8: other observed explanatory variables; n8:
unobserved explanatory factors.

I The variable �8 is a binary variable taking 1 if the individual has
gone through the treatment and 0 otherwise. The treatment here
represents the actual treatment. The econometrician usually
observes the treatment status for each individual �8 .

I
(
-1,8 , ..., -?,8

)
represents a vector of various demographic

characteristics for individual 8. E.g., the variables can be annual
income, age, gender, status of marriage, the number of children,
education, etc. These represent all the observable characteristics
of individual 8.

I Suppose that .8 is generated by .8 = 6
(
�8 , -1,8 , ..., -?,8 , n8

)
.

I 6 is unknown and in the treatment effect model, we do not
assume 6 is linear.
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I The outcome variable .8 (1) = 6
(
1, -1,8 , ..., -?,8 , n8

)
represents a

potential outcome of an individual 8 in the treatment state (e.g.
training is received or studying in a reduced-size class). The
variable .8 (0) = 6

(
0, -1,8 , ..., -?,8 , n8

)
represents a potential

outcome of the same individual 8 in the control state (e.g.
training is received or studying in a normal-size class).

I Thus, each individual has a random vector (.8 (1) ,.8 (0)) that
represents potential outcomes depending on the state (treatment
or control). Certainly, (.8 (1) ,.8 (0)) are correlated.

I The econometrician cannot observe the random vector
(.8 (1) ,.8 (0)) jointly, because for each individual, only one
potential outcome (.8 (1) or .8 (0)) is realized, depending on
whether the individual 8 has gone through the treatment or not.
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The relationship between �8 and (.8 (1) ,.8 (0))

I In a medical experiment, the individual is chosen to be in the
treatment group through some randomization device or a lottery.
In these cases, �8 ⊥⊥ (.8 (1) ,.8 (0)) (i.e., �8 is independent of
(.8 (1) ,.8 (0))).

I For evaluating social experiment/program with observational
data, it may not be convincing to assume �8 ⊥⊥ (.8 (1) ,.8 (0)).
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Treatment effects
I The individual treatment effect (ITE) for each individual 8 is

defined as:
.8 (1) −.8 (0) .

I The ITE is the difference between the potential outcomes in two
different states for the same person.

I The ITE is a counterfactual quantity, in the sense that in the
actual world, we cannot observe the vector (.8 (1) ,.8 (0)).

I There are mainly two quantities of interest: ATE (average
treatment effect)

ATE = E [.8 (1) −.8 (0)] ,

and ATT (average treatment effect on the treated)

ATT = E [.8 (1) −.8 (0) | �8 = 1] .

I The average treatment effect on the treated is the treatment effect
of the people who have gone through the treatment.
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I Note that the expectation in the definition of ATE involves the
joint distribution of (.8 (1) ,.8 (0)), and the expectation in the
definition of ATT involves the joint distribution of
(.8 (1) ,.8 (0) ,�8), which are both unobserved.

I ATE or ATT can not be estimated accurately merely by
collecting a large size of samples.
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The observed information

I The econometrician observes the treatment status �8 and
covariates -8 . She also observes the outcome variable:

.8 = �8.8 (1) + (1 − �8).8 (0) .

I The observed outcome variable .8 is not the same as the potential
outcomes .8 (1) or .8 (0). It is a realized outcome for an
individual 8 depending on whether she has received treatment (.8
is realized to be .8 (1)) or not (.8 is realized to be .8 (0)).

I Identification of these parameters is concerned with the
following question: can we uniquely determine the value of these
parameters once we know the joint distribution of the observable
random variables?
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Randomized experiments
I In medical experiments, the treatment is performed using a

randomization device. More specifically, for patient 8, a lottery is
run, and the patient is selected into the treated group with the
design probability ?, and stays in the control group with the
design probability 1 − ?.

I In these cases, we have �8 ⊥⊥
(
.8 (1) ,.8 (0) , -1,8 , ..., -?,8

)
.

Randomized experiment assumption requires that knowing
whether patient 8 is treated or not gives one no informational
advantage in predicting the potential outcomes of 8 over another
who does not know whether patient 8 is treated or not.

I This assumption is still possibly violated in medical studies if
only those patients who have higher potential treatment effect are
selected into treatment among all the patients in the study on
purpose.

I In this case, observing �8 will give information about the
treatment effect (.8 (1) −.8 (0)) for individual 8.
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I We use the following result from probability theory: if + ⊥⊥ , ,
then for any function 5 ,

E [ 5 (+ ,,) | , = F] = E [ 5 (+ ,F)] . (1)

I By (1) and the randomized experiment assumption,
�8 ⊥⊥ (.8 (1) ,.8 (0)), we have

ATE = E [.8 (1) −.8 (0)]
= E [.8 (1)] − E [.8 (0)]
= E [�8.8 (1) + (1 − �8).8 (0) | �8 = 1]
−E [�8.8 (1) + (1 − �8).8 (0) | �8 = 0]

= E [.8 | �8 = 1] − E [.8 | �8 = 0] .
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I By LIE,

E [.8�8] = E [E [.8�8 | �8]]
= Pr [�8 = 1] E [.8�8 | �8 = 1]
+Pr [�8 = 0] E [.8�8 | �8 = 0]

= E [�8] E [.8 | �8 = 1] ,

where

E [.8�8 | �8 = 0] = E [(�8.8 (1) + (1 − �8).8 (0)) �8 | �8 = 0]
= 0

follows from (1).
I Similarly, we have

E [.8 | �8 = 0] = E [.8 (1 − �8)]
E [1 − �8]

.
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I We can write

ATE =
E [.8�8]
E [�8]

− E [.8 (1 − �8)]
E [1 − �8]

,

where the right hand side depends on the joint distribution of the
observed random variables.

I For estimation, we replace the population mean by the sample
mean (this is sometimes called the analogue principle):

ÂTE =
1
=

∑=
8=1.8�8

1
=

∑=
8=1 �8

−
1
=

∑=
8=1.8 (1 − �8)

1
=

∑=
8=1 (1 − �8)

.

I We can check its consistency by using LLN and Slutsky’s lemma.
I This randomization assumption is not convincing when the

individuals in the social experiments are people who may select
into the treatment or not.
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Comparison with the linear regression
I It seems that �8 is nothing but a dummy variable. Can we run a

regression of .8 on �8 and -1,8 , ..., -?,8 to estimate the ATE? Can
the parameter of interest, the ATE, be formulated as a coefficient
in a regression model.

I One possible assumption is that

.8 = 6
(
�8 , -1,8 , ..., -?,8 , n8

)
= W0 + W1�8 +

?∑
9=1

V 9- 9,8 + n8 .

In this case, the ITE .8 (1) −.8 (0) = W1 is constant. This is very
unrealistic. We investigate alternative model assumptions.

I We first consider the following model assumption

.8 (0) =`0 +*8 (0)

.8 (1) =`1 +*8 (1) ,

where `0 and `1 are constants common across individuals and
assumed to be nonstochastic and (*8 (0) ,*8 (1)) are stochastic
components.
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I We denote -8 =
(
-1,8 , ..., -?,8

)> for the vector of observed
covariates.

I We assume E [*8 (0) | -8] = E [*8 (1) | -8], which implies

E [.8 (1) −.8 (0) | -8] = `1 − `0,

i.e., the ITE is mean independent of -8 but it can be random.
And by LIE,

ATE = E [.8 (1) −.8 (0)] = `1 − `0.

I We assume E [.8 (1) | �8 , -8] = E [.8 (1) | -8] and
E [.8 (0) | �8 , -8] = E [.8 (0) | -8], i.e., the conditional mean
independence of potential outcomes with treatment status,
conditional on demographic status -8 .

I When we focus on a sub-population of indivdiuals with specific
demographic status -8 , .8 (1) and .8 (0) are both mean
independent of �8 .
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I Let us write

E [.8 | �8 , -8] = �8E [.8 (1) | �8 , -8] + (1 − �8) E [.8 (0) | �8 , -8]
= �8E [.8 (1) −.8 (0) | �8 , -8] + E [.8 (0) | �8 , -8]

= �8E [.8 (1) −.8 (0) | -8] + E [.8 (0) | -8] ,

where the last equality follows from the conditional mean
independence assumption.

I By the assumption E [*8 (0) | -8] = E [*8 (1) | -8], we have

�8E [.8 (1) −.8 (0) | -8] + E [.8 (0) | -8]
= �8 (`1 − `0) + E [.8 (0) | -8]

= `0 + �8 (`1 − `0) + ℎ
(
-1,8 , ..., -?,8

)
,

where we denote ℎ
(
-1,8 , ..., -?,8

)
= E [*8 (0) | -8].
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I Therefore, we have

E [.8 | �8 , -8] = `0 + (`1 − `0) �8 + ℎ
(
-1,8 , ..., -?,8

)
.

I Define
+8 = .8 − E [.8 | �8 , -8]

and now we have the following regression model:

.8 = `0 + (`1 − `0) �8 + ℎ
(
-1,8 , ..., -?,8

)
++8 .

I We have E [+8 | �8 , -8] = 0 by definition.
I We assume ℎ is linear in -1,8 , ..., -?,8:

ℎ
(
-1,8 , ..., -?,8

)
=

?∑
9=1

V 9- 9,8 ,

and then

.8 = `0 + (`1 − `0) �8 +
?∑
9=1

V 9- 9,8 ++8 .

I A multiple linear regression of .8 on �8 and -1,8 , ..., -?,8
consistently estimates ATE = (`1 − `0).
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I We assume E [*8 (0) | -8] = E [*8 (1) | -8], which implies

E [.8 (1) −.8 (0) | -8] = `1 − `0.

I This assumption implies that the conditional average treatment
effect given -8 does not depend on -8 , the characteristics of
individual 8.

I This assumption can be unrealistic. E.g., Average treatment of
the class-size is the same between students from high-income
family and students from low-income family.
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Unconfoundedness assumption

I Unconfoundedness is the key assumption of the basic treatment
effect model.

I Unconfoundedness assumption: (.8 (1) ,.8 (0)) ⊥⊥ �8 | -8 , i.e.,
(.8 (1) ,.8 (0)) and �8 are conditionally independent given -8 .

I Unconfoundedness can be thought of as an assumption that the
decision to take the treatment is purely random for individuals
with similar values of the covariates.

I Suppose that we have three random vectors + ,, and - , where
(+ ,,) is a continuous random vector. Then we say + and, are
conditionally independent given - , if for all possible values of E,
F and G,

5(+ ,, ) |- (E,F | G) = 5+ |- (E | G) 5, |- (F | G) .
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I Unconfoundedness is satisfied if (.8 ,�8) are generated by the
model

.8 = 6
(
�8 , -1,8 , ..., -?,8 , n8

)
�8 = <

(
-1,8 , ..., -?,8 , [8

)
and n8 ⊥⊥ [8 | -1,8 , ..., -?,8 .
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More on conditional independence

I When + and, are conditionally independent given - , one can
easily see that for any function i,

E [i (+) | , , -] = E [i (+) | -] .

I.e., once we observe - , knowledge of, does not give us any
further advantage in predicting the value of i (+).

I We notice that

5(+ ,, ) |- (E,F | G) =
5(+ ,, ,- ) (E,F, G)

5- (G)

=
5(+ ,, ,- ) (E,F, G)
5(, ,- ) (F, G)

5(, ,- ) (F, G)
5- (G)

= 5+ | (, ,- ) (E | F, G) 5, |- (F, G) .
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I Therefore, we have 5+ |- (E | G) = 5+ | (, ,- ) (E | F, G), if (+ ,,)
are conditionally independent given - . Hence,

E [i (+) | , = F, - = G] =

∫
i (E) 5+ | (, ,- ) (E | F, G) dE

=

∫
i (E) 5+ |- (E | G) dE

= E [i (+) | - = G] .

I Therefore, the unconfoundedness assumption
(.8 (1) ,.8 (0)) ⊥⊥ �8 | -8 implies the conditional mean
independence assumption:

E [.8 (1) | �8 , -8] = E [.8 (1) | -8]
E [.8 (0) | �8 , -8] = E [.8 (0) | -8] .

I We can also show: if + ⊥⊥ , | - ,

E [[ (+ ,,) | - ,, = F] = E [[ (+ ,F) | -] . (2)
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The unconfoundedness and randomization assumptions

I It can be shown that the randomization assumption
(.8 (1) ,.8 (0) , -8) ⊥⊥ �8 implies the unconfoundedness
assumption (.8 (1) ,.8 (0)) ⊥⊥ �8 | -8 .

I The randomized experiment assumption does not allow
-1,8 , ..., -?,8 to be correlated with �8 ,

I The unconfounded condition allows �8 to be affected by
-1,8 , ..., -?,8 , while the randomized experiment assumption does
not.
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Identification of ATE

I By LIE, we have

ATE = E [.8 (1) −.8 (0)]
= E [E [.8 (1) | -8]] − E [E [.8 (0) | -8]] , (3)

and

E [.8�8 | -8] = E [E [.8�8 | -8 ,�8] | -8]
= Pr [�8 = 1 | -8] E [.8�8 | -8 ,�8 = 1]
+Pr [�8 = 0 | -8] E [.8�8 | -8 ,�8 = 0] .
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I By the unconfoundedness assumption:
(.8 (1) ,.8 (0)) ⊥⊥ �8 | -8 , the result (2) and the relation
.8 = �8.8 (1) + (1 − �8).8 (0), we have

E [.8�8 | -8 ,�8 = 1]
= E [(�8.8 (1) + (1 − �8).8 (0)) �8 | -8 ,�8 = 1] = E [.8 (1) | -8]

and
E [.8�8 | -8 ,�8 = 0] = 0.

I Therefore, we have

E [.8�8 | -8] = Pr [�8 = 1 | -8] E [.8 (1) | -8] (4)

and similarly,

E [.8 (1 − �8) | -8] = Pr [�8 = 0 | -8] E [.8 (0) | -8] . (5)
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I Now (3), (4), (5) and LIE imply

ATE = E
[

E [.8�8 | -8]
Pr [�8 = 1 | -8]

]
− E

[
E [.8 (1 − �8) | -8]

Pr [�8 = 0 | -8]

]
= E

[
.8�8

Pr [�8 = 1 | -8]
− .8 (1 − �8)

Pr [�8 = 0 | -8]

]
.

Now the right hand side depends only on the joint distribution of
observed random variables.

I Denote
? (G) = Pr [�8 = 1 | -8 = G] .

This function is called propensity score. It is the probability of
the event that the individual belongs to the treatment group,
given that the observed characteristics are G ∈ R?.
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Baseline estimation of ATE
I Let ?̂ (G)be an estimator of the propensity score, then we can

estimate the ATE:

ÂTE =
1
=

=∑
8=1

{
.8�8

?̂ (-8)
− .8 (1 − �8)

1 − ?̂ (-8)

}
.

This is known as the inverse probability weighting (IPW)
estimator.

I It is straightforward to construct ?̂ (G) if -8 is discrete:

?̂ (G) =
∑=
8=1 1 (�8 = 1, -8 = G)∑=

8=1 1 (-8 = G)
.

I If -8 is continuous, we specify a parametric model for the
propensity score:

Pr [�8 = 1 | -8] = Φ
(
V0 + V1-1,8 + · · · + V?-?,8

)
as what we did for the Probit model. This gives a parametric
model for the propensity score.

(
V0, ..., V?

)
can be estimated by

MLE (denoted by
(
V̂0, ..., V̂?

)
). We bootstrap the standard errors.
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I The estimated propensity score is

?̂ (-8) = Φ
(
V̂0 + V̂1-1,8 + · · · + V̂?-?,8

)
.

I This estimator is known to be consistent and asymptotically
normally distributed, if our propensity score model is correct.

I This approach has the drawback that if our model for the
propensity score is wrong, the ATE estimator is inconsistent.

I Actually, ? (G) = E [�8 | -8 = G] can be estimated without
specifying a parametric model for it.

44 / 58



k-NN estimator
I The :-nearest neighbor (:-NN) estimator is the simplest

nonparametric estimator of ? (G).
I Fix G0 and suppose that we want to estimate ? (G0) at this point.

Assume that ? is a smooth function, which means that its graph
does not change too much.

I ? (G) should be close to ? (G0) when G is close enough to G0.
? (-8) would be close to ? (G0) for observations -8 close to G0.

I We simply average these ? (-8) for observations -8 close to G0.
We do not observe ? (-8) but use �8 instead.

I Let
38 (G0) = ‖-8 − G0‖ =

√
(-8 − G0)> (-8 − G0)

denote the distance of -8 to G0.
I After computing the distance for all = observations in the sample,

we sort them in the increasing order

3 (1) (G0) ≤ 3 (2) (G0) ≤ · · · ≤ 3 (=) (G0) .
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I Let #: (G0) denote the identities of the :-nearest neighbors of G0:

#: (G0) =
{
8 : 38 (G0) ≤ 3 (:) (G0)

}
.

I The :-NN nonparametric estimator of ? (G0) is

?̂:# # (G0) =
1
:

∑
8∈#: (G0)

�8 .

I The :-NN estimator is simply an average of the values of �8
across the : closest observations in terms of -8 .

I There is a data-driven procedure to select : in practical
applications.

I The nonparametric ATE estimator using ?̂:# # (-8) is consistent
and asymptotically normal. It does not require a parametric
model for the propensity score.
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Conditional average treatment effect
I In the baseline treatment effect model, the ITE .8 (1) −.8 (0) is

not constant. The ATE ATE = E [.8 (1) −.8 (0)] is an average of
the individual treatment effects over the entire population.

I Define the conditional average treatment effect (CATE)

CATE (�) = E [.8 (1) −.8 (0) | -8 ∈ �] , � ⊆ X,

where � is a set of potential values of -8 . CATE (�) captures the
treatment effect for a sub-population of individuals defined by
their covariates. For example,

� = {G ∈ R? : G1 < 21, G2 > 22}

for some constants 21, 22.
I When there is a lot of heterogeneity in .8 (1) −.8 (0) across the

observations, it is possible that some sub-populations have large
effects and some sub-populations have small effects.
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I It is possible that ATE = E [.8 (1) −.8 (0)] = 0 but looking at

ATE = Pr [-8 ∈ �] CATE (�) + Pr [-8 ∈ �2] CATE (�2) ,

we find that CATE (�) is positive and CATE (�2) is negative.
I Even when treatment is randomized and the covariates are not

even needed for the estimation of the ATE, they can be used for
learning CATE (�), which can be very different in different
sub-populations defined by � ⊆ X.
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CATE function

I Define the CATE function

g (G) = E [.8 (1) −.8 (0) | -8 = G] , G ∈ X.

Then,
CATE (�) = E [g (-8) 1 (-8 ∈ �)]

Pr [-8 ∈ �]
.

I If we have an estimator ĝ (G) of g (G), we can easily construct an
estimator of CATE (�):

�CATE (�) =
∑=
8=1 ĝ (-8) 1 (-8 ∈ �)∑=

8=1 1 (-8 ∈ �)
.

I Estimation of CATE reduces to estimation of g (G).
I Another motivation for estimation of g (G) is inference on

optimal policy.
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Optimal policy
I Denote `1 (G) = E [.8 (1) | -8 = G] and
`0 (G) = E [.8 (0) | -8 = G]. Then g (G) = `1 (G) − `0 (G).

I Consider a social planner’s problem. Let ? : X→ [0, 1] be a
function and ? (G) denotes the probability that an individual with
characteristic G ∈ X is assigned to treatment.

I The social welfare corresponding to an assignment rule ? is

, (?) = E [`1 (-8) ? (-8) + `0 (-8) (1 − ? (-8))]
= E [`0 (-8)] + E [g (-8) ? (-8)] .

I The social planner’s problem is

max
?
, (?) subject to E [? (-8)] ≤ 2,

where 2 ∈ (0, 1) is fraction of individuals that can be treated and
E [? (-8)] ≤ 2 is the budge constraint.
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I The solution must takes the form of ?W (G) = 1 (g (G) ≥ W). The
solution to the planner’s problem is ?W∗ , where W∗ is determined
by the budget constraint E

[
?W∗ (-8)

]
= 2. Therefore,

Pr [g (-8) ≥ W∗] = 2. W∗ is the (1 − 2) quantile of the random
variable g (-8).

I Estimation of the optimal treatment assignment rule reduces to
estimation of g (G).

I In a simpler problem which does not allow for probablistic
assignment, if -8 ∈ � is assigned treatment, the social welfare is

, (�) = E [`1 (-8) 1 (-8 ∈ �) + `0 (-) 1 (-8 ∈ �2)]
= E [`0 (-8)] + E [g (-8) 1 (-8 ∈ �)] .

It can be shown that

{G ∈ X : g (G) ≥ 0} = argmax
�⊆X

, (�) .
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Tree-based estimation of CATE
I Since the ITE g8 = .8 (1) −.8 (0) is unobserved, the regression

tree method is not easy to be extended for estimation of g (G).
I Under unconfoundedness, we have

g (G) = E [.8 (1) | -8 = G] − E [.8 (0) | -8 = G]
= E [.8 | -8 = G,�8 = 1] − E [.8 | -8 = G,�8 = 0] .

Conditional on -8 = G, the expectation of .8 (1) is equal to the
expectation of .8 for the treated group.

I This motivates the tree estimator of g (G):

ĝ (G | Π) =
∑
8∈S:-8 ∈ℓΠ (G) ,�8=1.8

|{8 ∈ S : -8 ∈ ℓΠ (G) ,�8 = 1}|

−
∑
8∈S:-8 ∈ℓΠ (G) ,�8=0.8

|{8 ∈ S : -8 ∈ ℓΠ (G) ,�8 = 0}| .

I X is partitioned into leaves in Π. When the resulting leaves are
small enough so that the observation in the same leaf can be
viewed as if they come from a randomized experiment.
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Conventional (adaptive) causal trees

I To grow the tree, we should recursives solve

min
Π is RT-permitted

'(( (Π) ,

where the in-sample criterion is given by

'(( (Π) = 1
|S|

∑
8∈S
(g8 − ĝ (-8 | Π))2 .

I g8 is unobserved, but it is shown that it is equivalent to solve

max
Π is RT-permitted

∑
8∈S

ĝ (-8 | Π)2 .

I This is the adaptive causal tree algorithm. It is a modification of
the conventional (adaptive) regression tree method.
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Honest causal trees
I Honest causal trees proposed in Athey and Imbens (2016) split S

into the training sample Str and the estimation sample Sest. For
any partition Π, denote

ĝ
(
G | Sest,Π

)
=

∑
8∈Sest :-8 ∈ℓΠ (G) ,�8=1.8

|{8 ∈ Sest : -8 ∈ ℓΠ (G) ,�8 = 1}|

−
∑
8∈Sest :-8 ∈ℓΠ (G) ,�8=0.8

|{8 ∈ Sest : -8 ∈ ℓΠ (G) ,�8 = 0}| .

I We choose Π to minimize the mean square prediction error of
ĝ
(
-0 | Sest,Π

)
to g0:

min
Π is RT-permitted

E
[ (
g0 − ĝ

(
-0 | Sest,Π

) )2
]

.

I Similarly, it is shown that E
[ (
g0 − ĝ

(
-0 | Sest,Π

) )2
]
is equal to

� (Π), up to a constant, where the honest population-level
criterion takes the form

� (Π) = E
[
g (-0 | Π)2

]
− E

[ (
ĝ
(
-0 | Sest,Π

)
− g (-0 | Π)

)2
]

.
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I We estimate both components of this expectation using only the
training sample.

I The honest causal tree is chosen by solving

max
Π is RT-permitted

�̂ (Π) ,

where

�̂ (Π) = 1
|Str |

∑
8∈Str

ĝ
(
-8 | Str,Π

)2

−
(

1
|Str | +

1
|Sest |

) ∑
ℓ∈Π

(
f̂2

1 (ℓ)
?̂1 (ℓ)

+
f̂2

0 (ℓ)
?̂0 (ℓ)

)
,

f̂2
1 (ℓ) and f̂

2
0 (ℓ) are the estimated variances of the outcome

variable for treated and untreated observations respectively in
leaf ℓ, ?̂1 (ℓ) and ?̂0 (ℓ) are the estimated probabilities of
treatment and control in leaf ℓ.

I
(
f̂2

1 (ℓ) , f̂
2
0 (ℓ)

)
and ( ?̂1 (ℓ) , ?̂0 (ℓ)) are constructed using the

training sample.
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Transformed outcome trees
I Another method proposed in Athey and Imbens (2016) is the

transformed outcome tree (TOT).
I Denote

. ∗8 =
.8�8

? (-8)
− .8 (1 − �8)

1 − ? (-8)
.

I Note that .8�8 = .8 (1) �8 and .8 (1 − �8) = .8 (0) (1 − �8).
I Under unconfoundedness (.8 (1) ,.8 (0)) ⊥⊥ �8 | -8 ,

E
[
. ∗8 | -8

]
= E

[
.8 (1) �8
? (-8)

| -8
]
− E

[
.8 (0) (1 − �8)

1 − ? (-8)
| -8

]
=

E [.8 (1) | -8] E [�8 | -8]
? (-8)

− E [.8 (0) | -8] E [1 − �8 | -8]
1 − ? (-8)

= E [.8 (1) | -8] − E [.8 (0) | -8] = E [.8 (1) −.8 (0) | -8] .
I Since E

[
. ∗
8
| -8 = G

]
= g (G), we can simply apply adaptive and

honest regression tree algorithms to . ∗
8
. In the case of

observational data, ? (-8) has to be estimated. In the case of
experimental data, ? (-8) is a known constant.
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Causal forests
I Causal trees suffer from the same instability as regression trees.

Small changes in the data can result in a very different tree
I One can improve their performance by averaging over many

independent causal trees. A forest estimator is an average of
trees, where each tree is grown on a bootstrap sample.

I Wager and Athey (2018) shows that the forest estimator ĝcf (G) is
asymptotically normal:

ĝcf (G) − g (G)√
Var

[
ĝcf (G)

] →3 N (0, 1) .

I The asymptotic normality result allows us to construct
confidence interval for g (G) or CATE (�). It relies on two
modifications of the conventional random forest algorithm:
I the honest approach to growing the tree and estimation;
I subsampling: the sample size of the bootstrap subsample B=

should satisfy B=/=→ 0.
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I The causal forest approach overcomes two drawbacks of the
honest causal tree:
I When the honest causal tree approach is applied, half of the data

is wasted, since the training sample Str is not used in estimation;
I the result you get depends on how S is split into Sest and Str.

I Each bootstrap subsample is split into training and estimation
subsamples. However, since subsamples are randomly re-drawn
with each tree, the honest causal forest approach does not waste
observations: each observation is used for partitioning in some
trees and estimation in other trees.

I Causal forests can be used to compute importance measures of
variables in -8 .
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