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What is statistical learning used for?
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ISL Figure 2.1
I The Advertising data set consists of the sales in 200 different

markets, with advertising budgets for TV, radio and newspaper.
I Our goal: let the computer use an algorithm to predict sales on

the basis of the three media budgets.
I Figure 2.1: regression of Sales against each of TV, Radio and

Newspaper. 2 / 36



I Sales is a response or target that we wish to predict. We
generically denote the response by . .

I Each of TV, radio and newspaper is a feature, or input, or
predictor. We denote the features by the input vector
- = (-1, -2, -3)>.
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A statistical model

I More generally, suppose that we observe a quantitative response
. and ? different predictors - =

(
-1, -2, ..., -?

)>.
I Assume that there is some relationship between . and -:

. = 5 (-) + n ,

where 5 is some fixed but unknown function of - , and n is a
random error term, which is independent of - and E [n] = 0.

I If the model is viewed as a structural model, n is viewed as
(aggregation of) unobserved factors that generate . .
I As an example, - are characteristics of a patient’s blood sample;
. is the patient’s risk for a severe adverse reaction to a particular
drug; n can be manufacturing variation in the drug or the patient’s
general feeling of well-being.

I Caution: this model assumes no endogeneity, which may not be
true, from an econometric perspective.
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I Alternatively, the model can be viewed as a prediction model.
Taking 5 (-) = E [. | -] and n = . − 5 (-), it automatically
holds that E [n | -] = 0. The additional model assumption is that
n and - are independent.

I This prediction modelling approach suffices if our objective is
out-of-sample prediction. But it does not lead to causality
interpretation.

I Mathematically, in either case, 5 (G) = E [. |- = G].
I Suppose that there is an unseen data point (-0,.0) with
.0 = 5 (-0) + n0 for some unseen error n0, which is a random
draw from the distribution of n . We do not see .0 (or n0) and wish
to let the computer predict what .0 should be, after it receives -0.
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Recap of conditional expectation
I Conditional PDF (when (. , -) are continuous):

5. |-=G (H | G) = 5- ,. (G, H) / 5- (G). If - and . are independent,
5. |- (H | G) = 5. (H) for all G.

I Suppose you know that - = G. You can update your expectation
of . by conditional expectation. We define conditional
expectationfrom conditional PDF:
E [. | - = G] =

∫
H 5. |- (H | G) dH. E [. | - = G] is a constant.

I A conditional expectation E [. | - = G] is a number not a
random variable. E [. | - = G] is not random, not a function of
. . It is a function of the observed “realized” value G of the
random variable - .

I We denote this function by 6 (G) = E [. | - = G]. Notice that 6
is an ordinary function of G, which is just a number.

I 6 (-) is a random variable. If denoting E [. | -] = 6 (-),
E [. | -] is a random variable and a function of - (Uncertainty
about - has not been realized yet).
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I Conditional expectations satisfies all properties of unconditional
expectation. E.g.

E [. + / | -] = E [. | -] + E [/ | -] .

I Once you condition on - , you can treat any function of - as a
constant:

E [ℎ1 (-) + ℎ2 (-). | -] = ℎ1 (-) + ℎ2 (-) E [. | -] ,

for any functions ℎ1 and ℎ2.
I Law of Iterated Expectation (LIE):

E [E [. | -]] = E [. ] ,
E [E [. | - , /] | -] = E [. | -]
E [E [. | -] | - , /] = E [. | -] .

I Mean independence: . and - are mean independent if

E [. | -] = E [. ] = constant.
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- and . are independent
⇓

E [. | -] = constant (mean independence)
⇓

Cov [- ,. ] = 0 (uncorrelatedness)
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Why estimate 5 ?
I 5 (-0) is an ideal or optimal predictor of .0.
I 5 (-0) minimizes the mean square prediction error

E
[
(.0 − 5 (-0))2 | -0

]
≤ E

[
(.0 − 6 (-0))2 | -0

]
.

I n0 = .0 − 5 (-0) is the irreducible error. Even if we knew 5 (-0),
we would still make errors in prediction, since when -0 is given
there is still a distribution of possible .0 values.

I We predict .0 by using .̂0 = 5̂ (-0). Assume for now that 5̂ (-0)
is non-random given -0, then,

E
[ (
.0 − .̂0

)2 | -0

]
=E

[{
5 (-0) + n0 − 5̂ (-0)

}2 | -0

]
=
[
5 (-0) − 5̂ (-0)

]2︸                  ︷︷                  ︸
Reducible

+Var [n0]︸   ︷︷   ︸
Irreducible

.

I Our focus is on minimizing the reducible error.
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I There are situations when we are interested in the form of 5
(“inference problem” in ISL) rather than estimating 5 (-0) given
-0 for prediction (e.g., linearity, partial derivatives...).
I In the context of causal inference (. = 5 (-) + n is interpreted as

the structural model), partial derivatives of 5 are interpreted as
causal effects.

I We are interested in identifying the subset of - that has nonzero
partial derivatives and also signs of them (positive or negative
effects?).

I Is it adequate to specify a linear model, i.e., assuming
5 (-) = ->V for some V, or this specification assumption is false?

I In a real estate setting, . : values of homes; -: crime rate,
zoning, distance from a river, air quality, schools, income level of
community, size of houses, and so forth.
I How much extra will a house be worth if it has a view of the

river? This is an inference problem.
I Predicting the value of a house newly put on the market given its

characteristics. This is a prediction problem.
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How do we estimate 5 ?

I Observed a set of = data points.
I - 9,8: the value of the 9-th predictor, or input, for observation 8,

where 8 = 1, 2, ..., = and 9 = 1, 2, ..., ?.
I .8: the response variable for the 8-th observation.
I Our training data consist of {(-1,.1) , (-2,.2) , ..., (-=,.=)},

where -8 =
(
-1,8 , -2,8 , ..., -?,8

)>.
I Each .8 is generated by the model: .8 = 5 (-8) + n8 .
I Our goal is to apply a statistical learning method to the training

data to estimate the unknown function 5 .
I An unseen data point: (-0,.0), where -0 is observed (received

by the computer) but .0 is not.
I Predict .0 by .̂0 = 5̂ (-0), where 5̂ (-0) depends on the training

data.
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Parametric approach: prediction perspective

I Linear model (as an example of parametric models):

5 (-8) = V0 + V1-1,8 + V2-2,8 + . . . + V?-?,8 .

Instead of having to estimate an entirely arbitrary ?-dimensional
function 5 , one only needs to estimate the ? + 1 coefficients
V1, V2, ..., V?.

I After a model has been selected, we need a procedure that uses
the training data to fit or train the model. In the case of the linear
model, we want to find values of these parameters such that

.8 ≈ V0 + V1-1,8 + V2-2,8 + . . . + V?-?,8 .

The most common approach is OLS.
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I For prediction, we care about the expected test mean square
(prediction) error MSE = E

[ (
.0 − 5̂ (-0)

)2
]
and hope to make it

as small as possible.
I Later we show that MSE = Bias2 +Variance +Noise, where

Noise = Var [n].
I The potential disadvantage of a parametric approach is that the

model we choose will usually not match the true unknown form
of 5 .

I If the chosen model is too far from the true 5 , then our estimate
will be poor, since the absolute bias is large.

I We can try to address this problem by choosing flexible models
that can fit many different possible functional forms for 5 . But
fitting a more flexible model can lead to overfitting, since the
variance is large.
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Non-parametric approach: prediction perspective

I Non-parametric methods do not make explicit assumptions about
the functional form of 5 (G) = E [. | - = G].

I Without functional form assumption for 5 , they have the
potential to accurately fit a wider range of possible shapes for 5
(i.e., low bias).

I A very large number of observations (far more than what is
typically needed for a parametric approach) is required to get an
accurate estimate for 5 .

I A large class of old-generational nonparametric regression
methods for estimating 5 (G) = E [. | - = G] is based on local
averaging.
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I Suppose we wish to estimate E [. | - = 4]. No data point with
- = 4 exactly.

I Let N (G) be some neighborhood of G,

5̂ (G) =
∑=
8=1.81 (-8 ∈ N (G))∑=
8=1 1 (-8 ∈ N (G))

,

where

1 (-8 ∈ N (G)) =
{

1 if -8 ∈ N (G)
0 if -8 ∉ N (G)

.
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I The neighborhood N (G) is usually selected in a data-driven
manner.

I The performance of local averaging non-parametric method
deteriorates substantially as ? increases. This is known as “curse
of dimensionality”.

I You need a incredibly huge = to get a reasonably accurate
estimate. When ? is large, to get a reasonably large “effective
sample size”

∑=
8=1 1 (-8 ∈ N (G)), = should be an incredibly huge

number.
I Local averaging works well only when ? is small (? ≤ 4).
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Parametric vs non-parametric: inference perspective

I Linear models are easy to interpret: marginal/causal effects are
just regression coefficients.

I Linear models can be misspecified: the true relationship may not
be linear. In this case, interpreting the regression coefficients as
causal effects is not correctly.

I Nonparametric models are robust to misspecification. However,
the regression results are hard to interpret.
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Assessing model accuracy

I No free lunch in statistics: no one method dominates all others
over all possible data sets.

I How to decide for any given set of data which method produces
the best results?

I We could compute and compare the average training mean
square (prediction) error using the training data:

MSETr =
1
=

=∑
8=1

(
.8 − 5̂ (-8)

)2 .

I For comparison of different models, MSETr is biased towards
more flexible model.
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I We do not care how well the method works on the training data.
We are interested in its prediction accuracy when applied to
previously unseen test data.
I As an example, suppose that we have clinical measurements for a

number of patients, as well as information about whether each
patient has diabetes. We wish to accurately predict diabetes risk
for future patients based on their clinical measurements. We are
not interested in whether or not the method accurately predicts
diabetes risk for patients used to train the model, since we already
know which of those patients have diabetes.

I Suppose we have a large number of test data:
(.=+1, -=+1) , ..., (.=+<, -=+<). We compute the average test
mean square (prediction) error

MSETe =
1
<

<∑
8=1

(
.=+8 − 5̂ (-=+8)

)2 .

I In practice, we can use part of our data to train the model and use
the rest as test data to compare different models.

I A more effective method is cross-validation.
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ISL Figure 2.9
I Figure 2.9: simulated data.
I Left: true 5 (black), linear regression (orange curve) and two

nonparametric regression curves (blue and green curves).
I Right: Training MSE (grey curve), test MSE (red curve), and

minimum possible test MSE over all methods (dashed line).
I Squares represent the training and test MSEs for the three fits

shown in the left-hand panel.
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I As model flexibility increases, training MSE will decrease, but
the test MSE may not.

I When a given method yields a small training MSE but a large test
MSE, we are said to be overfitting the data.

I Overfitting happens because our procedure is working too hard to
find patterns in the training data, and may be picking up some
patterns that are just caused by random noise rather than the
signal 5 (-8).
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ISL Figure 2.10
I 5 is smoother. Variation of the data along the Y-axis as X

increases is driven by random noise.
I The most flexible model (green curve) overfits the data by

picking up patterns driven by the noise.
I An unseen data point is generated by a new error term, which is

independent from those error terms that generate the training
data.
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ISL Figure 2.11

I 5 is wiggly and the noise has low variation. Variation of the data
along the Y-axis is driven by change in the signal 5 (-8).

I The more flexible fits work the best.
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Bias-variance trade-off
I Suppose we have fit a model and get 5̂ (G) with our training data.

Let (-0,.0) be a test observation that is drawn from the
population and independent from the training data.

I The conditional expected test MSE can be decomposed into

E
[ (
.0 − 5̂ (-0)

)2 | -0

]
= Var [n] +Bias (-0)2 +Variance (-0)

where Bias (-0) = E
[
5̂ (-0) | -0

]
− 5 (-0) and

Variance (-0) = Var
[
5̂ (-0) | -0

]
.

I The unconditional expected test MSE is just

E
[ (
.0 − 5̂ (-0)

)2
]
= E

[
E

[ (
.0 − 5̂ (-0)

)2 | -0

] ]
,

by law of iterated expectations.
I The expected test MSE can never lie below Var [n], the

irreducible error.
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I Typically as the flexibility increases, variance increases and bias
decreases.

I Variance refers to the amount by which 5̂ would change if we
estimated it using a different training data set.

I Bias refers to the error that is introduced by approximating the
unknown 5 , which may be extremely complicated, by a much
simpler model.

I To minimize the expected test MSE, we need to select a statistical
learning method that simultaneously achieves low variance and
low bias.

I Choosing the flexibility based on average test MSE amounts to a
bias-variance trade-off.
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I Figure 2.12: bias-variance trade-off for the three examples.
I The flexibility level corresponding to the optimal expected test

MSE differs considerably among the three data sets.
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Classification problems

I The response variable . is qualitative .
I Email is one of � = {spam, ham}, in a spam email detection

problem.
I Digit class is one of � = {0, 1, ..., 9}, in a handwritten image

recognition problem.
I (-0,.0) is an unseen data point, -0 is received by the computer

and we let the computer to predict what .0 should be.
I The computer uses the training data to build a classifier

5̂ (-0) ∈ � that assigns a label from � as an estimate of .0.
I The training error rate (the fraction of incorrect classifications):

1
=

=∑
8=1

1
(
.8 ≠ .̂8

)
,

where .̂8 = 5̂ (-8).
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I With a test data: (.=+1, -=+1) , ..., (.=+<, -=+<), we evaluate the
performance of the classifier 5̂ using the test misclassification
error rate

1
<

<∑
8=1

1
(
.=+8 ≠ .̂=+8

)
,

where .̂=+8 = 5̂ (-=+8).
I As in the regression setting, we are most interested in the error

rates that result from applying our classifier to test observations
that were not used in training.

I The (conditional) expected test error rate: Pr
[
.0 ≠ .̂0 | -0

]
,

where .̂0 = 5̂ (-0), and the unconditional version is
E

[
Pr

[
.0 ≠ .̂0 | -0

] ]
.

I A good classifier is one for which the test error rate is smallest.
I Suppose � are labelled: � = {1, 2, ..., }. Let
?: (-) = Pr [. = : | -], : = 1, 2, ..., .

I The Bayes optimal classifier:

� (-) = argmax 9 ? 9 (-) .
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Figure 2.13

I The purple dashed line represents the Bayes decision boundary.
I The orange background grid indicates the region in which a test

observation will be assigned to the orange class, and the blue
background grid indicates the region in which a test observation
will be assigned to the blue class.
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I The Bayes classifier produces the lowest possible test error rate,
called the Bayes error rate:

Pr [. ≠ � (-) | -] = Pr
[
. ≠ argmax 9 ? 9 (-) | -

]
= 1 − max

9=1,..., 
? 9 (-) .

I The overall Bayes error rate
Pr [. ≠ � (-)] = 1 − E

[
max 9=1,..., ? 9 (-)

]
is analogous to the

irreducible error in the regression context.
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KNN Classifier

I For real data, we do not know the conditional distribution of .
given - , and so computing the Bayes classifier is impossible.

I Many approaches attempt to estimate the conditional distribution
of . given - , and then classify a given observation to the class
with highest estimated probability.

I One such method is the K-nearest neighbors (KNN) classifier. It
uses the KNN nonparametric estimator of ? 9 (G):

?̂ 9 (G) =
1
 

∑
8∈ (G)

1 (.8 = 9) ,

where (G) denotes the  points in the training data that are
closest to G.

I KNN classifies the test observation -0 to the class with the
largest probability from

{
?̂ 9 (-0) : 9 = 1, ..., 

}
.
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I KNN with  = 3.
I Left: a test observation at which a predicted class label is desired

is shown as a black cross.
I Right: The KNN decision boundary for this example is shown in

black.
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ISL Figure 2.13

I A simulated data set consisting of 100 observations in each of
two groups, indicated in blue and in orange.

I The purple dashed line represents the Bayes decision boundary.
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KNN: K=10

ISL Figure 2.15
I KNN with  = 10.
I The KNN (black) and Bayes decision (purple dashed) boundaries

are very similar.
I The test error rate using KNN is 0.1363, which is close to the

Bayes error rate of 0.1304.
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KNN: K=1 KNN: K=100

ISL Figure 2.16
I  = 1, the decision boundary is overly flexible: low bias but very

high variance.
I  = 100, decision boundary that is overly smooth: low variance

but high bias.
I Neither  = 1 nor  = 100 give good predictions: they have test

error rates of 0.1695 and 0.1925, respectively.
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ISL Figure 2.16
I As 1/ increases, the method becomes more flexible.
I The training error rate consistently declines as the flexibility

increases.
I The method overfits the data when 1/ is large.
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