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Linear regression
I Linear regression is a simple approach to supervised learning. In

particular, linear regression is a useful tool for predicting a
quantitative response.

I The Advertising data has sales as the response (. ) and
advertising budgets for TV (-1), radio (-2), and newspaper
media (-3) as predictors. A statistical model: . = 5 (-) + n with
n being independent of - = (-1, -2, -3)>.

I Interesting questions:
I Is there a relationship between advertising budget and sales? (Is

5 (G1, G2, G3) = E [. | -1 = G1, -2 = G2, -3 = G3] constant?)
I How strong is the relationship between advertising budget and

sales? (Variance of n?)
I Which media contribute to sales? (Partial derivatives of

5 (G1, G2, G3)?)
I How accurately can we predict future sales? (MSE of prediction

for an unseen data point.)
I Is the relationship ( 5 (G)) linear?
I Is there synergy (interaction) among the advertising media?

(m 5 (G1, G2, G3) /mG1 depends on (G2, G3)?)
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I linear regression model: . = V0 + V1-1 + V2-2 + V3-3 + n
I n is the error term that is independent of - .
I V0 and (V1, V2, V3) are intercept and slopes, which are also called

coefficients.
I From the prediction perspective, essentially the model specifies a

functional form for 5 (-) and recovering 5 reduces to recovering
the coefficients.

I From the causal inference perspective, essentially the model
assumes that the effects are constant and there is no endogeneity
issue.
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Simple linear regression
I Simple linear regression model with a single predictor -:
. = V0 + V1- + n .

I We have the training data:

(-1,.1) , (-2,.2) , . . . , (-=,.=) .

I Given some estimates V̂0 and V̂1 for the coefficients, for the
unseen data point (-0,.0), we predict .0 using .̂0 = V̂0 + V̂1-0.

I Let .̂8 = 10 + 11-8 be the in-sample prediction for .8 based on the
8-th value of -8 .

I 48 = .8 − .̂8 represents the 8-th residual and we the residual sum
of squares (RSS) as

RSS = 42
1 + 4

2
2 + · · · + 4

2
=

= (.1 − 10 − 11-1)2 + (.2 − 10 − 11-2)2 +
· · · + (.= − 10 − 11-=)2 .
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I The least squares approach chooses 10 and 11 to minimize the
RSS. The minimizing values can be shown to be

V̂1 =

∑=
8=1

(
-8 − -

) (
.8 −.

)
∑=

8=1

(
-8 − -

)2

and V̂0 = . − V̂1- , where - = =−1 ∑=
8=1 -8 and . = =−1 ∑=

8=1.8 .
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Assessing the accuracy
I The standard error of an estimator reflects how it varies under

repeated sampling:

SE
(
V̂0

)2
= f2


1
=
+ -

2∑=
8=1

(
-8 − -

)2

 and SE
(
V̂1

)2
=

f2∑=
8=1

(
-8 − -

)2 ,

where f2 = Var [n].
I In general, f2 is not known, but can be estimated from the data.
I The estimate of f (f̂) is known as the residual standard error:

RSE =

√
1

= − 2
RSS =

√√
1

= − 2

=∑
8=1

(
.8 − .̂8

)2,

where the residual sum of squares: RSS =
∑=

8=1
(
.8 − .̂8

)2.
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I Standard errors

ŜE
(
V̂0

)2
= f̂2


1
=
+ -

2∑=
8=1

(
-8 − -

)2

 and ŜE
(
V̂1

)2
=

f̂2∑=
8=1

(
-8 − -

)2 .

can be used to compute confidence intervals.
I A 95% confidence interval is defined as an interval such that with

95% probability, the interval contains the true unknown value of
the parameter.

I Approximately, with 95% probability[
V̂1 − 2 · ŜE

(
V̂1

)
, V̂1 + 2 · ŜE

(
V̂1

) ]
contains V1, in a hypothetical scenario where we have repeated
samples.
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Hypothesis testing
I Standard errors can also be used to perform hypothesis tests on

the coefficients. The most common hypothesis test involves
testing the null hypothesis of

�0: There is no relationship between - and .

against the alternative hypothesis

�0: There is some relationship between - and . .

I This corresponds to testing �0 : V1 = 0 again �0 : V1 ≠ 0.
I We compute a C-statistic, given by

C =
V̂1 − 0

ŜE
(
V̂1

) ,

which has a C-distribution with = − 2 degrees of freedom.
I ?-value: the probability of observing any value equal to |C | or

larger.
8 / 25



Assessing the overall accuracy
I RSE is considered a measure of the lack of (in-sample) fit of the

model to the data.
I If the (in-sample) predictions .̂8 are very close to the true

outcome values .8 , RSE will be small.
I If .̂8 is very far from .8 for one or more observations, then the

RSE may be quite large.
I '2: the fraction of variance of . explained by the model:

'2 =
TSS −RSS

TSS
= 1 − RSS

TSS
,

where TSS =
∑=

8=1

(
.8 −.

)2
is the total sum of squares.

I In simple linear regression, '2 is the square of the sample
correlation of - and . :

'2 =


∑=

8=1

(
-8 − -

) (
.8 −.

)
√∑=

8=1

(
-8 − -

)2
√∑=

8=1

(
.8 −.

)2


2

.
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Multiple linear regression
I The multiple linear regression:

. = V0 + V1-1 + V2-2 + · · · V?-? + n .
I We interpret V 9 as the average effect on . of a one unit increase

in - 9 , holding all other predictors fixed.
I Our training data:{(

.1, -1,1, ..., -?,1
)
,
(
.2, -1,2, ..., -?,2

)
, ...,

(
.=, -1,=, ..., -?,=

)}
.

I Given estimates 10, 11, ..., 1?, we make in-sample predictions
using:

.̂8 = 10 + 11-1,8 + 12-2,8 + · · · + 1?-?,8 .
I The values V̂0, V̂1, ..., V̂? that minimize RSS are the multiple least

squares regression coefficient estimates:

RSS =

=∑
8=1

(
.8 − .̂8

)2

=

=∑
8=1

(
.8 − 10 − 11-1,8 − 12-2,8 − · · · − 1?-?,8

)2 .
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Coefficient Std. Error C-statistic ?-value
Intercept 12.351 0.621 19.88 < 0.0001
newspaper 0.055 0.017 3.30 0.00115
ISL Table 3.3: simple regression of sales on newspaper

Coefficient Std. Error C-statistic ?-value
Intercept 2.939 0.3119 9.42 < 0.0001
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001

newspaper −0.001 0.0059 −0.18 0.8599
ISL Table 3.4: multiple regression

I The newspaper simple regression coefficient estimate was
significantly non-zero, the multiple regression coefficient
estimate for newspaper is close to zero, and the corresponding
?-value is no longer significant.
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TV radio newspaper sales

TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762

newspaper 1.0000 0.2283
sales 1.0000

ISL Table 3.5

I The sample correlation between radio and newspaper is 0.35.
Markets with high newspaper advertising tend to also have high
radio advertising.

I Suppose that the multiple regression is correct and newspaper
advertising is not associated with sales, but radio advertising
is associated with sales.

I In a simple linear regression, we will observe that higher values
of newspaper tend to be associated with higher values of sales,
even though newspaper advertising is not directly associated
with sales.
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I Important questions:
I Is at least one of the predictors -1, -2, ..., -? useful in predicting

the response? (Model significance test.)
I Do all the predictors help to explain . , or is only a subset of the

predictors useful? (Model selection will be discussed later in the
class.)

I How well does the model fit the data? (In-sample fit, measured by
'2.)

I Given a set of predictor values, what response value should we
predict, and how accurate is our prediction? (MSE of prediction
for an unseen data point; is the linear model good enough for our
prediction purpose?)
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Model significance test

I Test that none of the regressors explain . :

�0 : V1 = V2 = . . . = V? = 0
�0 : at least one V 9 is non-zero.

I Use the �-statistic

� =
(TSS −RSS) /?
RSS/(= − ? − 1) ∼ �?,=−?−1

under �0. We expect � to be large if �0 is true.
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Test of subset significance

I Sometimes we want to test that a particular subset of @ of the
coefficients are zero: �0 : V?−@+1 = V?−@+2 = · · · V? = 0 against
�0: V?−@+1 ≠ 0 or V?−@+1 ≠ 0 or · · · or V? ≠ 0.

I We fit a second model that uses all the variables except those last
@. Suppose that the residual sum of squares for that model is
RSS0.

I Use the �-statistic

� =
(RSS0 −RSS) /@
RSS/(= − ? − 1) ∼ �@,=−?−1.
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Qualitative predictors

I Some predictors are not quantitative but are qualitative, taking a
discrete set of values.

I These are also called categorical predictors or factor variables.
I The Credit data set records variables for a number of credit card

holders.
I The response is balance (average credit card debt for each

individual).
I Quantitative predictors: age, cards (number of credit cards),
education (years of education), income (in thousands of
dollars), limit (credit limit), and rating (credit rating).

I Qualitative variables: gender, student (student status), status
(marital status), and ethnicity (Caucasian, African American
(AA) or Asian).
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I Example: investigate differences in credit card balance between
males and females, ignoring the other variables. We create a new
variable

-8 =

{
1 if 8-th person is female
0 if 8-th person is male.

I Resulting model:

.8 = V0 + V1-8 + n8 =
{
V0 + V1 + n8 if 8-th person is female
V0 + n8 if 8-th person is male.
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I With more than two levels, we create additional dummy
variables. For example, for the ethnicity variable we create two
dummy variables. The first could be

-81 =

{
1 if 8-th person is Asian
0 if 8-th person is not Asian,

and the second could be

-82 =

{
1 if 8-th person is Caucasian
0 if 8-th person is not Caucasian.

I Both of these variables can be used:

.8 = V0 + V1-8,1 + V2-8,2 + n8

=


V0 + V1 + n8 if 8-th person is Asian
V0 + V2 + n8 if 8-th person is Caucasian
V0 + n8 if 8-th person is AA.

I There will always be one fewer dummy variable than the number
of levels. The level with no dummy variable is known as the
baseline.
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Interactions

I In our previous analysis of the Advertising data, we assumed
that the effect on sales of increasing one advertising medium is
independent of the amount spent on the other media.

I The average effect on sales of a one-unit increase in TV is
always V1, regardless of the amount spent on radio.

I But suppose that spending money on radio advertising actually
increases the effectiveness of TV advertising, so that the slope
term for TV should increase as radio increases.

I Model takes the form

sales =V0 + V1 × TV + V2 × radio + V3 × (radio × TV) + n
=V0 + (V1 + V3 × radio) × TV + V2 × radio + n

19 / 25



Coefficient Std. Error C-statistic ?-value
Intercept 6.7502 0.248 27.23 < 0.0001
TV 0.0191 0.002 12.70 < 0.0001
radio 0.0289 0.009 3.24 0.0014

TV × radio 0.0011 0.000 20.73 < 0.0001
ISL Table 3.9

I The results suggest that interactions are important.
I The ?-value for the interaction term TV × radio is extremely

low, indicating that there is strong evidence for V3 ≠ 0.
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I Consider the Credit data set, and suppose that we wish to
predict balance using income (quantitative) and student
(qualitative). Without an interaction term, the model takes the
form

balance8 ≈V0 + V1 × income8 +
{
V2 if 8th person is a student
0 if 8th person is not a student

=V1 × income8 +
{
V0 + V2 if 8th person is a student
V0 if 8th person is not a student.

I With interactions, it takes the form

balance8 ≈V0 + V1 × income8 +
{
V2 + V3 × income8 if student
0 if not student

=

{
(V0 + V2) + (V1 + V3) × income8 if student
V0 + V1 × income8 if not student
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ISL Figure 3.7

I Regression lines have different intercepts, as well as different
slopes.
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Non-linear effects of predictors
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ISL Figure 3.8

I The mpg (gas mileage in miles per gallon) versus horsepower is
shown for a number of cars in the Auto data set.
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Coefficient Std. Error C-statistic ?-value
Intercept 56.9001 1.8004 31.6 < 0.0001
horsepower −0.4662 0.0311 −15.0 < 0.0001
horsepower2 0.0012 0.0001 10.1 < 0.0001

ISL Table 3.10

I It seems clear that this relationship is in fact non-linear. A simple
extension to the linear model is to include transformed predictors.

I A nonlinear model

mpg = V0 + V1 × horsepower + V2 × horsepower2 + n

may provide a better fit (lower '2).
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Confidence and prediction intervals
I In a linear regression model . = V0 + V1- + n with a single

predictor - , suppose that for some fixed G0, we wish to construct
a confidence interval that covers H0 = V0 + V1G0 with 95%
probability.

I An estimator of H0 is Ĥ0 = V̂0 + V̂1G0 and

SE ( Ĥ0) =
f2

=

©«1 +

(
- − G0

)2

=−1 ∑=
8=1

(
-8 − -

)2

ª®®¬ .

I ŜE ( Ĥ0) replaces f2 with f̂2. An 95% confidence interval for H0:[
Ĥ0 − 2 · ŜE ( Ĥ0) , Ĥ0 + 2 · ŜE ( Ĥ0)

]
.

I A prediction interval[
Ĥ0 − 2 ·

√
ŜE ( Ĥ0)2 + f̂2, Ĥ0 + 2 ·

√
ŜE ( Ĥ0)2 + f̂2

]
covers .0 = V0 + V1G0 + n0 with 95% probability, where n0 is a
new error that is independent of the training data. 25 / 25


