Introduction to Statistical Machine Learning with Applications in Econometrics Lecture 3: Linear Regression (ISL ch. 3)

Instructor: Ma, Jun

Renmin University of China

October 14, 2021

Linear regression

- \blacktriangleright Linear regression is a simple approach to supervised learning. In particular, linear regression is a useful tool for predicting a quantitative response.
- \blacktriangleright The Advertising data has sales as the response (Y) and advertising budgets for TV (X_1) , radio (X_2) , and newspaper media (X_3) as predictors. A statistical model: $Y = f(X) + \epsilon$ with ϵ being independent of $X = (X_1, X_2, X_3)^\top$.
- \blacktriangleright Interesting questions:
	- \blacktriangleright Is there a relationship between advertising budget and sales? (Is $f(x_1, x_2, x_3) = E[Y | X_1 = x_1, X_2 = x_2, X_3 = x_3]$ constant?)
	- \blacktriangleright How strong is the relationship between advertising budget and sales? (Variance of ϵ ?)
	- \blacktriangleright Which media contribute to sales? (Partial derivatives of $f(x_1, x_2, x_3)$?)
	- \blacktriangleright How accurately can we predict future sales? (MSE of prediction for an unseen data point.)
	- Is the relationship $(f(x))$ linear?
	- \blacktriangleright Is there synergy (interaction) among the advertising media? $(\partial f(x_1, x_2, x_3) / \partial x_1)$ depends on (x_2, x_3) ?)
- Inear regression model: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$
	- \blacktriangleright ϵ is the error term that is independent of X.
	- \triangleright β_0 and $(\beta_1, \beta_2, \beta_3)$ are intercept and slopes, which are also called coefficients.
- \blacktriangleright From the prediction perspective, essentially the model specifies a functional form for $f(X)$ and recovering f reduces to recovering the coefficients.
- \triangleright From the causal inference perspective, essentially the model assumes that the effects are constant and there is no endogeneity issue.

Simple linear regression

- \triangleright Simple linear regression model with a single predictor X: $Y = \beta_0 + \beta_1 X + \epsilon$.
- \triangleright We have the training data:

$$
(X_1,Y_1), (X_2,Y_2), \ldots, (X_n,Y_n)
$$
.

- ► Given some estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ for the coefficients, for the unseen data point (X_0, Y_0) , we predict Y_0 using $\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 X_0$.
- ► Let $\hat{Y}_i = b_0 + b_1 X_i$ be the in-sample prediction for Y_i based on the *i*-th value of X_i .
- \blacktriangleright $e_i = Y_i \hat{Y}_i$ represents the *i*-th residual and we the residual sum of squares (RSS) as

RSS =
$$
e_1^2 + e_2^2 + \dots + e_n^2
$$

\n= $(Y_1 - b_0 - b_1 X_1)^2 + (Y_2 - b_0 - b_1 X_2)^2 + \dots + (Y_n - b_0 - b_1 X_n)^2$.

 \blacktriangleright The least squares approach chooses b_0 and b_1 to minimize the RSS. The minimizing values can be shown to be

$$
\hat{\beta}_1 = \frac{\sum_{i=1}^n \left(X_i - \overline{X}\right) \left(Y_i - \overline{Y}\right)}{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}
$$

and $\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$, where $\overline{X} = n^{-1} \sum_{i=1}^n X_i$ and $\overline{Y} = n^{-1} \sum_{i=1}^n Y_i$.

Assessing the accuracy

 \blacktriangleright The standard error of an estimator reflects how it varies under repeated sampling:

$$
\text{SE}(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2} \right] \text{ and } \text{SE}(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2},
$$

where σ^2 = Var [ϵ].

- In general, σ^2 is not known, but can be estimated from the data.
- \triangleright The estimate of $\sigma(\hat{\sigma})$ is known as the residual standard error:

RSE =
$$
\sqrt{\frac{1}{n-2}RSS}
$$
 = $\sqrt{\frac{1}{n-2}\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}$,

where the residual sum of squares: RSS = $\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$.

$$
\widehat{\text{SE}}\left(\hat{\beta}_0\right)^2 = \hat{\sigma}^2 \left[\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}\right] \text{ and } \widehat{\text{SE}}\left(\hat{\beta}_1\right)^2 = \frac{\hat{\sigma}^2}{\sum_{i=1}^n \left(X_i - \overline{X}\right)^2}.
$$

can be used to compute confidence intervals.

- \blacktriangleright A 95% confidence interval is defined as an interval such that with 95% probability, the interval contains the true unknown value of the parameter.
- \blacktriangleright Approximately, with 95% probability

$$
\left[\hat{\beta}_1 - 2\cdot \widehat{\rm SE}\left(\hat{\beta}_1\right), \hat{\beta}_1 + 2\cdot \widehat{\rm SE}\left(\hat{\beta}_1\right)\right]
$$

contains β_1 , in a hypothetical scenario where we have repeated samples.

Hypothesis testing

In Standard errors can also be used to perform hypothesis tests on the coefficients. The most common hypothesis test involves testing the null hypothesis of

 H_0 : There is no relationship between X and Y

against the alternative hypothesis

 H_a : There is some relationship between X and Y.

- In This corresponds to testing $H_0: \beta_1 = 0$ again $H_a: \beta_1 \neq 0$.
- \triangleright We compute a *t*-statistic, given by

$$
t = \frac{\hat{\beta}_1 - 0}{\widehat{\text{SE}}(\hat{\beta}_1)},
$$

which has a *t*-distribution with $n - 2$ degrees of freedom.

 \triangleright p-value: the probability of observing any value equal to |t| or larger.

Assessing the overall accuracy

- \triangleright RSE is considered a measure of the lack of (in-sample) fit of the model to the data.
	- If the (in-sample) predictions \hat{Y}_i are very close to the true outcome values Y_i , RSE will be small.
	- If \hat{Y}_i is very far from Y_i for one or more observations, then the RSE may be quite large.
- \blacktriangleright R^2 : the fraction of variance of Y explained by the model:

$$
R^2 = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}},
$$

where TSS = $\sum_{i=1}^{n} (Y_i - \overline{Y})^2$ is the total sum of squares.

In simple linear regression, R^2 is the square of the sample correlation of X and Y :

$$
R^{2} = \left\{\frac{\sum_{i=1}^{n} (X_{i} - \overline{X}) (Y_{i} - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} \sqrt{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}}\right\}^{2}.
$$

Multiple linear regression

 \blacktriangleright The multiple linear regression:

$$
Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \epsilon.
$$

- \triangleright We interpret β_i as the average effect on Y of a one unit increase in X_j , holding all other predictors fixed.
- \triangleright Our training data:

 $\{(Y_1, X_{1,1}, ..., X_{p,1}), (Y_2, X_{1,2}, ..., X_{p,2}), ..., (Y_n, X_{1,n}, ..., X_{p,n})\}$.

 \triangleright Given estimates b_0 , b_1 , ..., b_p , we make in-sample predictions using:

$$
\hat{Y}_i = b_0 + b_1 X_{1,i} + b_2 X_{2,i} + \cdots + b_p X_{p,i}.
$$

The values $\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_p$ that minimize RSS are the multiple least squares regression coefficient estimates:

$$
RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2
$$

=
$$
\sum_{i=1}^{n} (Y_i - b_0 - b_1 X_{1,i} - b_2 X_{2,i} - \dots - b_p X_{p,i})^2.
$$

10 / 25

 \blacktriangleright The newspaper simple regression coefficient estimate was significantly non-zero, the multiple regression coefficient estimate for newspaper is close to zero, and the corresponding p -value is no longer significant.

- \blacktriangleright The sample correlation between radio and newspaper is 0.35. Markets with high newspaper advertising tend to also have high radio advertising.
- \triangleright Suppose that the multiple regression is correct and newspaper advertising is not associated with sales, but radio advertising is associated with sales.
- \blacktriangleright In a simple linear regression, we will observe that higher values of newspaper tend to be associated with higher values of sales, even though newspaper advertising is not directly associated with sales.
- \blacktriangleright Important questions:
	- In Is at least one of the predictors $X_1, X_2, ..., X_p$ useful in predicting the response? (Model significance test.)
	- \triangleright Do all the predictors help to explain Y, or is only a subset of the predictors useful? (Model selection will be discussed later in the class.)
	- \blacktriangleright How well does the model fit the data? (In-sample fit, measured by R^2 .)
	- \triangleright Given a set of predictor values, what response value should we predict, and how accurate is our prediction? (MSE of prediction for an unseen data point; is the linear model good enough for our prediction purpose?)

Model significance test

 \blacktriangleright Test that none of the regressors explain Y :

$$
H_0 : \beta_1 = \beta_2 = \dots = \beta_p = 0
$$

$$
H_a : \text{at least one } \beta_j \text{ is non-zero.}
$$

 \blacktriangleright Use the *F*-statistic

$$
F = \frac{\text{(TSS - RSS)}/p}{\text{RSS}/(n - p - 1)} \sim F_{p,n-p-1}
$$

under H_0 . We expect F to be large if H_a is true.

Test of subset significance

- \triangleright Sometimes we want to test that a particular subset of q of the coefficients are zero: $H_0: \beta_{p-q+1} = \beta_{p-q+2} = \cdots \beta_p = 0$ against $H_a: \beta_{n-a+1} \neq 0$ or $\beta_{n-a+1} \neq 0$ or \cdots or $\beta_n \neq 0$.
- \triangleright We fit a second model that uses all the variables except those last q. Suppose that the residual sum of squares for that model is $RSS₀$.
- \blacktriangleright Use the *F*-statistic

$$
F = \frac{\text{(RSS}_0 - \text{RSS})/q}{\text{RSS}/(n - p - 1)} \sim F_{q, n-p-1}.
$$

Qualitative predictors

- \triangleright Some predictors are not quantitative but are qualitative, taking a discrete set of values.
- \blacktriangleright These are also called categorical predictors or factor variables.
- \triangleright The Credit data set records variables for a number of credit card holders.
	- \blacktriangleright The response is balance (average credit card debt for each individual).
	- \triangleright Quantitative predictors: age, cards (number of credit cards), education (years of education), income (in thousands of dollars), limit (credit limit), and rating (credit rating).
	- \triangleright Qualitative variables: gender, student (student status), status (marital status), and ethnicity (Caucasian, African American (AA) or Asian).

► Example: investigate differences in credit card balance between males and females, ignoring the other variables. We create a new variable

$$
X_i = \begin{cases} 1 & \text{if } i \text{-th person is female} \\ 0 & \text{if } i \text{-th person is male.} \end{cases}
$$

 \blacktriangleright Resulting model:

$$
Y_i = \beta_0 + \beta_1 X_i + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{-th person is female} \\ \beta_0 + \epsilon_i & \text{if } i \text{-th person is male.} \end{cases}
$$

 \blacktriangleright With more than two levels, we create additional dummy variables. For example, for the ethnicity variable we create two dummy variables. The first could be

$$
X_{i1} = \begin{cases} 1 & \text{if } i\text{-th person is Asian} \\ 0 & \text{if } i\text{-th person is not Asian,} \end{cases}
$$

and the second could be

$$
X_{i2} = \begin{cases} 1 & \text{if } i\text{-th person is Caucasian} \\ 0 & \text{if } i\text{-th person is not Caucasian.} \end{cases}
$$

 \triangleright Both of these variables can be used:

$$
Y_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \epsilon_i
$$

=
$$
\begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{-th person is Asian} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if } i \text{-th person is Caucasian} \\ \beta_0 + \epsilon_i & \text{if } i \text{-th person is AA.} \end{cases}
$$

 \blacktriangleright There will always be one fewer dummy variable than the number of levels. The level with no dummy variable is known as the baseline.

Interactions

- \blacktriangleright In our previous analysis of the Advertising data, we assumed that the effect on sales of increasing one advertising medium is independent of the amount spent on the other media.
- \triangleright The average effect on sales of a one-unit increase in TV is always β_1 , regardless of the amount spent on radio.
- \triangleright But suppose that spending money on radio advertising actually increases the effectiveness of TV advertising, so that the slope term for TV should increase as radio increases.
- \blacktriangleright Model takes the form

sales = $\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + \epsilon$ $=$ β_0 + (β_1 + β_3 × radio) × TV + β_2 × radio + ϵ

- \blacktriangleright The results suggest that interactions are important.
- \triangleright The *p*-value for the interaction term TV \times radio is extremely low, indicating that there is strong evidence for $\beta_3 \neq 0$.

 \triangleright Consider the Credit data set, and suppose that we wish to predict balance using income (quantitative) and student (qualitative). Without an interaction term, the model takes the form

$$
\begin{aligned}\n\text{balance}_i &\approx \beta_0 + \beta_1 \times \text{income}_i + \begin{cases} \beta_2 & \text{if } i \text{th person is a student} \\ 0 & \text{if } i \text{th person is not a student} \end{cases} \\
&= \beta_1 \times \text{income}_i + \begin{cases} \beta_0 + \beta_2 & \text{if } i \text{th person is a student} \\ \beta_0 & \text{if } i \text{th person is not a student.} \end{cases}\n\end{aligned}
$$

 \triangleright With interactions, it takes the form

$$
\begin{aligned}\n\text{balance}_{i} &\approx \beta_0 + \beta_1 \times \text{income}_{i} + \begin{cases}\n\beta_2 + \beta_3 \times \text{income}_{i} & \text{if student} \\
0 & \text{if not student} \\
\end{cases} \\
&= \begin{cases}\n(\beta_0 + \beta_2) + (\beta_1 + \beta_3) \times \text{income}_{i} & \text{if student} \\
\beta_0 + \beta_1 \times \text{income}_{i} & \text{if not student}\n\end{cases}\n\end{aligned}
$$

ISL Figure 3.7

 \blacktriangleright Regression lines have different intercepts, as well as different slopes.

Non-linear effects of predictors

ISL Figure 3.8

 \triangleright The mpg (gas mileage in miles per gallon) versus horsepower is shown for a number of cars in the Auto data set.

- \triangleright It seems clear that this relationship is in fact non-linear. A simple extension to the linear model is to include transformed predictors.
- \blacktriangleright A nonlinear model

 $mpg = \beta_0 + \beta_1 \times \text{horsepower} + \beta_2 \times \text{horsepower}^2 + \epsilon$

may provide a better fit (lower R^2).

Confidence and prediction intervals

- In a linear regression model $Y = \beta_0 + \beta_1 X + \epsilon$ with a single predictor X , suppose that for some fixed x_0 , we wish to construct a confidence interval that covers $y_0 = \beta_0 + \beta_1 x_0$ with 95% probability.
- An estimator of y_0 is $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$ and

$$
SE\left(\hat{y}_0\right) = \frac{\sigma^2}{n} \left(1 + \frac{\left(\overline{X} - x_0\right)^2}{n^{-1} \sum_{i=1}^n \left(X_i - \overline{X}\right)^2}\right).
$$

 \blacktriangleright $\widehat{\text{SE}}(\hat{y}_0)$ replaces σ^2 with $\hat{\sigma}^2$. An 95% confidence interval for y_0 :

$$
\left[\hat{y}_0 - 2\cdot \widehat{\text{SE}}\left(\hat{y}_0\right), \hat{y}_0 + 2\cdot \widehat{\text{SE}}\left(\hat{y}_0\right)\right].
$$

 \blacktriangleright A prediction interval

$$
\left[\hat{y}_0 - 2 \cdot \sqrt{\widehat{\text{SE}}\left(\hat{y}_0\right)^2 + \hat{\sigma}^2}, \hat{y}_0 + 2 \cdot \sqrt{\widehat{\text{SE}}\left(\hat{y}_0\right)^2 + \hat{\sigma}^2}\right]
$$

covers $Y_0 = \beta_0 + \beta_1 x_0 + \epsilon_0$ with 95% probability, where ϵ_0 is a new error that is independent of the training data.