Introduction to Statistical Machine Learning with Applications in Econometrics Lecture 3: Linear Regression (ISL ch. 3)

Instructor: Ma, Jun

Renmin University of China

October 14, 2021

Linear regression

- Linear regression is a simple approach to supervised learning. In particular, linear regression is a useful tool for predicting a quantitative response.
- ► The Advertising data has sales as the response (Y) and advertising budgets for TV (X₁), radio (X₂), and newspaper media (X₃) as predictors. A statistical model: $Y = f(X) + \epsilon$ with ϵ being independent of $X = (X_1, X_2, X_3)^{\top}$.
- Interesting questions:
 - ► Is there a relationship between advertising budget and sales? (Is $f(x_1, x_2, x_3) = \mathbb{E}[Y | X_1 = x_1, X_2 = x_2, X_3 = x_3]$ constant?)
 - How strong is the relationship between advertising budget and sales? (Variance of *ε*?)
 - ► Which media contribute to sales? (Partial derivatives of f (x₁, x₂, x₃)?)
 - How accurately can we predict future sales? (MSE of prediction for an unseen data point.)
 - Is the relationship (f(x)) linear?
 - ► Is there synergy (interaction) among the advertising media? (∂f (x₁, x₂, x₃) /∂x₁ depends on (x₂, x₃)?)

- ► linear regression model: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$
 - ϵ is the error term that is independent of *X*.
 - ▶ β₀ and (β₁, β₂, β₃) are intercept and slopes, which are also called coefficients.
- ► From the prediction perspective, essentially the model specifies a functional form for *f*(*X*) and recovering *f* reduces to recovering the coefficients.
- From the causal inference perspective, essentially the model assumes that the effects are constant and there is no endogeneity issue.

Simple linear regression

- Simple linear regression model with a single predictor *X*: $Y = \beta_0 + \beta_1 X + \epsilon.$
- We have the training data:

$$(X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n).$$

- Given some estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ for the coefficients, for the unseen data point (X_0, Y_0) , we predict Y_0 using $\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 X_0$.
- Let $\hat{Y}_i = b_0 + b_1 X_i$ be the in-sample prediction for Y_i based on the *i*-th value of X_i .
- $e_i = Y_i \hat{Y}_i$ represents the *i*-th residual and we the residual sum of squares (RSS) as

RSS =
$$e_1^2 + e_2^2 + \dots + e_n^2$$

= $(Y_1 - b_0 - b_1 X_1)^2 + (Y_2 - b_0 - b_1 X_2)^2 + \dots + (Y_n - b_0 - b_1 X_n)^2$.

The least squares approach chooses b₀ and b₁ to minimize the RSS. The minimizing values can be shown to be

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X} \right) \left(Y_{i} - \overline{Y} \right)}{\sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}}$$

and $\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$, where $\overline{X} = n^{-1} \sum_{i=1}^n X_i$ and $\overline{Y} = n^{-1} \sum_{i=1}^n Y_i$.

Assessing the accuracy

The standard error of an estimator reflects how it varies under repeated sampling:

$$\operatorname{SE}(\hat{\beta}_{0})^{2} = \sigma^{2} \left[\frac{1}{n} + \frac{\overline{X}^{2}}{\sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}} \right] \text{ and } \operatorname{SE}(\hat{\beta}_{1})^{2} = \frac{\sigma^{2}}{\sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}},$$

where $\sigma^2 = \text{Var}[\epsilon]$.

- In general, σ^2 is not known, but can be estimated from the data.
- The estimate of $\sigma(\hat{\sigma})$ is known as the residual standard error:

RSE =
$$\sqrt{\frac{1}{n-2}}$$
RSS = $\sqrt{\frac{1}{n-2}\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}$,

where the residual sum of squares: RSS = $\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$.

Standard errors

$$\widehat{\operatorname{SE}}(\widehat{\beta}_{0})^{2} = \widehat{\sigma}^{2} \left[\frac{1}{n} + \frac{\overline{X}^{2}}{\sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}} \right] \text{ and } \widehat{\operatorname{SE}}(\widehat{\beta}_{1})^{2} = \frac{\widehat{\sigma}^{2}}{\sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}}.$$

can be used to compute confidence intervals.

- A 95% confidence interval is defined as an interval such that with 95% probability, the interval contains the true unknown value of the parameter.
- ► Approximately, with 95% probability

$$\left[\hat{\beta}_{1}-2\cdot\widehat{\mathrm{SE}}\left(\hat{\beta}_{1}\right),\hat{\beta}_{1}+2\cdot\widehat{\mathrm{SE}}\left(\hat{\beta}_{1}\right)\right]$$

contains β_1 , in a hypothetical scenario where we have repeated samples.

Hypothesis testing

Standard errors can also be used to perform hypothesis tests on the coefficients. The most common hypothesis test involves testing the null hypothesis of

 H_0 : There is no relationship between X and Y

against the alternative hypothesis

 H_a : There is some relationship between X and Y.

- This corresponds to testing $H_0: \beta_1 = 0$ again $H_a: \beta_1 \neq 0$.
- We compute a *t*-statistic, given by

$$t = \frac{\hat{\beta}_1 - 0}{\widehat{\operatorname{SE}}\left(\hat{\beta}_1\right)},$$

which has a *t*-distribution with n - 2 degrees of freedom.

▶ p-value: the probability of observing any value equal to |t| or larger.

Assessing the overall accuracy

- RSE is considered a measure of the lack of (in-sample) fit of the model to the data.
 - ► If the (in-sample) predictions Ŷ_i are very close to the true outcome values Y_i, RSE will be small.
 - ► If Ŷ_i is very far from Y_i for one or more observations, then the RSE may be quite large.
- R^2 : the fraction of variance of Y explained by the model:

$$R^2 = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}},$$

where TSS = $\sum_{i=1}^{n} (Y_i - \overline{Y})^2$ is the total sum of squares.

► In simple linear regression, *R*² is the square of the sample correlation of *X* and *Y*:

$$R^{2} = \left\{ \frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X} \right) \left(Y_{i} - \overline{Y} \right)}{\sqrt{\sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}} \sqrt{\sum_{i=1}^{n} \left(Y_{i} - \overline{Y} \right)^{2}}} \right\}^{2}$$

Multiple linear regression

► The multiple linear regression:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_p X_p + \epsilon.$$

- We interpret β_j as the average effect on Y of a one unit increase in X_j, holding all other predictors fixed.
- Our training data:

$$\{(Y_1, X_{1,1}, ..., X_{p,1}), (Y_2, X_{1,2}, ..., X_{p,2}), ..., (Y_n, X_{1,n}, ..., X_{p,n})\}.$$

► Given estimates b₀, b₁, ..., b_p, we make in-sample predictions using:

$$\hat{Y}_i = b_0 + b_1 X_{1,i} + b_2 X_{2,i} + \dots + b_p X_{p,i}.$$

• The values $\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_p$ that minimize RSS are the multiple least squares regression coefficient estimates:

RSS =
$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

= $\sum_{i=1}^{n} (Y_i - b_0 - b_1 X_{1,i} - b_2 X_{2,i} - \dots - b_p X_{p,i})^2$.

	Coefficient	Std. Error	t-statistic	<i>p</i> -value
Intercept	12.351	0.621	19.88	< 0.0001
newspaper	0.055	0.017	3.30	0.00115
ISL Table 3.3: simple regression of sales on newspaper				

	Coefficient	Std. Error	t-statistic	<i>p</i> -value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599
ISL Table 3.4: multiple regression				

The newspaper simple regression coefficient estimate was significantly non-zero, the multiple regression coefficient estimate for newspaper is close to zero, and the corresponding *p*-value is no longer significant.

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000
	' IS	L Table 3	.5	

- The sample correlation between radio and newspaper is 0.35. Markets with high newspaper advertising tend to also have high radio advertising.
- Suppose that the multiple regression is correct and newspaper advertising is not associated with sales, but radio advertising is associated with sales.
- In a simple linear regression, we will observe that higher values of newspaper tend to be associated with higher values of sales, even though newspaper advertising is not directly associated with sales.

- Important questions:
 - ► Is at least one of the predictors *X*₁, *X*₂, ..., *X*_{*p*} useful in predicting the response? (Model significance test.)
 - Do all the predictors help to explain Y, or is only a subset of the predictors useful? (Model selection will be discussed later in the class.)
 - How well does the model fit the data? (In-sample fit, measured by R^2 .)
 - Given a set of predictor values, what response value should we predict, and how accurate is our prediction? (MSE of prediction for an unseen data point; is the linear model good enough for our prediction purpose?)

Model significance test

• Test that none of the regressors explain *Y* :

$$H_0$$
 : $\beta_1 = \beta_2 = \dots = \beta_p = 0$
 H_a : at least one β_j is non-zero.

► Use the *F*-statistic

$$F = \frac{(\text{TSS} - \text{RSS})/p}{\text{RSS}/(n - p - 1)} \sim F_{p, n - p - 1}$$

under H_0 . We expect F to be large if H_a is true.

Test of subset significance

- Sometimes we want to test that a particular subset of q of the coefficients are zero: H₀: β_{p-q+1} = β_{p-q+2} = ···β_p = 0 against H_a: β_{p-q+1} ≠ 0 or β_{p-q+1} ≠ 0 or ··· or β_p ≠ 0.
- ► We fit a second model that uses all the variables except those last q. Suppose that the residual sum of squares for that model is RSS₀.
- ► Use the *F*-statistic

$$F = \frac{(\text{RSS}_0 - \text{RSS})/q}{\text{RSS}/(n - p - 1)} \sim F_{q, n - p - 1}$$

Qualitative predictors

- Some predictors are not quantitative but are qualitative, taking a discrete set of values.
- These are also called categorical predictors or factor variables.
- The Credit data set records variables for a number of credit card holders.
 - The response is balance (average credit card debt for each individual).
 - Quantitative predictors: age, cards (number of credit cards), education (years of education), income (in thousands of dollars), limit (credit limit), and rating (credit rating).
 - Qualitative variables: gender, student (student status), status (marital status), and ethnicity (Caucasian, African American (AA) or Asian).

Example: investigate differences in credit card balance between males and females, ignoring the other variables. We create a new variable

$$X_i = \begin{cases} 1 & \text{if } i\text{-th person is female} \\ 0 & \text{if } i\text{-th person is male.} \end{cases}$$

► Resulting model:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i\text{-th person is female} \\ \beta_0 + \epsilon_i & \text{if } i\text{-th person is male.} \end{cases}$$

With more than two levels, we create additional dummy variables. For example, for the ethnicity variable we create two dummy variables. The first could be

$$X_{i1} = \begin{cases} 1 & \text{if } i\text{-th person is Asian} \\ 0 & \text{if } i\text{-th person is not Asian,} \end{cases}$$

and the second could be

$$X_{i2} = \begin{cases} 1 & \text{if } i\text{-th person is Caucasian} \\ 0 & \text{if } i\text{-th person is not Caucasian.} \end{cases}$$

• Both of these variables can be used:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i,1} + \beta_{2}X_{i,2} + \epsilon_{i}$$

$$= \begin{cases} \beta_{0} + \beta_{1} + \epsilon_{i} & \text{if } i\text{-th person is Asian} \\ \beta_{0} + \beta_{2} + \epsilon_{i} & \text{if } i\text{-th person is Caucasian} \\ \beta_{0} + \epsilon_{i} & \text{if } i\text{-th person is AA.} \end{cases}$$

There will always be one fewer dummy variable than the number of levels. The level with no dummy variable is known as the baseline.

Interactions

- In our previous analysis of the Advertising data, we assumed that the effect on sales of increasing one advertising medium is independent of the amount spent on the other media.
- The average effect on sales of a one-unit increase in TV is always β₁, regardless of the amount spent on radio.
- But suppose that spending money on radio advertising actually increases the effectiveness of TV advertising, so that the slope term for TV should increase as radio increases.
- Model takes the form

sales $=\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + \epsilon$ $=\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \epsilon$

	Coefficient	Std. Error	t-statistic	<i>p</i> -value	
Intercept	6.7502	0.248	27.23	< 0.0001	
TV	0.0191	0.002	12.70	< 0.0001	
radio	0.0289	0.009	3.24	0.0014	
${\tt TV} imes {\tt radio}$	0.0011	0.000	20.73	< 0.0001	
ISL Table 3.9					

- ► The results suggest that interactions are important.
- The *p*-value for the interaction term $TV \times radio$ is extremely low, indicating that there is strong evidence for $\beta_3 \neq 0$.

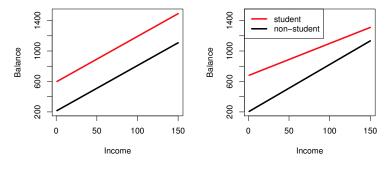
 Consider the Credit data set, and suppose that we wish to predict balance using income (quantitative) and student (qualitative). Without an interaction term, the model takes the form

balance_i
$$\approx \beta_0 + \beta_1 \times \text{income}_i + \begin{cases} \beta_2 & \text{if } i\text{th person is a student} \\ 0 & \text{if } i\text{th person is not a student} \end{cases}$$

= $\beta_1 \times \text{income}_i + \begin{cases} \beta_0 + \beta_2 & \text{if } i\text{th person is a student} \\ \beta_0 & \text{if } i\text{th person is not a student.} \end{cases}$

► With interactions, it takes the form

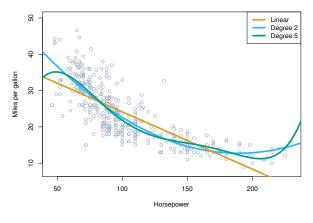
$$balance_{i} \approx \beta_{0} + \beta_{1} \times income_{i} + \begin{cases} \beta_{2} + \beta_{3} \times income_{i} & \text{if student} \\ 0 & \text{if not student} \end{cases}$$
$$= \begin{cases} (\beta_{0} + \beta_{2}) + (\beta_{1} + \beta_{3}) \times income_{i} & \text{if student} \\ \beta_{0} + \beta_{1} \times income_{i} & \text{if not student} \end{cases}$$



ISL Figure 3.7

Regression lines have different intercepts, as well as different slopes.

Non-linear effects of predictors



ISL Figure 3.8

The mpg (gas mileage in miles per gallon) versus horsepower is shown for a number of cars in the Auto data set.

	Coefficient	Std. Error	t-statistic	<i>p</i> -value
Intercept	56.9001	1.8004	31.6	< 0.0001
horsepower	-0.4662	0.0311	-15.0	< 0.0001
$horsepower^2$	0.0012	0.0001	10.1	< 0.0001
ISL Table 3.10				

- It seems clear that this relationship is in fact non-linear. A simple extension to the linear model is to include transformed predictors.
- A nonlinear model

 $mpg = \beta_0 + \beta_1 \times horsepower + \beta_2 \times horsepower^2 + \epsilon$

may provide a better fit (lower R^2).

Confidence and prediction intervals

- In a linear regression model Y = β₀ + β₁X + ε with a single predictor X, suppose that for some fixed x₀, we wish to construct a confidence interval that covers y₀ = β₀ + β₁x₀ with 95% probability.
- An estimator of y_0 is $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$ and

$$\operatorname{SE}\left(\hat{y}_{0}\right) = \frac{\sigma^{2}}{n} \left(1 + \frac{\left(\overline{X} - x_{0}\right)^{2}}{n^{-1} \sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}} \right).$$

• $\widehat{SE}(\hat{y}_0)$ replaces σ^2 with $\hat{\sigma}^2$. An 95% confidence interval for y_0 :

$$\left[\hat{y}_0 - 2 \cdot \widehat{SE}(\hat{y}_0), \hat{y}_0 + 2 \cdot \widehat{SE}(\hat{y}_0)\right].$$

A prediction interval

$$\left[\hat{y}_0 - 2 \cdot \sqrt{\widehat{SE}(\hat{y}_0)^2 + \hat{\sigma}^2}, \hat{y}_0 + 2 \cdot \sqrt{\widehat{SE}(\hat{y}_0)^2 + \hat{\sigma}^2}\right]$$

covers $Y_0 = \beta_0 + \beta_1 x_0 + \epsilon_0$ with 95% probability, where ϵ_0 is a new error that is independent of the training data.