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Classification

» The linear regression model assumes that the response variable Y
is quantitative: difference between two values is meaningful.
Example: “Education” when measured in years.

» (Qualitative variables take values (categories) in an unordered set
%': no natural ordering to the categories.

» Qualitative variables are also referred to as categorical variables.

» eye color € {brown,blue, green}
» email € {spam, ham}

» Predicting a qualitative response involves assigning the unseen

response to a category, or class.

» Classification takes as input the feature vector Xy and predicts its
value Yy: i.e., C (Xp) € 6.
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Classifiers

» Classification techniques are known as classifiers.

» Classifiers in this chapter estimate the probability
Pr (Xo) = Pr[Yy = k | Xp] that the observation belongs to each
of the categories k € €.

» Recall the Bayes optimal classifier:
C (Xo) = argmax;p; (Xo)
which satisfies:

Pr[Yy # C (Xo) | Xo] < Pr[Yo # g (Xo) | Xo]

for any function g.

» We build a model for pj (x) and then approximate the Bayes
optimal classifier.
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The credit card default example
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ISL Figure 4.1

» Predict whether an individual will default on his or her credit card
payment, on the basis of annual income and monthly credit card
balance (the amount of money you owe the credit card company).

» The simulated Default data: those who defaulted in orange;
those who did not in blue. 4740



Why not linear regression?

» Linear regression mispecifies the conditional mean, if Y is
binary: E[Y | X =x] =Pr[Y =1 | X = x] should be bounded
and a predicted value from a linear regression can be bigger than
1 or smaller than 0.

» No natural way to convert a qualitative response if it takes more
than two values which are unordered (predict the medical
condition of a patient on the basis of her symptoms):

1 if stroke;
Y =42 if drug overdose;

3 if epileptic seizure

or

[S—

if epileptic seizure;
Y =42 if stroke;

if drug overdose.

[98]
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Probability of Default
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Suppose for the Default classification task that we code
0 if No;
1 if Yes.

Can we simply perform a linear regression of Y on X and classify
as Yes if ¥ > 0.5?
It is clear that the in-sample mis-classification rate is high: all

observations are classified as No.
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Logistic regression
> Write p(X) =Pr[Y =1] X].
» Logistic regression specifies:
ePotBiX

p(X)= T BB’

for some parameter values (B, 81).

» p (X) has values between 0 and 1.

p(X)  Pr[y=1]X]
l1-p(X) Pr[Y=0]|X]

is called odds.
» The log odds is linear:

X
log (%) =Bo+p1X.
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In a linear regression model, B; gives the average change in Y
associated with a one-unit increase in X.

In a logistic regression model, increasing X by one unit changes

the log odds by 3.
Take G to be the logitstic function:

eZ
1+e2

G (z2) =
This is the CDF for a standard logistic random variable.

Partial effect of X on p (X):

dp (x)
dx

=G’ (Bo+pix) Bi.

The amount that p (X) changes due to a one-unit change in X
depends on the current value of X. But the sign of p (X) is the
same as that of 3;.
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Maximum likelihood

> Let
eb0+lei
p (Xi3bo,b1) = Toobbi%”

» This likelihood gives the probability of the sample:

t(bo, b1) = Hp (Xi3 b0, b1)" (1= p (X;:bo, 1)) 777
i=1

> We pick (bg, b1) to maximize the likelihood.
‘ Coefficient Std.Error Z-statistic P -value

-10.6513 0.3612 -29.5 <0.0001
0.0055 0.0002 249 <0.0001

Intercept
balance
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Probability of Default
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Predicted probabilities

» What is our estimated probability of default for someone with a

balance of $1000?
ePBX ¢~ 10.6513+0.0055x1000
p(X) = |+ PotBIX 1+ e-106513+0.0055x1000 0.006.
> With a balance of $2000?
ePHBX ¢~ 10.6513+0.0055x2000
p(X)= = = 0.586.

T 1+ PoHBIX 1 + ¢—10.6513+0.0055x2000

11/40



A random utility model

| 4

Econometricians’ view of the logistic regression: it can be
motivated by a random utility model.
The unobserved utility of an agent Y* is generated by

Y*=Bo+p1X +¢,

where € is independent of X and has CDF G.

We observe Y =1 [Y* > 0]. The agent chooses Y = 1 if his or her
net utility from doing so is positive and chooses ¥ = 0 otherwise.

Then,
Pr[Y=1]|X]=Pr[Y*>0]X]
=Pr[e > — (fo+BiX) | X]
=1 -G (- (Bo+pB1X))
=G (Bo +1X) .

We observe the explanatory variable X and the actual choices Y
from n independent agents.
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Logistic regression with several variables

» Specify
eﬁO"',Ble‘*‘"'ﬁpo
p (X) B 1 4 ePo+B1 X1+ BpXp
and then,
p(X)
log| ———— | =Bog+B1 X1+ --B,X,.
‘ Coefficient Std.Error Z-statistic P -value
Intercept -10.8690 0.4923 -22.08 <0.0001
balance 0.0057 0.0002 24.74 <0.0001
income 0.0030 0.0082 0.37 0.7115

student[yes] -0.6468 0.2362 -2.74 0.0062
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‘ Coefficient Std.Error Z-statistic P -value

Intercept -3.5041 0.0707 -49.55 <0.0001
student[yes] 0.4049 0.1150 3.52 0.0004
» The coefficient for student in the single logistic regression is
positive.
» The negative coefficient for student in the multiple logistic
regression indicates that for a fixed value of balance and income,
a student is less likely to default than a non-student.
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» Students tend to have higher balances than non-students.

» But for each level of balance, students default less than

non-students.

» Balance has a positive effect on Default. Similar to omitted
variable bias in linear models: single regression overestimates

the effect of student.
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Multinomial logistic regression

» & = {0, 1,..., K} has more than two classes. X € RP*: p
features and an intercept. Sy € RP*!: coefficients (k = 1, ..., K).
» Specify:
eXTﬁk

PriY=Fk|X]= X)=———.
Y =K1K = ) = ey

» Response probabilities should be summed up to 1:

1

PriY=0|X] = X)=———.
Y =01X1= (0 = oep

v

Then, log (px (X) /po (X)) = eX " Br. B are the marginal effects
of X on the log-odds of k relative to the base category 0.

v

Discriminant analysis is more suitable when K > 1.
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Discriminant analysis

» Here the approach is to model the distribution of X in each of the
classes separately, and then use Bayes theorem to flip things
around and obtain Pr [Y | X].

» When we use normal distributions for each class, this leads to
linear or quadratic discriminant analysis.
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Bayes theorem

» Continuous (X,Y):
fxiy 1 y) fr ()
[ fxw & 1y) fr () dy’

where [ fxy (x | y) fr (v)dy = fx (x).
» Discrete (X,Y):

frix (v x)=

Pr(X=x|Y=k]-Pr(Y =k)

Pr[Y:k|X=x]:ZlePr[X:x|Y=k]-Pr(Y=k)

where Y € {1,...,K} and

Pr(X=x|Y=k]-Pr[Y =k]=Pr[X =x].

NG
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Linear discriminant analysis (LDA) for two classes
> Specify:

XY =0~N(uo, %)
X|Y=1~N(u2).

» By the (more general) Bayes theorem,

B B 1 f1 (X)
Py =11 X = R+ (0
Priy=0]x] = — o)

mofo (X) +m1fi (X)
where 7 = Pr[Y = k] and fi is the conditional PDF of X given
Y=k, ke{01}.

» The marginal distribution of Y (mrg, 7r1) is left unspecified.
(mo, 1) are easily estimated by sample averages.

» Estimation of ( fy, f1) reduces to estimation of (g, u1,X), which

does not require numerical maximization (maximum likelihood).
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More than two classes

>

Similarly, X | Y =k € {0, 1, ..., K} ~ N (ux, Z). Note that we
assume the variances are the same.

Note that in applications, X may have discrete variables like
student status. The normality assumption is clearly violated but
should be interpreted as a convenient model assumption.

Then,

—Pr[Y=k|X= :M’
pi (x) =Pr|[ | X =x] K 1efe )

where 7 = Pr[Y = k] and fi is the conditional PDF of X given
Y=k ke{0,1,.. K}
We easily estimate fx and 7 and get

T fic (x)
Sioefe (x)
LDA classifies an newly received observation Xy to the class
argmax; px (Xo).

Pr(x) =
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Why discriminant analysis?

» When the classes are well-separated, logistic regression model
has bad performance. Discriminant analysis works better in these
cases.

» If n is small and the distribution of the predictors X is
approximately normal in each of the classes, discriminant
analysis works better.

» Discriminant analysis is popular when we have more than two
response classes.
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LDA forp =1

» The normal density has the form

_ Ly
fk(X)_\/ﬂUke .

where uy is the mean and 0',% is the variance (in class k).

> We assume that all the o-,f = o2 are the same.

» Then,
L b’
_ Tk 27rcre
pi(x) = ()
2 o

K 1 —
26:0 e V2ro ¢
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To classify at the value Xy = x, we need to see which of the
Pk (x) is largest.

Taking logs, and discarding terms that do not depend on &,
C (x) = argmax; py (x) = argmax;dx (x), where

2
_ o Mk My
5k (x) —X'F_T‘_z+10g(”k)

is known as the discriminant score.

Note that by definition, C (x) is the Bayes classifier, which yields
the fewest misclassification errors, among all possible classifiers.

> Note that 6 (x) is a linear function of x.
» If € ={0,1} and 7o = 7y, then &§; (x) > &p (x) if and only if

2x (41 — po) > p7 — pg and the decision boundary is at

M1t U2
5
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» Dashed vertical line: the Bayes decision boundary.

1.5,71'0

—1.5 and yo

» Example with u;

» Solid vertical line: LDA decision boundary estimated from the

training data.
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Estimating the parameters

» Estimator of my:
~ ng
T = —,
n

where ny is the number of training observations in the k-th class.

» Estimator of uy:

L(Y: = k) X,

average of all the training observations from the k-th class.
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» Estimator of o2

K K
1 ng—1
N _ A2 — k A2
_n—K—lz_ =) (K=’ = ) = o3
k=0 i=1 k=0
1 n
) A N2
= E 1(Y; =k)(X; - .
k ”k_lizl (Y; ) (X — fix)

» &2 is a weighted average of the sample variances for each of the
K + 1 classes.

» The LDA classifier assigns an observation Xy = x to the class for

which
: i Ay
0k () =X 3 = 55

+log (7x)

is largest.
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LDA for p > 1

ISL Figure 4.5

» Left: uncorrelated; right: correlation of 0.7.
» Multivariate normal density:

f (x; l‘l’ 2) e_%(x_ﬂ)T Z_l (-x_#).

1
CemPR g2
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In the case of p > 1 predictors, the LDA classifier assumes that
the observations in the k-th class are drawn from a multivariate
normal distribution N (ug, X), where uy is a class-specific mean
vector, and X is a covariance matrix that is common to all K
classes.

The Bayes classifier assigns an observation X = x to the class for
which

_ 1 _
Ok (x) =xTE7 e - 5#22 " +log (my)

is largest.

We need to estimate the unknown parameters g, i, ..., UK »
9, 71, ...,Tg and X. LDA plugs these estimates to obtain
quantities & (x), and classifies to the class for which &y (x) is
largest.

Note that in 6 (x) is a linear function of x. The LDA decision
rule depends on x only through a linear combination of its
elements.
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> p =2, three classes with 7 = 71 = 1, = 1/3.

» Dashed lines: the Bayes decision boundaries.

29/40



From &, (x) to probabilities

» Once we have estimates §; (x), we can turn these into estimates
for class probabilities:

R e 5’{ (.X)

Dk (x) = —Zfzo e

» Classifying to the largest 6 (x) amounts to classifying class for
which py (x) is largest.
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The credit card example

True Default Status

No Yes | Total

No | 9644 252 | 9896

Predicted Default Status  Yes 23 81 104
Total | 9667 333 | 10000

» Perform LDA on the Default data in order to predict whether or
not an individual will default on the basis of credit card balance

and student status.

» LDA results in a training error rate of

(23 +252)/10000 = 2.75%.

» This is training error and we may be overfitting.

» If we classified to the prior (always to class No), we would make
333/10000 = 3.33% error rate, only a bit higher than the LDA

error rate.
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Two types of errors:
> incorrectly assign an individual who defaults to the no default
category
» incorrectly assign an individual who does not default to the
default category.
Only 23/9667 = 0.2% of the individuals who did not default
were incorrectly labeled.

However, of the 333 individuals who defaulted,
252/333 = 75.7% were incorrectly labeled by LDA.

While the overall error rate is low, the error rate among
individuals who defaulted is very high.
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False positive rate: the fraction of negative examples that are
classified as positive, 0.2% in this example.

False negative rate: the fraction of positive examples that are
classified as negative, 75.7% in this example.

In this example, the credit card company cares more about the
false negative rate.

LDA classifies to class Yes if
Pr (Default = Yes | Balance, Student) > 0.5.

LDA is trying to approximate the Bayes classifier, which has the
lowest total error rate out of all classifiers.

We can change the two error rates by classifying with some
Threshold € [0, 1]:

Pr (Default = Yes | Balance, Student) > Threshold.
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Black solid: the overall error rate; blue dashed: the fraction of
defaulting customers that are incorrectly classified; orange
dotted: the fraction of errors among the non-defaulting
customers.

In order to reduce the false negative rate, we may want to reduce

the threshold to 0.1 or less.
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Logistic regression versus LDA

» Logistic regression:
» Model the conditional distribution Y | X.
» The distribution of X is not modeled.

> Use MLE to estimate. This requires numerical optimization.

» Economic justification: random utility model.
» LDA:

» Model the conditional distribution X | Y.
» The distribution of Y is not modeled.

» Estimation: sample means, variances, and covariances of X.

» No clear economic model.
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Quadratic discriminant analysis (QDA)

» In the LDA model,

Tk fi (x)
pk(x)=Pr[Y=k|X=x]=—K ,
Zf:() me fe (x)
fr are normal densities, with the same covariance matrix X in

each class.
» QDA: different X, in each class.

» The Bayes optimal classifier assigns Xo = x to the class for which

1 B 1
Ok (x) = -3 (x = )" 2 (x = ) +log e — 3 log ||

is largest.0x (x) is now a quadratic function of x.
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» When there are p predictors, then estimating a covariance matrix
requires estimating p(p + 1)/2 parameters. QDA estimates a
separate covariance matrix for each class, for a total of
(K+1)p(p+1)/2 parameters.

» LDA assumes that the K + 1 classes share a common covariance:
(K + 1) p linear coefficients to estimate.

» LDA is much less flexible than QDA, and so has substantially
lower variance. LDA can suffer from high bias, if the K + 1
conditional distributions do not have similar conditional
variances.
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ISL Figure 4.9

Left: Bayes optimal (purple dashed), LDA (black dotted), and
QDA (green solid) decision boundaries for a two-class problem
with Xy = X;. The Bayes decision boundary is linear, so LDA
works better.

Right: g # 2. Since the Bayes decision boundary is non-linear,
QDA works better.
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Naive Bayes
» In
Pk(x)=Pr[Y=k|X=x]:I?kf¢,
2o Tefe (x)
f (x) is a p-dimensional conditional PDF for the k-th class.

» In general, estimating a p-dimensional density function is
challenging. LDA and QDA take a parametric approach.

> LDA assumes that f is the density function for a multivariate
normal random variable with class-specific mean ., and
common covariance X.
> QDA allows for class-specific covariance Xy.
> When p is large relatively to n, QDA and LDA break down.
» The naive Bayes classifier assumes f; = Hle fij (features are
independent) in

T Sie (%)
=Pr[Y=k|[X=x]= 77—
pi (x) =Pr| | X =x] SN omefe (x)

» fi;: the conditional PDF of X; givenY = k.
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The independence assumption is interpreted as a model
assumption for convenience, rather than what we actually believe
in.

The naive Bayes assumption introduces some bias, but reduces
variance, leading to a classifier that works quite well in practice
as a result of the bias-variance trade-off.

Gaussian naive Bayes assumes X; | Y = k ~ N (,uk Iz 0']%].) and
each X is diagonal (X, ..., X, are independent):

2
O (x) =—%Zp: lw+log (o-fj)

kj

+log mg.

> If X; is qualitative, replace fi; with its probability mass function.

> Naive Bayes often performs well in practical applications.
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