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Cross-validation and bootstrap

I These methods refit a model of interest to samples formed from
the training set, in order to obtain additional information about
the fitted model.
I Cross validation: estimate the test error to evaluate its

performance (model assessment) and select the appropriate level
of flexibility (model selection).

I Bootstrap: standard error of parameter estimates (measure of
estimation accuracy).

I They are computationally expensive: fitting the same method
multiple times.
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Test error and training error

I Training data: (.1, -1) , (.2, -2) , ..., (.=, -=).
I The test error (regression MSE or misclassification error rate) is

the average error of predicting the response .0 to a new input
vector -0. (.0, -0) was not used in training the method.

I The training error is the average error of applying the method to
the observations used in its training.
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I Regression: . is quantitative and (Te: test; Tr: training)

MSETe = E
[ (
.0 − 5̂ (-0)

)2
]

MSETr =
1
=

=∑
8=1

(
.8 − 5̂ (-8)

)2 .

I Classification: . is categorical and (Te: test; Tr: training)

ErrTe = Pr
[
.0 ≠ 5̂ (-0)

]
ErrTr =

1
=

=∑
8=1

1
(
.8 ≠ 5̂ (-8)

)
.

I 5̂ depends on the training data.
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I Given a data set, the use of a particular method is warranted if it
results in a low test error.

I Which method in the ML toolbox results in the lowest test error
depends on the underlying data generating mechanism.

I The test error can be estimated if a large test data is available.
Unfortunately, this is usually not the case. In contrast, the
training error can be easily calculated.

I The training error can dramatically underestimate the test error.
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I Some methods make a mathematical adjustment to the training
error rate in order to estimate the test error rate.
I Think of the adjusted '2 in the regression context.

I A class of methods estimates the test error by holding out a
subset of the training observations from the fitting process, and
then applying the method to those held out observations.
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Validation-set approach

I Randomly divide the data points into two parts: a training set and
a validation set.

I The model is fit on the training set, and the fitted model is used to
predict the responses for the observations in the validation set.

I The resulting validation-set error provides an estimate of the test
error.
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ISL Figure 5.1

I A random splitting into two halves: left part is training set, right
part is validation set.

I Possible
(
=

=/2

)
splits. The validation-set approach randomly

selects one out of these splits.
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Example: the Auto data

I There appears to be a non-linear relationship between mpg and
horsepower. A model that predicts mpg using horsepower and
horsepower2 gives better in-sample fit (training error) than a
model that uses only a linear term. We compare linear versus
higher-order polynomial terms in a linear regression.

I We randomly split the 392 observations into two sets, a training
set containing 196 of the data points, and a validation set
containing the remaining 196 observations.
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ISL Figure 5.2

I Left: single split; right: multiple splits.
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Drawbacks of the validation set approach

I The validation estimate of the test error can be highly variable,
depending on how to split the sample into training and validation
sets.

I Only half of the observations (the training set) are used to fit the
model. Since statistical methods tend to perform worse when
trained on fewer observations, this suggests that the validation set
error rate may tend to overestimate the test error rate for the
model fit on the entire data set.
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 -fold Cross-validation (CV)
I Randomly divide the data into  (approximately equal-sized)

parts: �1, �2,..., � with ∪ 
:=1�: = {1, 2, ..., =}, where �:

denote the indices of observations in part : .
I Suppose that �: has =: observations so that

∑ 
:=1 =: = =. If =

can be divided by  , then =: = =/ .
I Use observations in ∪ 9≠:� 9 to predict {.8 : 8 ∈ �: }.
I This is done in turn for each : = 1, 2, ..., , and compute:

MSE: =
1
=:

∑
8∈�:

(
.8 − 5̂−: (-8)

)2 or Err: =
1
=:

∑
8∈�:

1
(
.8 ≠ 5̂−: (-8)

)
,

where 5̂−: uses observations in ∪ 9≠:� 9 .
I The  -fold CV estimate of the test error:

CV =

 ∑
:=1

=:

=
MSE: or CV =

 ∑
:=1

=:

=
Err: .
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ISL Figure 5.5

I = observations is randomly split into five non-overlapping
groups. Each of these fifths acts as a validation set (beige), and
the remainder as a training set (blue).

I The test error is estimated by averaging the five resulting MSE
estimates.
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Leave-one out cross-validation (LOOCV)
I LOOCV is a special case of  -fold CV that sets  = =.
I A single observation (-: ,.:) is used for the validation set, and

the remaining observations
(-1,.1) , ..., (-:−1,.:−1) , (-:+1,.:+1) , ..., (-=,.=) make up the
training set to form the predictor/classifier 5̂−: .

I The method is fit on the = − 1 training observations and a
prediction 5̂−: (-:) is made for the excluded observation. Then,

MSE: =
(
.: − 5̂−: (-8)

)2 or Err: = 1
(
.: ≠ 5̂−: (-:)

)
and do it in turn for : = 1, 2, ..., = to get MSE1, ..., MSE= (or
Err1, ..., Err=).

I The LOOCV estimate for the test error is the average of these =
test error estimates:

CV= =
1
=

=∑
8=1

MSE8 or CV= =
1
=

=∑
8=1

Err8 .
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ISL Figure 5.3

I A set of = data points is repeatedly split into a training set (blue)
containing all but one observation, and a validation set that
contains only that observation (beige).

I The first training set contains all but observation 1, the second
training set contains all but observation 2, and so forth.
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ISL Figure 5.4
I Performing LOOCV multiple times yields the same results: no

randomness from training/validation splits.
I Left: The LOOCV error curve. Right: 10-fold CV was run nine

separate times, each with a different random split of the data into
ten parts. The figure shows the nine slightly different CV error
curves.
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LOOCV for linear regressions

I In linear regressions, we do not need to fit the model = times,
since

CV= =
1
=

=∑
8=1

(
.8 − .̂8
1 − ℎ8

)2

,

where .̂8 is the 8-th fitted value from the regression using all data
and ℎ8 is the 8-th leverage statistic.

I The training MSE is just =−1 ∑=
8=1

(
.8 − .̂8

)2.
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LOOCV versus  -fold CV
I LOOCV incurs way more computational burden: fit the model =

times. Usually = is very large.
I LOOCV and  -fold CV are different estimators (\̂) of the

unknown test error (\). We consider and compare the estimation
MSE E

[ (
\̂ − \

)2
]
which is decomposed into

E
[ (
\̂ − \

)2
]
=

(
E

[
\̂
]
− \

)2︸         ︷︷         ︸
bias2

+Var
[
\̂
]︸  ︷︷  ︸

variance

.

I In LOOCV, the estimates from each fold are highly correlated
(use the same = − 2 data points) and hence their average can have
high variance.

I For  -fold CV, we are averaging the outputs of  fitted models
that are somewhat less correlated, since the overlap between the
training sets is smaller.

I LOOCV: high variance, low bias;  -fold CV: lower variance but
higher bias. A popular choice is  = 5 or 10.
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ISL Figure 5.6
I Blue: true test MSE; black dashed: LOOCV; 10-fold CV:

orange; Crosses: minimum. Estimation of the minimizer is more
accurate than estimation of the test MSE.

I We perform CV on a number of ML methods to find the one that
results in the lowest test error. So we are more interested in the
minimizer.
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The bootstrap

I The bootstrap is a flexible and powerful statistical tool that can be
used to quantify the uncertainty associated with a given estimator
or statistical learning method.

I For example, it can provide a bootstrap standard error ŜE
(
V̂1

)
of

a regression coefficient V̂1. A 95% confidence interval is given
by

[
V̂1 − 2ŜE

(
V̂1

)
, V̂1 + 2ŜE

(
V̂1

) ]
. However, in this case, one

typically uses conventional standard errors which are easy to
compute.

I Bootstrap is computationally burdensome.
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I Many estimators \̂= (= denotes the sample size) have the property√
=
(
\̂= − \

)
∼ N

(
0,f2)and equivalently \̂= ∼ N

(
\,f2/=

)
,

approximately, when = is very large.
I Conventional methods estimate f2 using the analogue principle

(i.e., replace population moments/unknown quantities in f2 by
their sample moments/estimates) and then construct the standard
error f̂/

√
=.

I Conventional methods require knowledge of the expression
(formula) of f2, which can be very complicated in many
contexts.

I Bootstrap is a computation-intensive approach that does not
requires knowledge of the expression of f2.
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A simple example
I Suppose that we wish to invest a fixed sum of money in two

financial assets that yield returns of - and . .
I We wish to choose U to minimize the variance of our investment

Var [U- + (1 − U). ].
I One can show that the value that minimizes the risk is given by

U =
f2
.
− f-.

f2
-
+ f2

.
− 2f-.

,

where f2
-
= Var [-], f2

.
= Var [. ] and f-. = Cov [- ,. ].

I Let f̂2
-
, f̂2
.
and f̂-. denote the sample variance/covariances.

We can then estimate U using

Û =
f̂2
.
− f̂-.

f̂2
-
+ f̂2

.
− 2f̂-.

.

I It can be shown that
√
= (Û − U) ∼ N

(
0,f2) and

Û ∼ N
(
U,f2/=

)
, when = is very large, for some f2 > 0 with a

complicated expression.
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ISL Figure 5.9
I Each panel displays 100 simulated returns for investments - and
. , with f2

-
= 1, f2

.
= 1.25, f-. = 0.5 and U = 0.6. The

resulting estimates for U are 0.576, 0.532, 0.657, and 0.651.
I We can repeat the process of simulating 100 paired observations

more times.
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I To estimate the standard deviation of Û, we repeated the process
of simulating 100 paired observations of - and . , and
estimating U 1000 times to get Û1, Û2, ..., Û1000.

I Û1, Û2, ..., Û1000 are independent observations of Û in the
simulation context.

I The mean over all 1000 estimates for U is

Ū =
1

1000

1000∑
A=1

ÛA = 0.5996,

which is very close to U = 0.6 and the sample standard deviation
of the estimates from the repeated samples is√√√

1
1000 − 1

1000∑
A=1
(ÛA − Ū)2 = 0.083.

I 0.083 should be an accurate estimate of the population standard
deviation of Û, which should be approximately f/

√
=, when = is

large.
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I The procedure outlined above cannot be applied. We have only
one sample (data set) and we cannot generate new samples from
the original population, which is unknown.

I The bootstrap approach allows us to use a computer to mimic the
process of obtaining new samples.

I Rather than repeatedly obtaining independent samples from the
population, we instead repeatedly sample observations from the
original data set with replacement.

I Each of these bootstrap samples is created by sampling with
replacement, and is the same size as our original sample. Some
observations may appear more than once and some not at all.
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I This procedure is repeated � times for some large value of �
(e.g., � = 1000), in order to produce � different bootstrap
samples.

I Each bootstrap data set is used to obtain an estimate of U: Û∗1,
Û∗2, ..., Û∗�.

I We estimate the standard error of these bootstrap estimates using
the formula

SE� (Û) =

√√√
1

� − 1

�∑
A=1

(
Û∗A − ¯̂U∗

)2,

where ¯̂U∗ = �−1 ∑�
A=1 Û

∗A .
I In our numerical example, SE� (Û) = 0.087.
I A feasible 95% confidence interval for U is
[Û − 2SE� (Û) , Û + 2SE� (Û)].

I Indeed, it can be shown that SE� (Û) /
(
f/
√
=
)
converges to 1, in

probabilistic sense.
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Example with just 3 observations

2.8 5.3 3 

1.1 2.1 2 

2.4 4.3 1 

Y X Obs 

2.8 5.3 3 

2.4 4.3 1 

2.8 5.3 3 

Y X Obs 

2.4 4.3 1 

2.8 5.3 3 

1.1 2.1 2 

Y X Obs 

2.4 4.3 1 

1.1 2.1 2 

1.1 2.1 2 

Y X Obs 

Original Data (Z) 

1*
Z

2*
Z

Z
*B

1*α̂

2*α̂

α̂*B

!!

!!

!!

!!

!

!!

!!

!!

!!

!!

!!

!!

!!

ISL Figure 5.11
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