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Linear model and regression

I The linear model:

. = V0 + V1-1 + · · · + V?-? + n .

I Despite its simplicity, the linear model has advantages:
I good interpretability;
I often shows good predictive performance.

I Training data: (.1, -1) , (.2, -2) , ..., (.=, -=), where
-8 =

(
1, -1,8 , -2,8 , · · · , -?,8

)>.
I Linear regression coefficients:

V̂ = argmin
10,11,...,1?

=∑
8=1

(
.8 − 10 − 11-1,8 − 12-2,8 − · · · − 1?-?,8

)2 .
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Estimation of test error

I '(( =
∑=

8=1

(
.8 − ->8 V̂

)2
.

I The training error (regression MSE MSETr = '((/=)
underestimates the test error (test MSE

MSETe = E
[(
.0 − ->0 V̂

)2
]
, where (.0, -0) is a future data point).

I The direct approach (cross-validation) estimates the test error by
holding out a subset of the training observations from estimation,
and then applying the method to those held out observations.

I Another approach uses a mathematical adjustment to the training
error in order to estimate the test error.
I Mallows’ �? .
I Akaike information criterion (AIC) (for linear regression, ��� is

proportional to �?).
I Bayesian information criterion (BIC).
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Extensions of linear regression

I We focus on the regression model in this chapter and study two
extensions of the linear regression method.
I Model selection: best subset selection, stepwise selection.
I Regularization/shrinkage: ridge regression, LASSO.

I Why these extensions?
I Control the variance for prediction accuracy (especially when
? > =), by shrinking coefficient estimates at the cost of increase in
bias or using a smaller model with less regressors.

I Model Interpretability: by setting some of coefficient estimates to
zero (removing irrelevant variables), we can obtain a model that is
more easily interpreted.

I LASSO achieves both simultaneously.
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Model selection and shrinkage

I We have ? predictors that we believe to be related to the
response. When ? is large, regression using all the predictors
may have large variance.

I Model selection: identify a subset of the and then do linear
regression using the reduced set of variables.

I Regularization/shrinkage: fit a model involving all ? predictors,
but the estimated coefficients are shrunken towards zero relative
to OLS. This shrinkage/regularization has the effect of reducing
variance and can also perform variable selection.

I Both model selection and shrinkage aim at finding a smaller
model that has smaller variance.
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High-dimensional data

I Most traditional statistical techniques are intended for the
low-dimensional setting = > ?.
I Predict a patient’s blood pressure using a data set with 200

patients and three predictors: age, gender and body mass index
(BMI).

I Forward stepwise selection, ridge regression and LASSO work in
high-dimensional settings = < ?.
I One might collect measurements for half a million “single

nucleotide polymorphisms” (genetic characteristics) for inclusion
in the predictive model for blood pressure. Then = ≈ 200 and
? ≈ 500000.

I A marketing analyst interested in understanding people’s online
shopping patterns could treat as features all of the search terms
entered by users of a search engine. For a given user, each of the
search terms is scored present (0) or absent (1), creating a large
binary feature vector.
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OLS cannot be performed in high-dimensional settings
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ISL Figure 6.23
I OLS will yield perfect fit to the data, such that the residuals are

zero. Perfect fit certainly leads to overfitting.
I Simulated data with = = 20. OLS with 1 to 20 predictors, each of

which was completely unrelated to the response.
I '2 increases to 1 as the number of included predictors ?

increases. Test MSE becomes extremely large as ? increases,
because including the additional predictors leads to a vast
increase in the variance of the coefficient estimates.
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Best subset selection

1. LetM0 denote the null model, which contains no predictors.
This model simply predicts the sample mean for each
observation.

2. For : = 1, 2, ..., ?, find the modelM: with the largest '2 in the

collection of all
(
?

:

)
models that contain exactly : predictors.

3. Select a single best model amongM0,M1, ...,M? using
cross-validation, �? (AIC), BIC or adjusted '2.
I Note that '(( or '2 cannot be used to select from among a set of

models with different numbers of variables.
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Example: the Credit data
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ISL Figure 6.1
I Each model contains a subset of the ten predictors in the Credit

data set.
I One categorical variable is represented by two dummy variables.
I Red frontier tracks the best model for a given number of

predictors, according to RSS and '2.
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Stepwise selection

I In best subset selection, we fit all
∑?

:=0

(
?

:

)
= 2? possible

models. 2? grows rapidly as ? increases and is computationally
infeasible if ? > 40.

I Forward stepwise selection:
I begins with a model containing no predictors, and then adds

predictors to the model;
I iteratively add one variable that gives the greatest additional

improvement to the fit;
I requires fitting just a total of 1 + ? (? + 1) /2 models.

I Backward stepwise selection:
I begins with the full model containing all ? predictors;
I iteratively removes the least useful predictor;
I requires fitting just a total of 1 + ? (? + 1) /2 models.

10 / 43



Forward stepwise selection

1. LetM0 denote the null model.
2. For : = 0, 1, ..., ? − 1, given the modelM: that has : predictors,

letM:+1 denote the model with the largest '2 in the collection of
? − : models with one more predictor.

3. Select a single best model amongM0,M1, ...,M? using
cross-validation, �? (AIC), BIC or adjusted '2.
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I Forward stepwise selection is not guaranteed to select the best
model in the collection with the same number of variables.

I Forward stepwise selection can be applied even in the
high-dimensional setting where = < ?.

I However, in the case of = < ?, it is possible to construct
sub-modelsM0,M1, ...,M=−1 only, since no unique solution to
the least squares problem if ? ≥ =.
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Example: the Credit data

# Variables Best subset Forward stepwise
One rating rating

Two rating, income rating, income
Three rating, income, student rating, income, student
Four cards, income, student, limit rating, income, student, limit

I The first four selected models for best subset selection and
forward stepwise selection on the Credit data set.

I The first three models are identical but the fourth models differ.
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Backward stepwise selection

1. LetM? denote the full model, which contains all ? predictors.
2. For : = ?, ? − 1, ..., 1, given the modelM: that has : predictors,

consider all : models that contain all but one of the predictors in
M: . LetM:−1 denote the model with the highest '2 among
these : models.

3. Select a single best model amongM0,M1, ...,M? using
cross-validation, �? (AIC), BIC or adjusted '2.
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�?, AIC, BIC and adjusted '2

I These techniques adjust the training error for the model size to
obtain an estimate of the test error.

I Mallow’s �?:

�? =
1
=

(
'(( + 23f̂2

)
,

where is the total number of parameters and f̂2 is an estimate of
the variance of the error n .

I f̂2 is estimated using the full model containing all predictors.
I �? adds a penalty of 23f̂2 to the training '(( in order to adjust

for the fact that the training error tends to underestimate the test
error.

I �? statistic is an estimate of the test error and tends to take on a
small value for models with a low test error.
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I The Akaike information criterion (AIC) is defined for a large
class of models fit by maximum likelihood:

AIC = −2log ! + 2 · 3,

where ! is the maximized value of the likelihood function for the
estimated model.

I For the regression model with a normally distributed n ,

AIC =
1
f̂2=

(
'(( + 23f̂2

)
,

which is proportional to �?.
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I Bayes information criterion:

BIC = −2log ! + log (=) · 3,

I For the regression model with a normally distributed n ,

BIC =
1
f̂2=

(
'(( + log (=) 3f̂2

)
.

I Since log (=) > 2 for any = > 7, the BIC generally places a
heavier penalty on models with many variables, and hence results
in the selection of smaller models than �? or AIC.
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I For a least squares model with 3 variables, the adjusted '2 is
calculated as

Adjusted '2 = 1 − '((/(= − 3 − 1)
)((/(= − 1) ,

where )(( is the total sum of squares.
I While '(( always decreases as the number of variables in the

model increases, '((/(= − 3 − 1) may increase or decrease, due
to the presence of 3.

I �?, AIC and BIC all have rigorous theoretical justification.
Adjusted '2 is not as well motivated in statistical theory.
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ISL Figure 6.2

I �?, BIC and adjusted '2 are shown for the best models of each
size for the Credit data set.
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Cross-Validation

I �?, AIC and BIC are not appropriate in high-dimensional
settings, because f̂2 = 0.

I As a alternative to �?, BIC and AIC, we can directly estimate the
test error using the validation set and cross-validation.

I Cross-validation can be applied in high-dimensional settings.
I Cross-validation is more computationally burdensome.
I Cross-validation provides a direct estimate of the test error and

its theoretical justification requires fewer assumptions about the
true underlying model.
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Caution

I We can compute the validation set error or the cross-validation
error for each ofM0,M1, ...,M?, and then select the model for
which the resulting estimated test error is smallest.

I Note that the lists of predictors in the modelsM1, ...,M?−1 are
all estimated. For example, other two variables may be selected
for the best two-variable modelM2 if another sample is used in
this step. Cross-validation should take such uncertainty into
account.

I Take the Credit data example, we use cross-validation not to
comparerating, income versus rating, income, student, but
to compare the best two-variable model versus the best
three-variable model. The validation step should not take
rating, income and rating, income, student as given.
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I For validation set approach, randomly split the data into training
set Tr and test set Te. M1, ...,M?−1 are the models selected using
the full data.
I Wrong way: Use Tr to trainM1, ...,M?−1 and use Te to estimate

the test errors.
I Right way: Use Tr to estimate the best one-variable, two-variable,

..., (? − 1)-variable models M̃1, ..., M̃?−1. Then use Te to
estimate the test errors of the best 9-variable models
( 9 = 1, ..., ? − 1). If M̃ 9 has the least estimated test error, useM 9

for out-of-sample prediction. M 9 and M̃ 9 may be different.
I For  -fold cross-validation, we should generate a list of

estimated best 9-variable models on each training set.
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ISL Figure 6.3

I BIC, validation set errors, and cross-validation errors on the
Credit data, for the best 3-variable model.

I The validation and cross-validation methods both result in a
six-variable model.

I The four-, five-, and six-variable models are roughly equivalent
in terms of their test errors.
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One-standard-error rule

I For a given number of predictors, the test MSE is an unknown
parameter.

I We first calculate the one standard error of the estimated test
MSE for each model size, and then select the smallest model for
which the estimated test error is within one error standard error
of the lowest point on the curve.

I If a set of models appear to be more or less equally good, then we
should choose the simplest model.
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Ridge regression
I Linear regression coefficients:

V̂ = argmin
10,11,...,1?

=∑
8=1

(
.8 − 10 −

?∑
:=1

1:-:,8

)2

= argmin
10,11,...,1?

'((
(
10, 11, ..., 1?

)
.

I Ridge regression:

V̂'_ = argmin
10,11,...,1?

'((
(
10, 11, ..., 1?

)
+ _

?∑
:=1

12
: ,

where _ ≥ 0 is a tuning parameter selected by the user.
I The ridge regression is a constrained least squares: for every _,

there exists B > 0 such that V̂'
_
solves

min
10,11,...,1?

'((
(
10, 11, ..., 1?

)
subject to

?∑
9=1

12
9 ≤ B.

And _ and B are inversely related.
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I Ridge regression seeks coefficient estimates that fit the data well,
by making '((

(
10, 11, ..., 1?

)
small.

I The shrinkage penalty _
∑?

:=1 1
2
:
is small when 11, 12, ..., 1: are

close to zero. The tuning parameter _ controls the relative impact
of these two terms.

I When _ = 0, the penalty term has no effect, and ridge regression
will produce OLS.

I V̂'
_
=

(
V̂'
_,0, V̂'

_,1, ..., V̂'
_,?

)
depends on _. Optimal _ (test MSE

minimizing) depends on the underlying data generating
mechanism. Use cross-validation to select _.

I Note that we do not want to shrink the intercept.
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Example: the Credit data
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ISL Figure 6.4
I Left: ridge regression coefficient estimates for each of the ten

variables, plotted as a function of _.
I Right: ridge regression coefficient estimates for each of the ten

variables, plotted as a function of
V̂'_ 

2
/
V̂

2

(
(G1, G2, ..., G:)>


2 =

√∑:
9=1 G

2
9
).
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Scaling of predictors
I The standard OLS estimates are scale equivariant: multiply - 9,8

by a constant 2 leads to a scaling of the OLS coefficient V̂ 9 by a
factor of 1/2. regardless of how the 9-th predictor is scaled,
- 9,8 V̂ 9 will remain the same. In contrast, for ridge regression,
- 9,8 V̂

'
_, 9 will not remain the same and depend on _.

I For instance, consider the income variable, which is measured in
dollars. One could reasonably have measured income in
thousands of dollars.

I It is best to apply ridge regression after standardizing the
predictors:

-̃ 9,8 =
- 9,8√

=−1 ∑=
8=1

(
- 9,8 − - 9

)2
.

I All of the standardized predictors will have a standard deviation
of one.
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Why does ridge regression improve over OLS?
I As _ increases, the flexibility of the ridge regression fit

decreases, leading to decreased variance but increased bias.
I Sacrificing variance a little bit may lead to substantial

improvement in bias.
I In general, in situations where the relationship between the

response and the predictors is close to linear, OLS will have low
bias but may have high variance. In particular, when the number
of variables ? is almost as large as the number of observations =,
the OLS will be extremely variable.

I If ? > =, OLS does not have a unique solution, whereas ridge
regression can still perform well by trading off a small increase in
bias for a large decrease in variance.

I Ridge regression also has substantial computational advantages
over best subset selection. In contrast, for any fixed value of _,
ridge regression only fits a single model.
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ISL Figure 6.5

I Simulated data with = = 50 observations, ? = 45 predictors, all
having nonzero coefficients.

I Black: square bias; green: variance; test MSE: purple.
I _ = 0: OLS.
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LASSO
I Unlike subset selection, which will generally select models that

involve just a subset of the variables, ridge regression will
include all ? predictors in the final model.

I This problem can create a challenge in model interpretation
when ? is quite large.

I In the Credit data, it appears that the most important variables
are income, limit, rating, and student. So we might wish to
build a model including just these predictors. However, ridge
regression will always generate a model involving all ten
predictors.

I The LASSO is a relatively recent alternative to ridge regression:
LASSO will always generate a sparse model that involves only a
subset of the variables..

I For some tuning parameter _ ≥ 0,

V̂!_ = argmin
10,11,...,1?

'((
(
10, 11, ..., 1?

)
+ _

?∑
:=1
|1: | .
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I LASSO is a constrained least squares: for every _, there exists
B > 0 such that V̂!

_
solves

min
10,11,...,1?

'((
(
10, 11, ..., 1?

)
subject to

?∑
9=1

��1 9

�� ≤ B.
I In comparison to ridge regression, LASSO uses anℒ1 penalty

with
(G1, G2, ..., G:)>


1 =

∑:
9=1

��G 9 ��, while ridge uses anℒ2

penalty with
(G1, G2, ..., G:)>


2 =

√∑:
9=1 G

2
9
.

I As with ridge regression, LASSO shrinks the coefficient
estimates towards zero.

I However, in the case of the LASSO, theℒ1 penalty has the
effect of forcing some of the coefficient estimates to be exactly 0
when _ is large.

I LASSO performs variable/model selection and estimation in one
step.

I We do cross-validation to select _.
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Example: the Credit data
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ISL Figure 6.5

I Depending on the value of _, LASSO can produce a model
involving any number of variables.

I In contrast, ridge regression will always include all of the
variables.
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The variable selection property of LASSO

I Why is it that the LASSO, unlike ridge regression, results in
coefficient estimates that are exactly 0?

I LASSO and ridge regression coefficient estimates solve the
problems

Ridge: min
10,11,...,1?

'((
(
10, 11, ..., 1?

)
subject to

?∑
9=1

12
9 ≤ B

LASSO: min
10,11,...,1?

'((
(
10, 11, ..., 1?

)
subject to

?∑
9=1

��1 9

�� ≤ B.
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ISL: Figure 6.7
I V̂: the OLS estimator.
I Red contours: constant residual sum of squares with respect to
(11, 12).

I Left shaded rectangle: {(11, 12) : |11 | + |12 | ≤ B}; right shaded
rectangle:

{
(11, 12) : 12

1 + 1
2
2 ≤ B

}
.
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Alternative formulation of best subset selection
I The best subset selection amounts to solving

min
10,11,...,1?

'((
(
10, 11, ..., 1?

)
subject to

?∑
9=1

1
(
1 9 ≠ 0

)
≤ B

where B is an integer tuning parameter. 1
(
1 9 ≠ 0

)
takes on value

of 1 if 1 9 ≠ 0 and 0 otherwise.
I We find a set of coefficient estimates such that '(( is as small as

possible, subject to the constraint that no more than B coefficients
can be nonzero with 0 ≤ B ≤ ?.

I This is computationally infeasible when ? is large, since it

requires considering all
(
?

B

)
models containing B predictors.

I Ridge regression and LASSO are computationally feasible
alternatives to best subset selection that replace the intractable
constraint with forms that are much easier to solve.
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Comparing the LASSO and ridge regression
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ISL Figure 6.8
I Compared with ridge regression, LASSO produces simpler and

more interpretable models that involve only a subset of the
predictors. However, which method leads to better prediction
accuracy?

I Left: square bias (black), variance (green) and test MSE (purple)
for LASSO.
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ISL Figure 6.8

I Right: Comparison of squared bias, variance, and test MSE
between LASSO (solid) and ridge (dotted).

I Both are plotted against their '2 on the training data. This is
another useful way to index models, and can be used to compare
models with different types of regularization.

I The minimum MSE of ridge regression is slightly smaller than
that of the LASSO.
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ISL Figure 6.9

I Right: Comparison of squared bias, variance, and test MSE
between LASSO (solid) and ridge (dotted).

I In the simulated data, only two predictors are related to the
response.
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I LASSO implicitly assumes that a number of the coefficients truly
equal zero.

I Ridge regression outperforms the lasso in terms of prediction
error when all predictors are related to the response.

I If the true model that generates the data is sparse (a relatively
small number of nonzero coefficients), LASSO tends to
outperform ridge regression in terms of bias, variance, and MSE.

I The number of predictors that is related to the response is never
known for real data sets. Cross-validation can be used in order to
determine which approach is better on a particular data set.
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Selecting the tuning parameter

I Implementing ridge regression and the lasso requires a method
for selecting a value for the tuning parameter _.

I We choose a grid of _ values, and compute the cross-validation
error for each value of _.

I We then select the tuning parameter value for which the
cross-validation error is smallest.

I Finally, the model is re-fit using all of the available observations
and the selected value of the tuning parameter.
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ISL Figure 6.12

I Left: leave-one-out cross-validation errors that result from
applying ridge regression to the Credit data set with various
values of _.

I Right: The coefficient estimates as a function of _.
I Vertical dashed lines: _ selected by cross-validation.
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ISL Figure 6.13

I 10-fold cross-validation applied to the LASSO fits on the sparse
simulated data with only two nonzero coefficients.

I Cross-validation together with LASSO has correctly identified
the two variables with nonzero coefficients.

I OLS displayed on the far right of the right-hand panel assigns a
large coefficient estimate to only one of the two variables.
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