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Moving beyond linearity

» The linearity assumption in the regression model is almost
always an approximation.

» If linear approximation to the true function f in the model
Y = f (X) + € is poor, i.e., minyE [(f (X) - XTb)2 is large, test
error could be large, due to large bias.

» We relax the linearity assumption:

» Polynomial regression;

> Step functions;

> Regression splines;

» Smoothing splines;

» Generalized additive models.
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Polynomial regression

» Assume that X € IR. We replace the linear model
Y; = Bo + B1X; + € by a polynomial regression model:

Yi = Bo+BiXi + BoXP+- -+ LaX + 6.

» The coefficients can be easily estimated by least squares.

» Linear logistic regression can be extended:

exp (Bo +B1Xi + PoX2 + -+ BaX?)

PI‘(Y'=1|X'): .
' U Lrexp (Bo+BiXi + o X2+ -+ BaX?)
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The fitted function values at any value xg:
f (x0) = Bo+ Bixo + foxg + - - + Bax;.

£ (xo) is a linear function of By, B1, ..., Ba. We can get a simple

expression for pointwise-variances Var [ f (xo)] at any value xg.

Pointwise standard errors SE [ f (xo)]: estimate of

A/ Var [f (xo)].

Confidence interval:

[/ (x0) =2-SE[f (x0)] . f (xo) +2-SE [ f (x0)]].

We either fix the degree d at some reasonably low value or use
cross-validation to choose d.
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The Wage data
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ISL Figure 7.1

» Left: degree-4 polynomial regression of wage on age (solid
blue); an estimated 95 % confidence interval (dashed).

» Right: fitted posterior probability of wage > 250 using logistic
regression, with a degree-4 polynomial (solid blue); an estimated
95 % confidence interval (dashed).

» For age that is close to the boundaries, the prediction of wage is
highly variable. 5/25



Step functions

» Polynomial regression imposes a global structure on f (X). Step
functions avoid imposing such a global structure.

» cy,C2,...,Ck: cutpoints in the range of X, then

Co(X) = 1(X<c)
Ci(X) = 1(ci1£X<cp)
CG(X) = 1(c£X<c3)

Ck-1(X) = 1(ck-1<X<ck)
CK(X) = I(CKSX).

» We can use least squares to fit a linear model:

Y; = Bo+B1C1 (Xi) +B2Ca (X;) + -+ -+ BaCk (X;) + €.
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Piecewise Constant
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» UseC; (X)=1(X<35),C(X)=135< X <65),
C3(X)=1(X = 65).

» The fitted curve is discontinuous: the predicted wage for X being
slightly less than 35 and the predicted wage for X being slightly

greater than 35 can be very different.
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Piecewise polynomials

» Instead of a single polynomial, we can use different polynomials
in regions defined by knots:

Y. = Bor+BuXi+BuX+puX) +e ifX; <c
Y B+ BroXi + fuX? + X +e i X > c.

» Impose continuity constraint:

3 2 3
Bot + Bi1c + Barc? + Baic® = Boa + Brac + Brac? + Barc’.

» Impose continuity constraint on the first derivative:

Bi1 +2B21¢ +3B31¢% = Bia +2Banc + 3B3c”.
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Linear splines

» A linear spline with knots at &, k = 1, ..., K is a piecewise linear
polynomial continuous at each knot.

» We can represent this model as
Yi = Bo+B1b1 (Xi) + Babr (Xi) +- -+ + Brs1bk+1 (Xi) + €,
where b, are basis functions,

by (X;) = X;
bk+1 (Xl) = (Xl_é:k)+9k = la-"’K9
and
Xi =& ifx; > &
0 otherwise .

(Xi —&r)y = {
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Cubic splines

» A cubic spline with knots at &, k = 1, ..., K is a piecewise cubic
polynomial with continuous derivatives up to order 2 at each
knot.

» Represent this model with truncated power basis functions

Yi = Bo+P1b1 (Xi) + P2br (Xi) + -+ -+ Br3bks3 (X;) + €,

where
by (X)) = Xi
by(X)) = X}
b3 (X)) = X;
bz (X)) = (Xi—&)j.k=1,...K,
and

(Xi—&)° ifx; > &
0 otherwise .

(Xi _é:k)+ = {

» A cubic spline with K knots has K + 4 parameters or degrees of
freedom.
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Piecewise Cubic
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» Most human beings are unable to distinguish between a cubic
spline and a smooth (infinitely differentiable) function.

ISL Figure 7.3
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Natural spline

» Splines can have high variance when X takes on either a very
small or very large value.

» A natural spline is a regression spline with additional 2 x 2
boundary constraints: the function is required to be linear at the
boundary (in the region where X is smaller than the smallest
knot, or larger than the largest knot).

» Natural splines generally produce more stable estimates at the
boundaries.

» A natural spline with K knots has K degrees of freedom.
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» A cubic spline and a natural cubic spline, with three knots. The
dashed lines denote the knot locations.

» Narrower confidence intervals reflect lower variances.
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Choosing the number and locations of the knots

» The regression spline is most flexible in regions that contain a lot
of knots, because in those regions the polynomial coefficients can
change rapidly.

> One strategy is to place more knots in places where we feel f (X)
might vary most rapidly, and to place fewer knots where it seems
more stable.

» Another (more objective) strategy is to decide K by
cross-validation, the number of knots, and then place them at
appropriate quantiles of X.

» Locations of the knots are estimated. Cross-validation should take
such uncertainty into account.
» Randomly split data into training set Tr and test set Te. Let
&1, &7, ..., £k be the knots estimated from the full data, as sample
quantiles of X.
> Wrong way: Use Tr to train the model with knots at £1, &>, ...,k
and then use Te to estimate the test error for the K-knot model.
> Right way: Use Tr to generate a different list of knots &1, &, ..., £,
which are sample quantiles of X using only data in Tr and then use

Te to estimate the test error.
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Natural Cubic Spline
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ISL Figure 7.5
» Fit a natural cubic spline with three knots. The knot locations

were chosen automatically as the 25th, 50th, and 75th percentiles
of age.
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» Ten-fold cross-validated mean squared errors for splines with
various degrees of freedom fit to the Wage data.
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Comparison to polynomial regression
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» Comparison of a polynomial and a natural cubic spline with the
same degree of freedom.
» Polynomial produces undesirable results at the boundaries, while

the natural cubic spline still provides a reasonable fit.
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Smoothing splines

» Consider the problem:

n

min 3 (Y- g (X))

ge<{all functions} =

If we don’t put any constraints on g, then we can always make
RSS=%",(Yi—¢g (X;))?* zero simply by choosing g such that it
interpolates all of the Y;.

» Such a function would be far too flexible and definitely overfit the
data.

» What we really want is a function g that makes RSS small, but
that is also smooth.
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The minimizer is known as a smoothing spline:
n
i Yi—g (X)) +4 [ g’ (1),
mip ) (=g (k4 [ ¢ 0

where & = {all second order differentiable functions}.

The first term is RSS, and tries to make g (X;) match ¥; at each
X;.

The second term is a variability penalty and it is large if g is
wiggly.

The second derivative corresponds to the amount by which the

slope is changing. The second derivative of a straight line is zero.

If g is very smooth, then g’ does not vary too much and

f g” (1)? dr will take a small value.

A is a nonnegative tuning parameter. A / g” (1)? dt encourages g
to be smooth.

A | 0: the minimizer interpolates the data (large variance);
A T oo: the minimizer will be linear (large bias).
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The solution is a shrunken version of natural cubic spline, with a
knot at every unique value of X;, where A controls the level of
shrinkage.

Smoothing splines avoid the knot-selection issue, leaving a
single A to be chosen.

We can find the value of A that makes the cross-validated RSS as
small as possible.

The leave-one-out cross-validation error (LOOCYV) can be
computed very efficiently for smoothing splines, with essentially
the same cost as computing a single fit.

The vector of n fitted values can be written as §, = S,Y, where
Y = (Y1,Y5,....Y,) " and S, is an n x n matrix that depends on
Xl, Xz, ceey Xn and A.

The effective degrees of freedom are given by dfy = X' [Sal;;-
There is a one-to-one mapping (0, c0) 3 A — df).
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LOOCYV for smoothing splines

» The LOOCY error is given by

n . 2 n _ b N
RSScy (A):Z(Yi—gﬁ“) (Xl-)) = [%gﬁ”] ;

i=1 i=1

> g;‘” (X;) indicates the fitted value for this smoothing spline
evaluated at X;, where the fit uses all of the training observations
except for the i-th observation.

> 5. (X;) indicates the smoothing spline function fit to all of the
training observations and evaluated at X;.

» This formula says that we can compute each of these
leave-one-out fits using only g,.
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Generalized additive models

|
>

So far in this chapter, we assume a single predictor.

Generalized additive models (GAMs) allow for flexible
nonlinearities in several variables, but retains the additive
structure of linear models.

A natural way to extend the multiple linear regression model is to
replace each linear component ;X ; with a (smooth) nonlinear
function f; (X;,):

Yi=Bo+ fi (Xui) + fo (Xoi) -+ fp (Xpi) + &

We can use previous nonlinear methods as building blocks for
fitting an additive model.

GAMs are additive, although low-order interactions such as

X1 X X5 can be included as additional predictors.

Fitting a GAM with cubic splines or natural splines is easily
implemented by using multiple least squares regression.

Fitting a GAM with smoothing splines is not quite simple: in the

case of smoothing splines, least squares cannot be used.
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» Take, for example, natural splines, and consider the task of fitting
the model

wage = By + f1 (year) + f> (age) + f3 (education) + €.

» Here year and age are quantitative variables, and education is
a qualitative variable with five levels.

> We fit the first two functions using natural splines. We fit the
third function using a separate constant for each level, via
dummy variables.
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