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Nonparametric regression

▶ Response 𝑌 and 𝑝 different predictors 𝑋 =
(
𝑋1, 𝑋2, ..., 𝑋𝑝

)⊤.
▶ Let Supp𝑋 denote the set of all possible values (support) of 𝑋 .
▶ Our training data consist of {(𝑋1,𝑌1) , (𝑋2,𝑌2) , ..., (𝑋𝑛,𝑌𝑛)},

where 𝑋𝑖 =
(
𝑋1,𝑖 , 𝑋2,𝑖 , ..., 𝑋𝑝,𝑖

)⊤.
▶ 𝑋 𝑗,𝑖: the value of the 𝑗-th predictor, or input, for observation 𝑖,

where 𝑖 = 1, 2, ..., 𝑛 and 𝑗 = 1, 2, ..., 𝑝.
▶ An unseen data point: (𝑋0,𝑌0). We know that 𝑓 (𝑋0) is an

optimal predictor of 𝑌0, where 𝑓 (𝑥) = E [𝑌 | 𝑋 = 𝑥] since
𝑓 (𝑋0) minimizes the mean square prediction error

E
[
(𝑌0 − 𝑓 (𝑋0))2 | 𝑋0

]
≤ E

[
(𝑌0 − 𝑔 (𝑋0))2 | 𝑋0

]
.

▶ The linear model approximates 𝑓 by 𝑓 (𝑥) ≈ 𝑥⊤𝛽 for some
optimal coefficients 𝛽 ∈ R𝑝.

▶ Nonlinear models use more flexible approximation.
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▶ Nonparametric methods such as KNN directly estimate 𝑓 . Only
mild restrictions such as continuous differentiability are imposed.
Misspecification bias is avoided.

▶ A conventional nonparametric regression method falls into one
of the two categories:
▶ local smoothing (averaging): KNN, local polynomial regression,

...
▶ global smoothing: series regression, ...

▶ Any conventional nonparametric regression estimator 𝑓 suffer
from curse of dimensionality: the MSE∫
𝒮𝑋

E
[ (
𝑓 (𝑥) − 𝑓 (𝑥)

)2
]

d𝑥 has a very slow best possible rate of
convergence if 𝑝 is large.

▶ Conventional nonparametric methods break down when 𝑝 ≥ 4.
▶ These methods have no selection among the predictors that are

most useful for prediction.
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Tree-based methods

▶ If the true model is sparse, i.e., 𝑓 (𝑋) depends on only a small
sub-vector of 𝑋 even when 𝑝 is large, a nonparametric procedure
that selects variables may address curse of dimensionality.

▶ Tree-based methods are complicated algorithms that implicitly
do variable selection.

▶ These involve segmenting Supp𝑋 into a number of simple
regions.

▶ The set of splitting rules used to segment Supp𝑋 can be
summarized in a decision tree.

▶ To make a prediction, we typically use the mean response value
for the training observations in the region to which it belongs.

▶ They typically are not competitive with the best supervised
learning approaches in terms of prediction accuracy.

▶ Multiple trees are combined: bagging and random forests.
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Regression trees
▶ A partition 𝒮 of Supp𝑋 consists of 𝐽 subsets 𝒮 = {𝑆1, 𝑆2, ..., 𝑆𝐽 }

with
⋃𝐽
𝑗=1 𝑆 𝑗 = Supp𝑋 and 𝑆𝑖 ∩ 𝑆 𝑗 = ∅, ∀𝑖 ≠ 𝑗 .

▶ Let 𝑌 𝑗 be the average response in 𝑆 𝑗 :

𝑌 𝑗 =

∑𝑛
𝑖=1𝑌𝑖1

(
𝑋𝑖 ∈ 𝑆 𝑗

)∑𝑛
𝑖=1 1

(
𝑋𝑖 ∈ 𝑆 𝑗

)
▶ Predict 𝑌0 by

𝑌0 =

𝐽∑︁
𝑗=1

1
(
𝑋0 ∈ 𝑆 𝑗

)
𝑌 𝑗 .

▶ The resulting estimator of 𝑓 (𝑥) corresponding to the partition 𝒮

is given by

𝑓𝒮 (𝑥) =
𝐽∑︁
𝑗=1

1
(
𝑥 ∈ 𝑆 𝑗

)
𝑌 𝑗 .
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▶ We may try to choose the partition 𝒮 that results in the best
in-sample fit:

min
𝒮∈{all partitions}

𝑛∑︁
𝑖=1

(
𝑌𝑖 − 𝑓𝒮 (𝑋𝑖)

)2 .

▶ If 𝑋 is continuously distributed and 𝑋𝑖 ≠ 𝑋 𝑗 , ∀𝑖 ≠ 𝑗 , this problem
has a trivial solution 𝐽 = 𝑛 and {𝑋1, ..., 𝑋𝑛} ∩ 𝑆 𝑗 =

{
𝑋 𝑗

}
, ∀ 𝑗 .

▶ We may choose 𝒮 ∈ {all rectangle partitions}. However, it is still
computationally infeasible.

▶ Regression tree is a constrained and computationally feasible
modification of this approach:
▶ Partition Supp𝑋 recursively by splitting subsets into halves. One

new split at every step of the procedure.
▶ Consider one predictor 𝑋 𝑗 at a time.
▶ Use a simple binary rule at every step.

▶ If 𝑋 𝑗 is quantitative, use the rule 𝑋 𝑗 ≥ 𝑐 or 𝑋 𝑗 < 𝑐, for some cutoff
point 𝑐.

▶ If 𝑋 𝑗 ∈ {1, 2, ...,𝐾} is categorical, use the rule 𝑋 𝑗 ∈ 𝐶 or 𝑋 𝑗 ∉ 𝐶.
▶ Choose 𝑗 and 𝑐 (or 𝐶) to improve the in-sample fit at every step.

6 / 31



Example: the Hitters data
|

Years < 4.5

Hits < 117.5

5.11

6.00 6.74

ISL Figure 8.1

▶ We use the Hitters data set to predict a baseball player’s
Salary based on
▶ Years (the number of years that he has played in the major

leagues);
▶ Hits (the number of hits that he made in the previous year).

7 / 31



▶ The label 𝑋 𝑗 < 𝑡𝑘 indicates the left-hand branch emanating from
that split, and the right-hand branch corresponds to 𝑋 𝑗 ≥ 𝑡𝑘 .

▶ The top split assigns observations having Years < 4.5 to the left
branch. The predicted salary for these players is given by the
mean response value for the players in the data set with
Years < 4.5.

▶ Players with Years ≥ 4.5 are assigned to the right branch, and
then that group is further subdivided by Hits.

▶ Years is the most important factor in determining Salary, and
players with less experience earn lower salaries than more
experienced players.

▶ Given that a player is less experienced, the number of hits that
he made in the previous year seems to play little role in his
salary.

▶ But among players who have been in the major leagues for five or
more years, the number of hits made in the previous year does
affect salary, and players who made more hits last year tend to
have higher salaries.
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ISL Figure 8.2
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Terminology

▶ A tree is composed of a series of nodes, which can be
represented by a decision tree.

▶ Each node 𝑇 is a subset of Supp𝑋. The root is just Supp𝑋.
▶ A splitting is a process of dividing a node into two child nodes.
▶ A termination rule is a stopping rule for the splitting process. To

avoid overfitting, we require that a node can be split only if the
number of observations lying in the node exceeds a threshold
(e.g., five).

▶ A descendant of a node 𝑇 is a subset of 𝑇 that results from
splitting 𝑇 .

▶ A leaf is a terminal node with no descendants. All these leaves
form a partition of Supp𝑋.

▶ A branch consists of a node and all its descendants.
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Algorithm

𝑅𝑆𝑆𝑇 ( 𝑗 , 𝑐) =
𝑛∑︁
𝑖=1

{
1
(
𝑋𝑖 ∈ 𝑇 , 𝑋 𝑗,𝑖 ≥ 𝑐

) (
𝑌𝑖 −

∑𝑛
𝑖=1 1

(
𝑋𝑖 ∈ 𝑇 , 𝑋 𝑗,𝑖 ≥ 𝑐

)
𝑌𝑖∑𝑛

𝑖=1 1
(
𝑋𝑖 ∈ 𝑇 , 𝑋 𝑗,𝑖 ≥ 𝑐

) )2

+1
(
𝑋𝑖 ∈ 𝑇 , 𝑋 𝑗,𝑖 < 𝑐

) (
𝑌𝑖 −

∑𝑛
𝑖=1 1

(
𝑋𝑖 ∈ 𝑇 , 𝑋 𝑗,𝑖 < 𝑐

)
𝑌𝑖∑𝑛

𝑖=1 1
(
𝑋𝑖 ∈ 𝑇 , 𝑋 𝑗,𝑖 < 𝑐

) )2}
.

1. Split the root by solving ( 𝑗∗, 𝑐∗) = argmin 𝑗,𝑐𝑅𝑆𝑆Supp𝑋 ( 𝑗 , 𝑐).
Two resulting child nodes:

{
𝑥 ∈ Supp𝑋 : 𝑥 𝑗∗ ≥ 𝑐∗

}
and{

𝑥 ∈ Supp𝑋 : 𝑥 𝑗∗ < 𝑐∗
}

(𝑥 =
(
𝑥1, ..., 𝑥𝑝

)⊤).
2. For each node 𝑇 that does not meet the termination rule, split 𝑇

by solving min 𝑗,𝑐𝑅𝑆𝑆𝑇 ( 𝑗 , 𝑐). This gives two further child nodes.
3. ℒ (𝒯) denotes the leaves of the resulting tree 𝒯. The estimator:

𝑓𝒯 (𝑥) =
∑︁

𝑇∈ℒ (𝒯)
𝑌𝑇1 (𝑥 ∈ 𝑇) , where 𝑌𝑇 =

∑𝑛
𝑖=1 1 (𝑋𝑖 ∈ 𝑇)𝑌𝑖∑𝑛
𝑖=1 1 (𝑋𝑖 ∈ 𝑇)

.
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ISL Figure 8.3
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▶ Note the variable selection feature of this algorithm. It is
possible that the algorithm decides that one predictor is not
useful for prediction and no splitting based on that predictor
happens in such a case.

▶ The process may produce good predictions on the training set,
but is likely to overfit the data.

▶ A large tree may have only a few observations in each leaf. This
leads to high variance of 𝑓𝒯 (𝑥).

▶ Combining terminal nodes may improve out-of-sample
prediction accuracy (lower variance).
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Cost complexity pruning

▶ We grow a very large tree 𝒯0, and then prune it back in order to
obtain a subtree.

▶ A subtree 𝒯
′ of 𝒯0 is obtained by deleting all the descendants of

some node 𝑇 and making 𝑇 the terminal node. We denote
𝒯

′ ≺ 𝒯0.
▶ We penalize the complexity of 𝒯′ by

𝒯
∗ (𝛼) = argmin

𝒯′≺𝒯0

∑︁
𝑖=1

(
𝑌𝑖 − 𝑓𝒯′ (𝑋𝑖)

)2 + 𝛼 |ℒ (𝒯′) | ,

where 𝛼 is a nonnegative tuning parameter and |ℒ (𝒯′) | denotes
the number of leaves in ℒ (𝒯′).

▶ The tuning parameter 𝛼 can be chosen by cross validation.
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Cross validation for pruning

1. Split the sample randomly into 𝐾 folds: 𝐶1,𝐶2, ...,𝐶𝐾 with⋃𝐾
𝑘=1𝐶𝑘 = {1, 2, ..., 𝑛}.

2. Grow a tree 𝒯𝑗 with the 𝑗-th fold held out. Select the optimal
subtree 𝒯

∗
𝑗
(𝛼).

3. Compute the test MSE

𝑅𝑆𝑆 𝑗 (𝛼) =
∑︁
𝑖∈𝐶 𝑗

(
𝑌𝑖 − 𝑓𝒯∗

𝑗
(𝛼) (𝑋𝑖)

)2

for each 𝑗 = 1, 2, ...,𝐾 . The cross-validated test MSE is
𝑅𝑆𝑆𝐶𝑉 (𝛼) = 𝐾−1 ∑𝐾

𝑗=1 𝑅𝑆𝑆 𝑗 (𝛼).
4. Select the tuning parameter 𝛼∗ by 𝛼∗ = argmin𝛼𝑅𝑆𝑆𝐶𝑉 (𝛼).
5. Use the tree 𝒯

∗ (𝛼∗) for out-of-sample prediction.
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Example: the Hitters data
|

Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5

Runs < 47.5

Walks < 52.5

RBI < 80.5

Years < 6.5

5.487

4.622 5.183

5.394 6.189

6.015 5.571
6.407 6.549

6.459 7.007
7.289

ISL Figure 8.4

▶ Divide the data into halves: 132 observations in the training set
and 132 observations in the test set.

▶ Perform 6-fold cross validation with the training set.
▶ Figure 8.4: the unpruned tree.
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▶ The cross validation error is a reasonable approximation of the
test error.
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Classification trees
▶ Qualitative response 𝑌 ∈ {1, 2, ...,𝐾}. We predict that each

observation belongs to the most commonly occurring class of
training observations in the region to which it belongs.

▶ A natural alternative to 𝑅𝑆𝑆 is the misclassification error rate:
the fraction of the training observations in that region that do not
belong to the most common class.

▶ 𝑝𝑀 (𝑘) denotes the proportion of training observations in the
region 𝑀: 𝑝𝑀 (𝑘) = 𝑛𝑀 (𝑘) /𝑛𝑀 , where 𝑛𝑀 =

∑𝑛
𝑖=1 1 (𝑋𝑖 ∈ 𝑀)

and 𝑛𝑀 (𝑘) = ∑𝑛
𝑖=1 1 (𝑋𝑖 ∈ 𝑀 ,𝑌𝑖 = 𝑘).

▶ Denote

𝑇+ ( 𝑗 , 𝑐) = 𝑇 ∩
{
𝑥 ∈ Supp𝑋 : 𝑥 𝑗 ≥ 𝑐

}
𝑇− ( 𝑗 , 𝑐) = 𝑇 ∩

{
𝑥 ∈ Supp𝑋 : 𝑥 𝑗 < 𝑐

}
𝐸𝑀 = 1 − max

𝑘=1,...,𝐾
𝑝𝑀 (𝑘) ,
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▶ Note that

𝐸𝑀 = 1 − 𝑝𝑀
(
argmax
𝑘=1,...,𝐾

𝑝𝑀 (𝑘)
)

= 1 −

∑𝑛
𝑖=1 1

(
𝑋𝑖 ∈ 𝑀 ,𝑌𝑖 = argmax

𝑘=1,...,𝐾
𝑝𝑀 (𝑘)

)
∑𝑛
𝑖=1 1 (𝑋𝑖 ∈ 𝑀)

=

∑𝑛
𝑖=1 1

(
𝑋𝑖 ∈ 𝑀 ,𝑌𝑖 ≠ argmax

𝑘=1,...,𝐾
𝑝𝑀 (𝑘)

)
∑𝑛
𝑖=1 1 (𝑋𝑖 ∈ 𝑀) .

▶ Replace 𝑆𝑆𝑅𝑇 ( 𝑗 , 𝑐) by

𝐸𝑇 ( 𝑗 , 𝑐) =

𝑛∑︁
𝑖=1

{
1 (𝑋𝑖 ∈ 𝑇+ ( 𝑗 , 𝑐)) 1

(
𝑌𝑖 ≠ argmax

𝑘=1,...,𝐾
𝑝𝑇+ ( 𝑗,𝑐) (𝑘)

)
+1 (𝑋𝑖 ∈ 𝑇− ( 𝑗 , 𝑐)) 1

(
𝑌𝑖 ≠ argmax

𝑘=1,...,𝐾
𝑝𝑇− ( 𝑗,𝑐) (𝑘)

)}
= 𝑛𝑇+ ( 𝑗,𝑐)𝐸𝑇+ ( 𝑗,𝑐) + 𝑛𝑇− ( 𝑗,𝑐)𝐸𝑇− ( 𝑗,𝑐) .
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▶ However misclassification error is not sufficiently sensitive for
tree-growing, and in practice two other measures are preferable:

Gini index: 𝐺𝑀 =

𝐾∑︁
𝑘=1

𝑝𝑀 (𝑘) (1 − 𝑝𝑀 (𝑘)) .

Entropy: 𝐷𝑀 = −
𝐾∑︁
𝑘=1

𝑝𝑀 (𝑘) log (𝑝𝑀 (𝑘)) .

▶ −∑𝐾
𝑘=1 𝑛𝑀 (𝑘) log (𝑝𝑀 (𝑘)) is defined as the deviance in the

book.
▶ Replace 𝐸𝑀 by 𝐺𝑀 or 𝐷𝑀 . Note that

𝐷𝑇 ( 𝑗 , 𝑐) = 𝑛𝑇+ ( 𝑗,𝑐)𝐷𝑇+ ( 𝑗,𝑐) + 𝑛𝑇− ( 𝑗,𝑐)𝐷𝑇− ( 𝑗,𝑐)

= −
𝐾∑︁
𝑘=1

𝑛𝑇+ ( 𝑗,𝑐) (𝑘) log
(
𝑝𝑇+ ( 𝑗,𝑐) (𝑘)

)
−

𝐾∑︁
𝑘=1

𝑛𝑇− ( 𝑗,𝑐) (𝑘) log
(
𝑝𝑇− ( 𝑗,𝑐) (𝑘)

)
.
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▶ The Gini index and the entropy are very similar numerically.
▶ The Gini index or the entropy takes on a small value if all of the

probabilities are close to zero or one.
▶ Both measure uncertainty or node purity: a small value indicates

that a node contains predominantly observations from a single
class.

▶ We predict the type of 𝑌0 given 𝑋0 = 𝑥 as

𝑓𝒯∗ (𝛼∗ ) (𝑥) = argmax
𝑘=1,...,𝐾

∑︁
𝑇∈ℒ (𝒯∗ (𝛼∗ ) )

1 (𝑥 ∈ 𝑇) 𝑝𝑇 (𝑘) .
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Example: heart data

▶ These data contain a binary outcome HD for 303 patients who
presented with chest pain.

▶ An outcome value of Yes indicates the presence of heart disease
based on an angiographic test, while No means no heart disease.

▶ There are 13 predictors including Age, Sex, Chol (a cholesterol
measurement), and other heart and lung function measurements.
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|
Thal:a

Ca < 0.5

MaxHR < 161.5
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ISL Figure 8.6

▶ Cross-validation yields a tree with six terminal nodes.
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▶ Some of the splits yield two terminal nodes that have the same
predicted value.

▶ Regardless of the value of RestECG, a response value of Yes is
predicted for those observations. The split is performed because
it leads to increased node purity.
▶ Right-hand leaf 9/9 Yes; left-hand leaf: 7/11 Yes.
▶ Suppose that we have a test observation that belongs to the region

given by that right-hand leaf. Then we can be pretty certain that
its response value is Yes.

▶ If a test observation belongs to the region given by the left-hand
leaf, then its response value is probably Yes, but we are much less
certain.
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Advantages and disadvantages of trees

▶ Advantages:
▶ Easy to explain to people. Trees can be displayed graphically, and

are easily interpreted.
▶ Trees more closely mirror human decision-making.
▶ Trees can easily handle qualitative predictors without the need to

create dummy variables.
▶ Disadvantages:

▶ Not very useful for inference on marginal effects.
▶ Small changes in the data can result in a very different tree: high

variance
▶ Trees generally do not have the same level of predictive accuracy

as some of the other regression and classification approaches seen
in this book.

▶ By aggregating many decision trees, the predictive performance
of trees can be substantially improved.
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Bagging
▶ Averaging a set of observations reduces variance.
▶ Bagging is a general-purpose procedure for reducing the variance

of a statistical learning method.
▶ We take repeated bootstrap samples from the training data set.

We generate 𝐵 different bootstrapped training data sets. We then
train our method on the 𝑏-th bootstrapped training set in order to
get 𝑓 ∗𝑏 (𝑥) . The bagging regression estimator is

𝑓bag (𝑥) =
1
𝐵

𝐵∑︁
𝑏=1

𝑓 ∗𝑏 (𝑥) .

▶ Pruning is not used since bagging reduces variance by averaging.
▶ For classification trees: for each test observation, we record the

class predicted by each of the 𝐵 trees, then the overall prediction
is the most commonly occurring class among the 𝐵 predictions.

▶ 𝐵 is not a critical parameter with bagging; using a very large
value of 𝐵 will not lead to overfitting.
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Out-of-Bag estimation of the test error
▶ There is a very straightforward way to estimate the test error of a

bagged model.
▶ One can show that on average, each bootstrap sample contains

around two-thirds of the observations. The remaining one-third
of the observations are referred to as the out-of-bag (OOB)
observations.

▶ We can predict the response for the 𝑖-th observation using each of
the bootstrap samples in which that observation was OOB.

▶ Let B𝑖 denote all bootstrap samples where the 𝑖-th observation is
OOB. The OOB estimate of the test error is simply:

1
𝑛

𝑛∑︁
𝑖=1

(
𝑌𝑖 −

1
|B𝑖 |

∑︁
𝑏∈B𝑖

𝑓 ∗𝑏 (𝑋𝑖)
)2

,

where |B𝑖 | denotes the number of elements in B𝑖 .
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Random forests

▶ Bagged trees are highly correlated: often the same predictor is
picked in the splits.

▶ Random forests provide an improvement over bagged trees. This
reduces the variance when we average the trees.

▶ In each split, a random selection of 𝑚 predictors is chosen as split
candidates from the full set of 𝑝 predictors. The split is allowed
to use only one of those 𝑚 predictors. Typically, 𝑚 ≈ √

𝑝. This
step makes bagged trees less correlated.
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Example: heart data
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Variable importance measures

▶ One can obtain an overall summary of the importance of each
predictor using the 𝑅𝑆𝑆 (for bagging regression trees) or the Gini
index (for bagging classification trees).

▶ In the case of bagging regression trees, we can record the total
amount that the 𝑅𝑆𝑆 is decreased due to splits over a given
predictor, then take the average over all 𝐵 trees. A large value
indicates an important predictor.

▶ For classification, we can add up the total amount that the Gini
index is decreased by splits over a given predictor, then take the
average over all 𝐵 trees.
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Example: heart data
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