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Linear causal model

>

vV vYyy

Suppose we have a random sample {(Y,, X"):i=12,.., n},
where X; = (X,'J,Xi,z, "'7Xi,k) with k < n. X,',ji the j-th
variable for the i-th observation. By convention, X; 1 = 1. Its
coeflicient corresponds to the intercept.

Assume the data is i.i.d.: (¥;, X;7) has the same distribution as
(Yj,XJ.T) and is independent of (YJ-, XJ.T), Vi#j.

Linear model: Y = XT3+ U. X: observed explanatory variables;
U: unobserved explanatory factor.

(Y, X;7) is generated by the model: ¥; = X;' 3 + U; for some Uj.
Strong exogeneity: E [U | X] = 0 (implies E [U] = 0).

Weak exogeneity: E [U] = E [UX] (= Cov [U, X]) =0.

OLS estimator of §:

n

. 2
B = argmlnz (Yi=b1Xi1 —boXin—- = bpXik) .
bi....bp i3
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We should give an interpretation of the linear part X, 5 as a
feature of the population (the distribution of (¥, XT)).

» Under strong exogeneity, E[Y | X] = XT3.

» Under weak exogeneity, X' is the best linear approximation of

E[Y | X]: B=(E[XX"])"'E[XY] and

B =argminE |(E[Y | X] —XTb)z] )
beRk
[ is called projection coeflicients.
» Homoskedastic model: E [U2 | X] =02>0.
» Heteroskedastic model: E [U 21X ] is a function of X.
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Matrix notations

» We can stack these n equations together

Y, = X{rﬁ+U1
Y, = X;—,B+U2

Yo = X!B+U,.

» Define
Yl XlT U]
Y, X; Uy
Y = . 5 X = . 5 U = .
Y, X?:r U,

Y and U are n X 1 vectors and X is an n X k matrix. The (i, j)
element of X is the i-th observation on the j-th regressor.

» The system of n equations can be written as Y = X8 + U.

» No multicollinearity: rank (X) = k.
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» For a homoskedastic model,

Y = XB+U
E[U|X] = 0
Var[U | X] = oL,

where I,, denotes the n-dimensional identity matrix.
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OLS in matrix notations

» The OLS estimator of § is obtained by solving

—~

B = argmin, g« ||Y — Xb||.

Then, 8 = (X7X)"' XTY and the fitted residuals are U = Y — XJ3.
U satisfies XU = 0.

The OLS is unbiased: E [E | X] =p.

v vy

v

Under homoskedasticity, Var [E | X] =2 (XTX)"\.
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Projection matrices

» Let X be n X k with rank (X) = k. Then define R
Px =X (X™X)'XT. PxY = X (X"X) ' XTY = X} gives the
fitted values.

» The fitted residuals are
U=Y-XF=Y-X(X"X)"' XY= (L, -X (X"X)"'X") Y.

> We define Mx =L, - X (X"X) ! X7 = I,, - Px. MxY gives the
fitted residuals.
» Properties of Px and Mx:
» Px and Mx are symmetric;
PxX =Xand MxX =0;
Px and M are orthogonal: MxPx =0 and PxMx = 0;
Px and Mx are idempotent: PxPx = Px and MxMx = Mx;
rank (Px) = k and rank (Mx) = n — k.

vvyyvyy
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Partitioned regression
» Partition X = [ X X, ],ﬂ = ( IT,ﬂZT)T and the model as
Y =X81+XpB8:+ 1,
where X isn X ky and Xy isn X ky (k1 + ky = k).
— — —~ T
> Partition f = (B[.5} ) -
» Denote M| = Mx, and M, = Mx,. Then,
Bi (XTM,X,) ™" (X] MLY)
Br = (XIMiXy)™ (X]M,Y)

and

0'2 (XTszl)_l

Var [El |X]
Var | [ X| = o (X]MXo)
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Omitted variable bias

» Suppose the researcher estimates 51 by regressing Y on X only.
Let B = (XITXI)_1 (X]Y) denote the OLS estimates.

» Then,

Bi

(X7X:) ™ (XTY)
Bi+(XTX)) ™ XTXo8 + (X7X,) 7' X[ U

and E [[71 |X] = 1+ (XTX1) ™ XTXof.

> (XITXl)_1 X[ X3, is the omitted variable bias.
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Effects of covariates

>

In practical applications, we often have a long list of potential
explanatory variables. It is possible that k is close to 7.
Cross-country growth regression estimates the effect of initial
GDP on future growth rates, with more than 50 other explanatory
variable including institutional and technological factors and a
sample of less than 100 observations.

In addition, to capture the nonlinear effects and interaction
effects, we may expand the linear model by incorporating higher
order polynomials and interaction terms.

While only few of the potential covariates may have non-zero
coeflicients in the true model, unfortunately we do not know
which ones.

Covariates with zero coeflicients are called irrelevant.

To avoid the omitted variables bias, the researcher may attempt to
include all potential covariates. Unfortunately, that results in
large variances and standard errors on the main parameters of

interest.
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» Partition the regression model:
Y =81 X1+ X682+ U,

where X is an n X 1 vector which contains the observations on
the main explanatory variable for research.

» X, is an n X (k — 1) matrix which includes observations on k — 1
other potential explanatory variables (control variables).

» The variance of the OLS estimator:

2

~ o
var [ 1X] = T
ar | B | XTMX,
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Since X| M>X; = X] M] M,X, = XTX|, where

X, = MoX =X, - X, (X]X2) ™ XIX; = X - Xo7.

> ¥ is the OLS coefficient from the regression of X; against Xj.

> X 1 1s the vector ,9f 9LS residuals from OLS regression of X
against X, and X[ X is the sum of the squared residuals.

When we include more control variables, a bigger portion of X
is removed resulting in a smaller sum of the squared residuals.

‘When we include irrelevant control variables, the variance of the
OLS estimator increases. One would see larger standard errors,
smaller z-statistics, larger p-values and wider confidence
intervals.

Two wrong practices: (1) include only significant regressors; (2)
data snooping/p-hacking.
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Include only significant regressors?
» If a subset of the coefficients in the linear model

Yi=p1Xig+...+ B Xix+U;

are exactly zero, we wish to find the smallest sub-model
consisting of only explanatory variables with non-zero
coefficients.
> Estimate the full model with all variables. Let T; = ﬁ i/SE (E j)
denote the z-statistic for Hy : B; = 0 versus H; : B; # 0.
» What if we run a second regression with only statistically
significant coeflicients in the first stage?
» Such a practice would typically result in exclusion of relevant
covariates and the omitted variables bias.
> Hypothesis testing controls for the probability of Type I error but
leaves the probability of Type II error uncontrolled.
> You find a coefficient to be non-significant, possibly due to a high
probability of Type II error.
> Failure to reject Hyp : §; = 0 cannot be used as a reliable evidence
that the true coefficient is zero.
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Data snooping

» Data snooping or p-hacking occurs when the researcher uses the
same data in order to produce statistically significant estimates
with large ¢-statistics or small p-values.

» Data snooping destroys the validity of #-statistics and p-values
and makes the empirical results less convincing.

> You may try dropping different combinations of potential
explanatory variables from the regression to get a statistically
significant estimate for the main variable of interest.

» Suppose that the researcher can construct J independent
estimators for 6 such that §j ~N (9, 0'12), j=12,..,J, where
0']2 is known.

» The researcher conducts J tests with significance level 5% of
Hy: 0 =0against H; : 6 # 0.
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» The researcher concludes that 6 # O if one of the J tests rejects
0 =0.

» Suppose that in fact § = 0. The probability of concluding that
6 # 0 (known as false discovery) is given by

Pr| max |— >1.96} = 1-Pr| max |— 31.96}
1<j<J |0 1<j<J |0
= 1-| |pr —’ < 1.96
[Tee]| 2] <190
= 1—(0.95)1.

» The false discovery probability quickly grows as J T . E.g.,
1-(0.95)' ~ 40%.

» When the researcher performs many of tests, the Type I error
probability is not controlled and may be much larger than the
nominal significance level.
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» In practice, estimators are rarely independent, the same
relationship holds qualitatively.

» If the researcher searchers long enough, with a high probability
they would find a significant estimate.

» A procedure that automatically detects the smallest sub-model
consisting of only relevant explanatory variables guards against

data snooping and makes the empirical results more convincing
to readers.
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One classical approach to model selection

» Order Ty, ..., T in absolute value:
[Toy| = [Ty = - = [T |-

> Let j denote the value of j that minimizes RSS (j) + js*log (n),
where RSS () is the residual sum of squares from the model
with j variables corresponding to the j largest absolute
t-statistics and s2 = (n — k) ™! 2y Uiz.

> The selected model is the model with ; variables corresponding
to the j largest absolute ¢-statistics.

» When n is large, with high probability, this selected model is the
same as the smallest sub-model with only nonzero coefficients.

» Disadvantages:

> Assume homoskedasticity;
> Break down in high-dimensional regression k > n (s> = 0).
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Convergence in probability

> Let{X, :n=1,2,...} be asequence of random variables. Let X
be random or non-random.

» We will consider non-random sequences with the following
typical elements: 1. E [|X,, — X|"]; 2. Pr[|X,, — X| > &] for
some € > 0.

> Convergence in r-th mean. X,, converges to X in r-th mean if
E[|X,-X|"] > 0asn — oo.

> Convergence in probability. X,, converges in probability to X if
foralle > 0, Pr[|X, — X| > €] —» 0asn — . It is denoted as
X, —p X. If X;, =, 0, we denote X,, = 0, (1).
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» Convergence in r-th mean implies convergence in probability.

» (Markov’s Inequality) Let X be a random variable. For £ > 0 and

r>0,

HHX}ze]sEq5VL

» Suppose that X, converges to X in r-th mean,
E[|X, - X|"] — 0. Then,
E[|Xn - X|']

Pr{|X,-X|>¢] <
SV

— 0.

> Let X|,...X, beasample of i.i.d. random variables such that
E[|Xi]] < oco. Then,n ' ¥, X; =, E[X;] asn — oo.

» Due toi.i.d. assumption, we have that E [X;] = E [X;] for all
i=1,...,n.
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Suppose that X,, —,, a and Y,, —, b, where a and b are some finite
constants. Let ¢ be another constant.

> cX, —, ca.

> X, +Y, =, a+b.

XnYn —p ab.

Xn/Yn —p a/b, provided that b # 0.
If0<X,<Y,andY, —, 0, then X, —, 0.
X, —p 0if and only if | X,,| —, 0.

vV v.vyy
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Continuous mapping theorem (CMT)

> Suppose that X,, —, ¢, a constant, and let /(-) be a continuous
function at ¢. Then, & (X,,) —p h(c).

> suppose that 8, —, 8. Then B2 —, g%, and 1/8, —, 1/B,
provided 8 # 0.
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Convergence of random vectors

» The random vectors/matrices converge in probability if their
elements converge in probability.

» Consider the vector case. Let {X,, : n=1,2,...} be a sequence
of random k-vectors. X,, — X —, 0 element-by-element, where
X is a possibly random k-vector, if and only if || X, — X|| —, 0,
where ||-|| denotes the Euclidean norm.

» The rules for manipulation of probability limits in the
vector/matrix case are similar to those in the scalar case.

» The CMT is valid in vector/matrix case as well.

» OLS estimator is a consistent estimator of the coefficients:

B\_ﬁ?ﬁ-
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Convergence in distribution

> Let {X,, :n=1,2,...} be a sequence of random variables.

> Let F,,(x) denote the marginal CDF of X,,, i.e.
Fn(x) =Pr (X, < x).Let F(x) be another CDF.

> We say that X,, converges in distribution if F, (x) — F(x) for all
x where F(x) is continuous.

» In this case, we write X,, —4 X, where X is any random variable
with the distribution function F(x).

» Note that while we say that X,, converges to X, the convergence
in distribution is not convergence of random variables, but of the
distribution functions.

23/30



» The extension to the vector case is straightforward. Let X,, and X
be two random k-vectors.

> We say that X;,, —4 X if the joint CDF of X,, converges to that of
X at all continuity points, i.e.

F}’L(x19"'9-xk) = Pr[Xl’l,l Sx]""aXn,k Sxk]
— Pr{Xy <xq,..., Xk < xi]
= F(xy,...,x),
for all points (x1,...,x;) where F is continuous.

» In this case, we say that the elements of X,;, X, 1, .. . Xy k., jointly
converge in distribution to X1, . .. Xg, the elements of X.
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Rules of convergence in distribution

» (Cramer Convergence Theorem) Suppose that X;, —4 X and
Y, —p c. Then,
» X, +Y, -4 X+c.
> Y. X, —aqcX.
> X,/Y, =4 X/c, provided that ¢ # 0.
» If X,, —, X, then X;,, —4 X. Converse is not true with one
exception: If X,, —4 c, a constant, then X,, —, c.

» If X, -Y, —,0,and Y, —4 Y, then X,, —4 Y.
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Continuous mapping theorem

» Suppose that X;, —4 X, and let % (-) be a function continuous on
a set X such that Pr [X € X] = 1. Then, & (X)) —4 h(X).

» Note that contrary to convergence in probability, X, —4 X and
Y, —4 Y does not imply that, for example, X,, +Y,, =4 X +7,
unless a joint convergence result holds.
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The central limit theorem

» Let Xi,..., X, be asample of iid random variables such that
E[X;] =0and 0 < E [X}] < co. Then, as n — oo,
w2 S X —a N(O.E [X3]).

> Let Xi,...X, be asample of iid random variables with
E[X;] = p and Var [X;] = 0 < co. Define

n
Yn = I’L_1 Z Xi.
i=1

> Consider n™!/2 3% | (X; — 1) . We have that
(X1—-uw,...,(X, — ) are i.i.d. with the mean
E [(X; — )] =0, and the variance E [(X1 —p)z] =02 < co.
Therefore, by the CLT,

n
n'/? (Yn —#) = a2 (Xi-p)
i=1

—d N(0,0’z)
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» Let X, be a random k-vector. Then, X,, —4 X if and only if
ATX,, —4 A7 X for all non-zero A € R,

> Let X|,..., X, be asample of i.i.d. random k-vectors such that
E[X;] = 0 (denote X; = (Xi.1..... Xix) ") and E [ij] < oo for

all j=1,...,k,and E [XleT] is positive definite. Then,
n 230 X >4 N(0,E [X1X]]).
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Asymptotic normality of OLS

> Denote V=E [U?X;X]| and G = E [ X;X]"]. Then,

~ IRN RN
\/ﬁ(ﬁ—ﬁ) = —ZX,-XiT _ZXiUi
i =
andn™' YL, X; X -, Gandn™'2 3%, X;U; >4 N (0, V).

» Then,
Vi (E_/;) Sy N (0, G—IVG—l) .

» In the homoskedastic model, V = 0-2G and G™'VG~! = ¢2G~!.
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Bounded in probability

» Suppose that 1, = n (5— 9) —4 N (0,0?%). We say that the
sequence {1, }, _, is bounded in probability and denote
A =0, (1).
> Suppose that &, —,, 0 (&, = 0p, (1)). Then,
Endp = Op (1) Op (1) =0p (1)
> We also write
G+, =0+—.0 ()=60+0 ( ! )
IR "\vn)
6 converges to 6 at the rate n~'/2.

> More generally, we write X,, = O, (a;,) for some non-random
sequence a,, if X,/a, = 0, (1).
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