Introduction to Statistical Machine Learning with Applications in Econometrics Lecture 9: Recap of OLS

Instructor: Ma, Jun

Renmin University of China

November 18, 2021

Linear causal model

- Suppose we have a random sample $\{(Y_i, X_i^{\top}) : i = 1, 2, ..., n\},\$ where $X_i = (X_{i,1}, X_{i,2}, ..., X_{i,k})$ with $k < n$. $X_{i,j}$: the *j*-th variable for the *i*-th observation. By convention, $X_{i,1} = 1$. Its coefficient corresponds to the intercept.
- Assume the data is i.i.d.: (Y_i, X_i^{\top}) has the same distribution as (Y_j, X_j^{\top}) and is independent of (Y_j, X_j^{\top}) , $\forall i \neq j$.
- ► Linear model: $Y = X^{\top} \beta + U$. X: observed explanatory variables; U: unobserved explanatory factor.
- \blacktriangleright (Y_i, X_i^{\top}) is generated by the model: $Y_i = X_i^{\top} \beta + U_i$ for some U_i .
- Strong exogeneity: $E[U|X] = 0$ (implies $E[U] = 0$).
- \blacktriangleright Weak exogeneity: E [U] = E [UX] (= Cov [U, X]) = 0.
- \triangleright OLS estimator of β :

$$
\widehat{\beta} = \underset{b_1,\dots,b_p}{\text{argmin}} \sum_{i=1}^n (Y_i - b_1 X_{i,1} - b_2 X_{i,2} - \dots - b_p X_{i,k})^2.
$$

- \blacktriangleright We should give an interpretation of the linear part $X_i^{\top} \beta$ as a feature of the population (the distribution of (Y, X^{\top})).
- ► Under strong exogeneity, $E[Y | X] = X^{\top} \beta$.
- \blacktriangleright Under weak exogeneity, $X^{\top} \beta$ is the best linear approximation of $E[Y | X]$: $\beta = (E[XX^\top])^{-1}E[XY]$ and

$$
\beta = \operatorname*{argmin}_{b \in \mathbb{R}^k} \mathbb{E}\left[\left(\mathbb{E}\left[Y \mid X\right] - X^\top b\right)^2\right].
$$

 β is called projection coefficients.

- Homoskedastic model: $E[U^2 | X] = \sigma^2 > 0$.
- Heteroskedastic model: $E[U^2 | X]$ is a function of X.

Matrix notations

 \triangleright We can stack these *n* equations together

$$
Y_1 = X_1^{\top} \beta + U_1
$$

\n
$$
Y_2 = X_2^{\top} \beta + U_2
$$

\n
$$
\vdots \vdots \vdots
$$

\n
$$
Y_n = X_n^{\top} \beta + U_n.
$$

\blacktriangleright Define

$$
\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} X_1^{\top} \\ X_2^{\top} \\ \vdots \\ X_3^{\top} \end{pmatrix}, \ \mathbf{U} = \begin{pmatrix} U_1 \\ U_2 \\ \vdots \\ U_n \end{pmatrix}
$$

Y and U are $n \times 1$ vectors and X is an $n \times k$ matrix. The (i, j) element of X is the *i*-th observation on the *j*-th regressor.

- \triangleright The system of *n* equations can be written as $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{U}$.
- \triangleright No multicollinearity: rank $(\mathbf{X}) = k$.

.

 \blacktriangleright For a homoskedastic model,

$$
\mathbf{Y} = \mathbf{X}\beta + \mathbf{U}
$$

\n
$$
\mathbf{E}[\mathbf{U} | \mathbf{X}] = \mathbf{0}
$$

\n
$$
\text{Var}[\mathbf{U} | \mathbf{X}] = \sigma^2 \mathbf{I}_n,
$$

where I_n denotes the *n*-dimensional identity matrix.

OLS in matrix notations

- \triangleright The OLS estimator of β is obtained by solving $\widehat{\beta} = \operatorname{argmin}_{b \in \mathbb{R}^k} ||\mathbf{Y} - \mathbf{X}b||.$
- **►** Then, $\widehat{\beta} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{Y}$ and the fitted residuals are $\widehat{\mathbf{U}} = \mathbf{Y} \mathbf{X}\widehat{\beta}$.
- \blacktriangleright $\widehat{\mathbf{U}}$ satisfies $\mathbf{X}^{\top} \widehat{\mathbf{U}} = \mathbf{0}$.
- The OLS is unbiased: $E[\hat{\beta} | \mathbf{X}] = \beta$.
- ► Under homoskedasticity, Var $\left[\hat{\beta} \mid \mathbf{X}\right] = \sigma^2 (\mathbf{X}^\top \mathbf{X})^{-1}$.

Projection matrices

- \blacktriangleright Let **X** be $n \times k$ with rank $(X) = k$. Then define $P_{\mathbf{X}} = \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top}$. $P_{\mathbf{X}} \mathbf{Y} = \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y} = \mathbf{X} \widehat{\beta}$ gives the fitted values.
- \blacktriangleright The fitted residuals are

$$
\widehat{\mathbf{U}} = \mathbf{Y} - \mathbf{X}\widehat{\beta} = \mathbf{Y} - \mathbf{X} (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{Y} = \left(\mathbf{I}_n - \mathbf{X} (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \right) \mathbf{Y}.
$$

- \blacktriangleright We define $M_X = I_n X (X^{\top}X)^{-1} X^{\top} = I_n P_X$. $M_X Y$ gives the fitted residuals.
- \triangleright Properties of P_X and M_X :
	- \blacktriangleright P_X and M_X are symmetric;
	- \blacktriangleright $P_X X = X$ and $M_X X = 0$;
	- \triangleright P_X and M_X are orthogonal: $M_X P_X = 0$ and $P_X M_X = 0$;
	- \triangleright P_X and M_X are idempotent: $P_X P_X = P_X$ and $M_X M_X = M_X$;
	- \triangleright rank (P **x**) = k and rank (M **x**) = $n k$.

Partitioned regression

▶ Partition $\mathbf{X} = \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 \end{bmatrix}, \beta = (\beta_1^{\top})^T$ $_{1}^{\top}, \beta_{2}^{\top}$ $\binom{1}{2}^{\top}$ and the model as

$$
\mathbf{Y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \mathbf{U},
$$

where X_1 is $n \times k_1$ and X_2 is $n \times k_2$ ($k_1 + k_2 = k$).

- Partition $\widehat{\beta} = (\widehat{\beta}_1^{\top}, \widehat{\beta}_2^{\top})^{\top}$.
- ▶ Denote $M_1 = M_{X_1}$ and $M_2 = M_{X_2}$. Then,

$$
\widehat{\beta}_1 = (\mathbf{X}_1^{\top} \mathbf{M}_2 \mathbf{X}_1)^{-1} (\mathbf{X}_1^{\top} \mathbf{M}_2 \mathbf{Y})
$$

\n
$$
\widehat{\beta}_2 = (\mathbf{X}_2^{\top} \mathbf{M}_1 \mathbf{X}_2)^{-1} (\mathbf{X}_2^{\top} \mathbf{M}_1 \mathbf{Y})
$$

and

$$
\operatorname{Var}\left[\widehat{\beta}_1 \mid \mathbf{X}\right] = \sigma^2 \left(\mathbf{X}_1^\top \mathbf{M}_2 \mathbf{X}_1\right)^{-1}
$$

$$
\operatorname{Var}\left[\widehat{\beta}_2 \mid \mathbf{X}\right] = \sigma^2 \left(\mathbf{X}_2^\top \mathbf{M}_1 \mathbf{X}_2\right)^{-1}.
$$

Omitted variable bias

 \triangleright Suppose the researcher estimates β_1 by regressing **Y** on **X**₁ only. Let $\widetilde{\beta}_1 = (\mathbf{X}_1^T \mathbf{X}_1)^{-1} (\mathbf{X}_1^T \mathbf{Y})$ denote the OLS estimates.

 \blacktriangleright Then,

 \blacksquare

$$
\widetilde{\beta}_1 = (\mathbf{X}_1^{\top} \mathbf{X}_1)^{-1} (\mathbf{X}_1^{\top} \mathbf{Y})
$$
\n
$$
= \beta_1 + (\mathbf{X}_1^{\top} \mathbf{X}_1)^{-1} \mathbf{X}_1^{\top} \mathbf{X}_2 \beta_2 + (\mathbf{X}_1^{\top} \mathbf{X}_1)^{-1} \mathbf{X}_1^{\top} \mathbf{U}
$$
\nand
$$
E\left[\widetilde{\beta}_1 \mid \mathbf{X}\right] = \beta_1 + (\mathbf{X}_1^{\top} \mathbf{X}_1)^{-1} \mathbf{X}_1^{\top} \mathbf{X}_2 \beta_2.
$$
\n
$$
(\mathbf{X}_1^{\top} \mathbf{X}_1)^{-1} \mathbf{X}_1^{\top} \mathbf{X}_2 \beta_2 \text{ is the omitted variable bias.}
$$

Effects of covariates

- \blacktriangleright In practical applications, we often have a long list of potential explanatory variables. It is possible that k is close to n .
- \triangleright Cross-country growth regression estimates the effect of initial GDP on future growth rates, with more than 50 other explanatory variable including institutional and technological factors and a sample of less than 100 observations.
- \blacktriangleright In addition, to capture the nonlinear effects and interaction effects, we may expand the linear model by incorporating higher order polynomials and interaction terms.
- \triangleright While only few of the potential covariates may have non-zero coefficients in the true model, unfortunately we do not know which ones.
- \triangleright Covariates with zero coefficients are called irrelevant.
- \triangleright To avoid the omitted variables bias, the researcher may attempt to include all potential covariates. Unfortunately, that results in large variances and standard errors on the main parameters of interest.

 \blacktriangleright Partition the regression model:

$$
\mathbf{Y} = \beta_1 \mathbf{X}_1 + \mathbf{X}_2 \beta_2 + \mathbf{U},
$$

where X_1 is an $n \times 1$ vector which contains the observations on the main explanatory variable for research.

- \triangleright **X**₂ is an $n \times (k-1)$ matrix which includes observations on $k-1$ other potential explanatory variables (control variables).
- \blacktriangleright The variance of the OLS estimator:

$$
\text{Var}\left[\widehat{\beta}_1 \mid \mathbf{X}\right] = \frac{\sigma^2}{\mathbf{X}_1^{\top} \mathbf{M}_2 \mathbf{X}_1}.
$$

 \blacktriangleright Since $\mathbf{X}_1^{\top} \mathbf{M}_2 \mathbf{X}_1 = \mathbf{X}_1^{\top} \mathbf{M}_2^{\top} \mathbf{M}_2 \mathbf{X}_1 = \widetilde{\mathbf{X}}_1^{\top} \widetilde{\mathbf{X}}_1$, where

$$
\widetilde{\mathbf{X}}_1 = \boldsymbol{M}_2 \mathbf{X}_1 = \mathbf{X}_1 - \mathbf{X}_2 \left(\mathbf{X}_2^{\top} \mathbf{X}_2 \right)^{-1} \mathbf{X}_2^{\top} \mathbf{X}_1 = \mathbf{X}_1 - \mathbf{X}_2 \widehat{\boldsymbol{\gamma}}.
$$

- $\hat{\gamma}$ is the OLS coefficient from the regression of **X**₁ against **X**₂.
- $\blacktriangleright \widetilde{\mathbf{X}}_1$ is the vector of OLS residuals from OLS regression of \mathbf{X}_1 against \mathbf{X}_2 and $\widetilde{\mathbf{X}}_1^T \widetilde{\mathbf{X}}_1$ is the sum of the squared residuals.
- \triangleright When we include more control variables, a bigger portion of \mathbf{X}_1 is removed resulting in a smaller sum of the squared residuals.
- \blacktriangleright When we include irrelevant control variables, the variance of the OLS estimator increases. One would see larger standard errors, smaller t -statistics, larger p -values and wider confidence intervals.
- \blacktriangleright Two wrong practices: (1) include only significant regressors; (2) data snooping/ p -hacking.

Include only significant regressors?

 \triangleright If a subset of the coefficients in the linear model

$$
Y_i = \beta_1 X_{i,1} + \ldots + \beta_k X_{i,k} + U_i
$$

are exactly zero, we wish to find the smallest sub-model consisting of only explanatory variables with non-zero coefficients.

- Estimate the full model with all variables. Let $T_j = \widehat{\beta}_j / SE\left(\widehat{\beta}_j\right)$ denote the *t*-statistic for $H_0: \beta_i = 0$ versus $H_1: \beta_i \neq 0$.
- \triangleright What if we run a second regression with only statistically significant coefficients in the first stage?
- \triangleright Such a practice would typically result in exclusion of relevant covariates and the omitted variables bias.
	- \blacktriangleright Hypothesis testing controls for the probability of Type I error but leaves the probability of Type II error uncontrolled.
	- \triangleright You find a coefficient to be non-significant, possibly due to a high probability of Type II error.
	- Failure to reject $H_0: \beta_j = 0$ cannot be used as a reliable evidence that the true coefficient is zero.

Data snooping

- \triangleright Data snooping or p-hacking occurs when the researcher uses the same data in order to produce statistically significant estimates with large t -statistics or small p -values.
- \triangleright Data snooping destroys the validity of *t*-statistics and *p*-values and makes the empirical results less convincing.
- \triangleright You may try dropping different combinations of potential explanatory variables from the regression to get a statistically significant estimate for the main variable of interest.
- \triangleright Suppose that the researcher can construct *J* independent estimators for θ such that $\widehat{\theta}_j \sim \mathrm{N}\left(\theta, \sigma_j^2\right), j = 1, 2, ..., J$, where σ_j^2 is known.
- \triangleright The researcher conducts *J* tests with significance level 5% of H_0 : $\theta = 0$ against H_1 : $\theta \neq 0$.
- In The researcher concludes that $\theta \neq 0$ if one of the J tests rejects $\theta = 0.$
- \triangleright Suppose that in fact $\theta = 0$. The probability of concluding that $\theta \neq 0$ (known as false discovery) is given by

$$
\Pr\left[\max_{1 \le j \le J} \left| \frac{\hat{\theta}_j}{\sigma_j} \right| > 1.96 \right] = 1 - \Pr\left[\max_{1 \le j \le J} \left| \frac{\hat{\theta}_j}{\sigma_j} \right| \le 1.96 \right]
$$
\n
$$
= 1 - \prod_{i=1}^{J} \Pr\left[\left| \frac{\hat{\theta}_j}{\sigma_j} \right| \le 1.96 \right]
$$
\n
$$
= 1 - (0.95)^{J}.
$$

- \triangleright The false discovery probability quickly grows as $J \uparrow \infty$. E.g., $1 - (0.95)^{10} \approx 40\%.$
- \triangleright When the researcher performs many of tests, the Type I error probability is not controlled and may be much larger than the nominal significance level.
- \blacktriangleright In practice, estimators are rarely independent, the same relationship holds qualitatively.
- \triangleright If the researcher searchers long enough, with a high probability they would find a significant estimate.
- ▶ A procedure that automatically detects the smallest sub-model consisting of only relevant explanatory variables guards against data snooping and makes the empirical results more convincing to readers.

One classical approach to model selection

 \triangleright Order $T_1, ..., T_k$ in absolute value:

$$
|T_{(1)}| \ge |T_{(2)}| \ge \cdots \ge |T_{(k)}|.
$$

- ► Let \hat{j} denote the value of j that minimizes $RSS(j) + js^2 \log(n)$, where $RSS(i)$ is the residual sum of squares from the model with \dot{j} variables corresponding to the \dot{j} largest absolute *t*-statistics and $s^2 = (n - k)^{-1} \sum_{i=1}^n \widehat{U}_i^2$.
- \triangleright The selected model is the model with \hat{i} variables corresponding to the \hat{i} largest absolute *t*-statistics.
- \blacktriangleright When *n* is large, with high probability, this selected model is the same as the smallest sub-model with only nonzero coefficients.
- \blacktriangleright Disadvantages:
	- \blacktriangleright Assume homoskedasticity;
	- **E** Break down in high-dimensional regression $k > n$ ($s^2 = 0$).

Convergence in probability

- \blacktriangleright Let $\{X_n : n = 1, 2, \ldots\}$ be a sequence of random variables. Let X be random or non-random.
- \triangleright We will consider non-random sequences with the following typical elements: 1. E $[|X_n - X|^r]$; 2. Pr $[|X_n - X| > \varepsilon]$ for some $\varepsilon > 0$.
	- Convergence in r -th mean. X_n converges to X in r -th mean if $E\left[\left|X_n - X\right|^r\right] \to 0$ as $n \to \infty$.
	- \blacktriangleright Convergence in probability. X_n converges in probability to X if for all $\varepsilon > 0$, Pr $[|X_n - X| \ge \varepsilon] \to 0$ as $n \to \infty$. It is denoted as $X_n \rightarrow_p X$. If $X_n \rightarrow_p 0$, we denote $X_n = o_n (1)$.
- \triangleright Convergence in r-th mean implies convergence in probability.
- \blacktriangleright (Markov's Inequality) Let X be a random variable. For $\varepsilon > 0$ and $r > 0$, r

$$
Pr\left[|X| \geq \varepsilon\right] \leq \frac{E\left[|X|^r\right]}{\varepsilon^r}.
$$

 \blacktriangleright Suppose that X_n converges to X in r-th mean, $E\left[|X_n - X|^r\right] \to 0$. Then,

$$
Pr[|X_n - X| \ge \varepsilon] \le \frac{E[|X_n - X|^r]}{\varepsilon^r} \to 0.
$$

- \blacktriangleright Let X_1, \ldots, X_n be a sample of i.i.d. random variables such that $E[|X_1|] < \infty$. Then, $n^{-1} \sum_{i=1}^n X_i \rightarrow_p E[X_1]$ as $n \rightarrow \infty$.
- \blacktriangleright Due to i.i.d. assumption, we have that $E[X_i] = E[X_1]$ for all $i = 1$, n

Suppose that $X_n \to_p a$ and $Y_n \to_p b$, where a and b are some finite constants. Let c be another constant.

- \blacktriangleright $cX_n \rightarrow_p c\alpha$.
- \blacktriangleright $X_n + Y_n \rightarrow_p a + b$.
- \blacktriangleright $X_n Y_n \rightarrow_p a b$.
- \blacktriangleright $X_n/Y_n \rightarrow_p a/b$, provided that $b \neq 0$.
- If $0 \leq X_n \leq Y_n$ and $Y_n \to_p 0$, then $X_n \to_p 0$.
- \blacktriangleright $X_n \rightarrow_p 0$ if and only if $|X_n| \rightarrow_p 0$.

Continuous mapping theorem (CMT)

- ► Suppose that $X_n \to_p c$, a constant, and let $h(\cdot)$ be a continuous function at c. Then, $h(X_n) \to_p h(c)$.
- ► suppose that $\widehat{\beta}_n \to_p \beta$. Then $\widehat{\beta}_n^2 \to_p \beta^2$, and $1/\widehat{\beta}_n \to_p 1/\beta$, provided $\beta \neq 0$.

Convergence of random vectors

- \triangleright The random vectors/matrices converge in probability if their elements converge in probability.
- Consider the vector case. Let $\{X_n : n = 1, 2, ...\}$ be a sequence of random *k*-vectors. $X_n - X \rightarrow_p 0$ element-by-element, where X is a possibly random k-vector, if and only if $||X_n - X|| \to_p 0$, where $\|\cdot\|$ denotes the Euclidean norm.
- \blacktriangleright The rules for manipulation of probability limits in the vector/matrix case are similar to those in the scalar case.
- \triangleright The CMT is valid in vector/matrix case as well.
- \triangleright OLS estimator is a consistent estimator of the coefficients: $\widehat{\beta} \rightarrow_p \beta$.

Convergence in distribution

- \blacktriangleright Let $\{X_n : n = 1, 2, \ldots\}$ be a sequence of random variables.
- \blacktriangleright Let $F_n(x)$ denote the marginal CDF of X_n , i.e. $F_n(x) = Pr(X_n \leq x)$. Let $F(x)$ be another CDF.
- \blacktriangleright We say that X_n converges in distribution if $F_n(x) \to F(x)$ for all x where $F(x)$ is continuous.
- In this case, we write $X_n \to d X$, where X is any random variable with the distribution function $F(x)$.
- \blacktriangleright Note that while we say that X_n converges to X, the convergence in distribution is not convergence of random variables, but of the distribution functions.
- \blacktriangleright The extension to the vector case is straightforward. Let X_n and X be two random k -vectors.
- \blacktriangleright We say that $X_n \rightarrow_A X$ if the joint CDF of X_n converges to that of X at all continuity points, i.e.

$$
F_n(x_1,...,x_k) = \Pr\left[X_{n,1} \le x_1,...,X_{n,k} \le x_k\right]
$$

$$
\rightarrow \Pr\left[X_1 \le x_1,...,X_k \le x_k\right]
$$

$$
= F(x_1,...,x_k),
$$

for all points (x_1, \ldots, x_k) where F is continuous.

In this case, we say that the elements of $X_n, X_{n,1}, \ldots, X_{n,k}$, jointly converge in distribution to X_1, \ldots, X_k , the elements of X.

Rules of convergence in distribution

- \blacktriangleright (Cramer Convergence Theorem) Suppose that $X_n \rightarrow_A X$ and $Y_n \rightarrow_p c$. Then,
	- \blacktriangleright $X_n + Y_n \rightarrow_d X + c$.

$$
\blacktriangleright \ \overline{Y_n X_n} \to_d \, cX.
$$

- \blacktriangleright $X_n/Y_n \rightarrow_d X/c$, provided that $c \neq 0$.
- If $X_n \to_p X$, then $X_n \to_d X$. Converse is not true with one exception: If $X_n \to_d c$, a constant, then $X_n \to_p c$.
- If $X_n Y_n \to_p 0$, and $Y_n \to_d Y$, then $X_n \to_d Y$.

Continuous mapping theorem

- ► Suppose that $X_n \to d X$, and let $h(\cdot)$ be a function continuous on a set X such that Pr $[X \in X] = 1$. Then, $h(X_n) \rightarrow_d h(X)$.
- \triangleright Note that contrary to convergence in probability, $X_n \rightarrow_d X$ and $Y_n \rightarrow_d Y$ does not imply that, for example, $X_n + Y_n \rightarrow_d X + Y$, unless a joint convergence result holds.

The central limit theorem

- \blacktriangleright Let X_1, \ldots, X_n be a sample of iid random variables such that $E[X_1] = 0$ and $0 < E[X_1^2] < \infty$. Then, as $n \to \infty$, $n^{-1/2} \sum_{i=1}^{n} X_i \rightarrow_d N(\dot{0}, \dot{E} [X_1^2]).$
- \blacktriangleright Let X_1, \ldots, X_n be a sample of iid random variables with $E[X_1] = \mu$ and Var $[X_1] = \sigma^2 < \infty$. Define

$$
\overline{X}_n = n^{-1} \sum_{i=1}^n X_i.
$$

• Consider $n^{-1/2} \sum_{i=1}^{n} (X_i - \mu)$. We have that $(X_1 - \mu)$, ..., $(X_n - \mu)$ are i.i.d. with the mean $E[(X_1 - \mu)] = 0$, and the variance $E[(X_1 - \mu)^2] = \sigma^2 < \infty$. Therefore, by the CLT,

$$
n^{1/2} \left(\overline{X}_n - \mu \right) = n^{-1/2} \sum_{i=1}^n (X_i - \mu)
$$

$$
\rightarrow_d \mathbb{N} \left(0, \sigma^2 \right).
$$

- In Let X_n be a random k-vector. Then, $X_n \to d X$ if and only if $\lambda^\top X_n \to_d \lambda^\top X$ for all non-zero $\lambda \in \mathbb{R}^k$.
- In Let X_1, \ldots, X_n be a sample of i.i.d. random k-vectors such that $E[X_1] = 0$ (denote $X_i = (X_{i,1}, ..., X_{i,k})^\top$) and $E[X_{1,j}^2] < \infty$ for all $j = 1, ..., k$, and $E[X_1 X_1^{\top}]$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is positive definite. Then, $n^{-1/2} \sum_{i=1}^{n} X_i \rightarrow_d N(0, E[X_1^T X_1^T$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Asymptotic normality of OLS

▶ Denote $V = E\left[U_i^2 X_i X_i^{\top}\right]$ and $G = E\left[X_i X_i^{\top}\right]$. Then,

$$
\sqrt{n}\left(\widehat{\beta}-\beta\right) = \left(\frac{1}{n}\sum_{i=1}^n X_i X_i^\top\right)^{-1} \left(\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i U_i\right)
$$

and $n^{-1} \sum_{i=1}^{n} X_i X_i^{\top} \longrightarrow_p \mathbf{G}$ and $n^{-1/2} \sum_{i=1}^{n} X_i U_i \longrightarrow_d \mathbf{N}(\mathbf{0}, \mathbf{V})$. \blacktriangleright Then,

$$
\sqrt{n}\left(\widehat{\beta}-\beta\right)\to_d N\left(\mathbf{0},\mathbf{G}^{-1}\mathbf{VG}^{-1}\right).
$$

In the homoskedastic model, $V = \sigma^2 G$ and $G^{-1}VG^{-1} = \sigma^2 G^{-1}$.

Bounded in probability

- Suppose that $\lambda_n = \sqrt{n} \left(\widehat{\theta} \theta \right) \rightarrow_d N(0, \sigma^2)$. We say that the sequence $\{\lambda_n\}_{n=1}^{\infty}$ is bounded in probability and denote $\lambda_n = O_n(1)$.
- ► Suppose that $\xi_n \to_p 0$ ($\xi_n = o_p(1)$). Then, $\xi_n \lambda_n = o_p(1) O_p(1) = o_p(1)$.
- \blacktriangleright We also write

$$
\widehat{\theta} = \theta + \frac{1}{\sqrt{n}} \cdot \lambda_n = \theta + \frac{1}{\sqrt{n}} \cdot O_p(1) = \theta + O_p\left(\frac{1}{\sqrt{n}}\right).
$$

 $\widehat{\theta}$ converges to θ at the rate $n^{-1/2}$.

 \blacktriangleright More generally, we write $X_n = O_n(\alpha_n)$ for some non-random sequence α_n , if $X_n/\alpha_n = O_p(1)$.