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Linear causal model
I Suppose we have a random sample

{(
.8 , ->8

)
: 8 = 1, 2, ..., =

}
,

where -8 =
(
-8,1, -8,2, ..., -8,:

)
with : < =. -8, 9 : the 9-th

variable for the 8-th observation. By convention, -8,1 = 1. Its
coefficient corresponds to the intercept.

I Assume the data is i.i.d.:
(
.8 , ->8

)
has the same distribution as(

. 9 , ->9
)
and is independent of

(
. 9 , ->9

)
, ∀8 ≠ 9 .

I Linear model: . = ->V +*. -: observed explanatory variables;
*: unobserved explanatory factor.

I
(
.8 , ->8

)
is generated by the model: .8 = ->8 V +*8 for some*8 .

I Strong exogeneity: E [* | -] = 0 (implies E [*] = 0).
I Weak exogeneity: E [*] = E [*-] (= Cov [*, -]) = 0.
I OLS estimator of V:

V̂ = argmin
11,...,1?

=∑
8=1

(
.8 − 11-8,1 − 12-8,2 − · · · − 1?-8,:

)2 .
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I We should give an interpretation of the linear part ->
8
V as a

feature of the population (the distribution of (. , ->)).
I Under strong exogeneity, E [. | -] = ->V.
I Under weak exogeneity, ->V is the best linear approximation of

E [. | -]: V = (E [-->])−1 E [-. ] and

V = argmin
1∈R:

E
[ (

E [. | -] − ->1
)2

]
.

V is called projection coefficients.
I Homoskedastic model: E

[
*2 | -

]
= f2 > 0.

I Heteroskedastic model: E
[
*2 | -

]
is a function of - .
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Matrix notations
I We can stack these = equations together

.1 = ->1 V +*1

.2 = ->2 V +*2
...

...
...

.= = ->= V +*=.

I Define

Y =

©­­­­«
.1
.2
...
.=

ª®®®®¬
, X =

©­­­­«
->1
->2
...
->3

ª®®®®¬
, U =

©­­­­«
*1
*2
...
*=

ª®®®®¬
.

Y and U are = × 1 vectors and X is an = × : matrix. The (8, 9)
element of X is the 8-th observation on the 9-th regressor.

I The system of = equations can be written as Y = XV +U.
I No multicollinearity: rank (X) = : .
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I For a homoskedastic model,

Y = XV +U
E [U | X] = 0

Var [U | X] = f2I=,

where I= denotes the =-dimensional identity matrix.
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OLS in matrix notations

I The OLS estimator of V is obtained by solving
V̂ = argmin1∈R: ‖Y −X1‖.

I Then, V̂ = (X>X)−1 X>Y and the fitted residuals are Û = Y−XV̂.
I Û satisfies X>Û = 0.
I The OLS is unbiased: E

[
V̂ | X

]
= V.

I Under homoskedasticity, Var
[
V̂ | X

]
= f2 (X>X)−1.

6 / 30



Projection matrices

I Let X be = × : with rank (X) = : . Then define
VX = X (X>X)−1 X>. VXY = X (X>X)−1 X>Y = XV̂ gives the
fitted values.

I The fitted residuals are

Û = Y −XV̂ = Y −X
(
X>X

)−1 X>Y =

(
I= −X

(
X>X

)−1 X>
)

Y.

I We define SX = I= −X (X>X)−1 X> = I= − VX. SXY gives the
fitted residuals.

I Properties of VX and SX:
I VX and SX are symmetric;
I VXX = X and SXX = 0;
I VX and SX are orthogonal: SXVX = 0 and VXSX = 0;
I VX and SX are idempotent: VXVX = VX and SXSX = SX;
I rank (VX) = : and rank (SX) = = − : .
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Partitioned regression
I Partition X =

[
X1 X2

]
, V =

(
V>1 , V>2

)> and the model as

Y = X1V1 +X2V2 +U,

where X1 is = × :1 and X2 is = × :2 (:1 + :2 = :).

I Partition V̂ =

(
V̂>1 , V̂>2

)>
.

I Denote S1 = SX1 and S2 = SX2 . Then,

V̂1 =
(
X>1 S2X1

)−1 (
X>1 S2Y

)
V̂2 =

(
X>2 S1X2

)−1 (
X>2 S1Y

)
and

Var
[
V̂1 | X

]
= f2 (

X>1 S2X1
)−1

Var
[
V̂2 | X

]
= f2 (

X>2 S1X2
)−1 .
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Omitted variable bias

I Suppose the researcher estimates V1 by regressing Y on X1 only.
Let Ṽ1 =

(
X>1 X1

)−1 (
X>1 Y

)
denote the OLS estimates.

I Then,

Ṽ1 =
(
X>1 X1

)−1 (
X>1 Y

)
= V1 +

(
X>1 X1

)−1 X>1 X2V2 +
(
X>1 X1

)−1 X>1 U

and E
[
Ṽ1 | X

]
= V1 +

(
X>1 X1

)−1 X>1 X2V2.

I
(
X>1 X1

)−1 X>1 X2V2 is the omitted variable bias.
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Effects of covariates
I In practical applications, we often have a long list of potential

explanatory variables. It is possible that : is close to =.
I Cross-country growth regression estimates the effect of initial

GDP on future growth rates, with more than 50 other explanatory
variable including institutional and technological factors and a
sample of less than 100 observations.

I In addition, to capture the nonlinear effects and interaction
effects, we may expand the linear model by incorporating higher
order polynomials and interaction terms.

I While only few of the potential covariates may have non-zero
coefficients in the true model, unfortunately we do not know
which ones.

I Covariates with zero coefficients are called irrelevant.
I To avoid the omitted variables bias, the researcher may attempt to

include all potential covariates. Unfortunately, that results in
large variances and standard errors on the main parameters of
interest.
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I Partition the regression model:

Y = V1X1 +X2V2 +U,

where X1 is an = × 1 vector which contains the observations on
the main explanatory variable for research.

I X2 is an = × (: − 1) matrix which includes observations on : − 1
other potential explanatory variables (control variables).

I The variance of the OLS estimator:

Var
[
V̂1 | X

]
=

f2

X>1 S2X1
.
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I Since X>1 S2X1 = X>1 S
>
2 S2X1 = X̃>1 X̃1, where

X̃1 = S2X1 = X1 −X2
(
X>2 X2

)−1 X>2 X1 = X1 −X2Ŵ.

I Ŵ is the OLS coefficient from the regression of X1 against X2.
I X̃1 is the vector of OLS residuals from OLS regression of X1

against X2 and X̃>1 X̃1 is the sum of the squared residuals.
I When we include more control variables, a bigger portion of X1

is removed resulting in a smaller sum of the squared residuals.
I When we include irrelevant control variables, the variance of the

OLS estimator increases. One would see larger standard errors,
smaller C-statistics, larger ?-values and wider confidence
intervals.

I Two wrong practices: (1) include only significant regressors; (2)
data snooping/?-hacking.
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Include only significant regressors?
I If a subset of the coefficients in the linear model

.8 = V1-8,1 + . . . + V:-8,: +*8
are exactly zero, we wish to find the smallest sub-model
consisting of only explanatory variables with non-zero
coefficients.

I Estimate the full model with all variables. Let )9 = V̂ 9/(�
(
V̂ 9

)
denote the C-statistic for �0 : V 9 = 0 versus �1 : V 9 ≠ 0.

I What if we run a second regression with only statistically
significant coefficients in the first stage?

I Such a practice would typically result in exclusion of relevant
covariates and the omitted variables bias.
I Hypothesis testing controls for the probability of Type I error but

leaves the probability of Type II error uncontrolled.
I You find a coefficient to be non-significant, possibly due to a high

probability of Type II error.
I Failure to reject �0 : V 9 = 0 cannot be used as a reliable evidence

that the true coefficient is zero.
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Data snooping

I Data snooping or ?-hacking occurs when the researcher uses the
same data in order to produce statistically significant estimates
with large C-statistics or small ?-values.

I Data snooping destroys the validity of C-statistics and ?-values
and makes the empirical results less convincing.

I You may try dropping different combinations of potential
explanatory variables from the regression to get a statistically
significant estimate for the main variable of interest.

I Suppose that the researcher can construct � independent
estimators for \ such that \̂ 9 ∼ N

(
\,f2

9

)
, 9 = 1, 2, ..., �, where

f2
9
is known.

I The researcher conducts � tests with significance level 5% of
�0 : \ = 0 against �1 : \ ≠ 0.
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I The researcher concludes that \ ≠ 0 if one of the � tests rejects
\ = 0.

I Suppose that in fact \ = 0. The probability of concluding that
\ ≠ 0 (known as false discovery) is given by

Pr

[
max

1≤ 9≤�

����� \̂ 9f9
����� > 1.96

]
= 1 − Pr

[
max

1≤ 9≤�

����� \̂ 9f9
����� ≤ 1.96

]
= 1 −

�∏
8=1

Pr

[����� \̂ 9f9
����� ≤ 1.96

]
= 1 − (0.95)� .

I The false discovery probability quickly grows as � ↑ ∞. E.g.,
1 − (0.95)10 ≈ 40%.

I When the researcher performs many of tests, the Type I error
probability is not controlled and may be much larger than the
nominal significance level.
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I In practice, estimators are rarely independent, the same
relationship holds qualitatively.

I If the researcher searchers long enough, with a high probability
they would find a significant estimate.

I A procedure that automatically detects the smallest sub-model
consisting of only relevant explanatory variables guards against
data snooping and makes the empirical results more convincing
to readers.
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One classical approach to model selection

I Order )1, ...,): in absolute value:��)(1) �� ≥ ��)(2) �� ≥ · · · ≥ ��)(:) �� .
I Let 9̂ denote the value of 9 that minimizes '(( ( 9) + 9 B2log (=),

where '(( ( 9) is the residual sum of squares from the model
with 9 variables corresponding to the 9 largest absolute
C-statistics and B2 = (= − :)−1 ∑=

8=1 *̂
2
8
.

I The selected model is the model with 9̂ variables corresponding
to the 9̂ largest absolute C-statistics.

I When = is large, with high probability, this selected model is the
same as the smallest sub-model with only nonzero coefficients.

I Disadvantages:
I Assume homoskedasticity;
I Break down in high-dimensional regression : > = (B2 = 0).
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Convergence in probability

I Let {-= : = = 1, 2, . . .} be a sequence of random variables. Let -
be random or non-random.

I We will consider non-random sequences with the following
typical elements: 1. E [|-= − - |A ]; 2. Pr [|-= − - | > Y] for
some Y > 0.
I Convergence in A-th mean. -= converges to - in A-th mean if

E [|-= − - |A ] → 0 as =→∞.
I Convergence in probability. -= converges in probability to - if

for all Y > 0, Pr [|-= − - | ≥ Y] → 0 as =→∞. It is denoted as
-= →? - . If -= →? 0, we denote -= = >? (1).
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I Convergence in A-th mean implies convergence in probability.
I (Markov’s Inequality) Let - be a random variable. For Y > 0 and
A > 0,

Pr [|- | ≥ Y] ≤ E [|- |A ]
YA

.

I Suppose that -= converges to - in A-th mean,
E [|-= − - |A ] → 0. Then,

Pr [|-= − - | ≥ Y] ≤
E [|-= − - |A ]

YA

→ 0.

I Let -1, . . . -= be a sample of i.i.d. random variables such that
E [|-1 |] < ∞. Then, =−1 ∑=

8=1 -8 →? E [-1] as =→∞.
I Due to i.i.d. assumption, we have that E [-8] = E [-1] for all
8 = 1, . . . , =.
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Suppose that -= →? 0 and .= →? 1, where 0 and 1 are some finite
constants. Let 2 be another constant.
I 2-= →? 20.
I -= +.= →? 0 + 1.
I -=.= →? 01.
I -=/.= →? 0/1, provided that 1 ≠ 0.
I If 0 ≤ -= ≤ .= and .= →? 0, then -= →? 0.
I -= →? 0 if and only if |-= | →? 0.
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Continuous mapping theorem (CMT)

I Suppose that -= →? 2, a constant, and let ℎ(·) be a continuous
function at 2. Then, ℎ (-=) →? ℎ(2).

I suppose that V̂= →? V. Then V̂2
= →? V

2, and 1/V̂= →? 1/V,
provided V ≠ 0.
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Convergence of random vectors

I The random vectors/matrices converge in probability if their
elements converge in probability.

I Consider the vector case. Let {-= : = = 1, 2, . . .} be a sequence
of random :-vectors. -= − - →? 0 element-by-element, where
- is a possibly random :-vector, if and only if ‖-= − - ‖ →? 0,
where ‖·‖ denotes the Euclidean norm.

I The rules for manipulation of probability limits in the
vector/matrix case are similar to those in the scalar case.

I The CMT is valid in vector/matrix case as well.
I OLS estimator is a consistent estimator of the coefficients:
V̂→? V.
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Convergence in distribution

I Let {-= : = = 1, 2, . . .} be a sequence of random variables.
I Let �= (G) denote the marginal CDF of -=, i.e.
�= (G) = Pr (-= ≤ G) . Let � (G) be another CDF.

I We say that -= converges in distribution if �= (G) → � (G) for all
G where � (G) is continuous.

I In this case, we write -= →3 - , where - is any random variable
with the distribution function � (G).

I Note that while we say that -= converges to - , the convergence
in distribution is not convergence of random variables, but of the
distribution functions.
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I The extension to the vector case is straightforward. Let -= and -
be two random :-vectors.

I We say that -= →3 - if the joint CDF of -= converges to that of
- at all continuity points, i.e.

�= (G1, . . . , G:) = Pr
[
-=,1 ≤ G1, . . . , -=,: ≤ G:

]
→ Pr [-1 ≤ G1, . . . , -: ≤ G:]
= � (G1, . . . , G:) ,

for all points (G1, . . . , G:) where � is continuous.
I In this case, we say that the elements of -=, -=,1, . . . -=,: , jointly

converge in distribution to -1, . . . -: , the elements of - .
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Rules of convergence in distribution

I (Cramer Convergence Theorem) Suppose that -= →3 - and
.= →? 2. Then,
I -= +.= →3 - + 2.
I .=-= →3 2- .
I -=/.= →3 -/2, provided that 2 ≠ 0.

I If -= →? - , then -= →3 - . Converse is not true with one
exception: If -= →3 2, a constant, then -= →? 2.

I If -= −.= →? 0, and .= →3 . , then -= →3 . .
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Continuous mapping theorem

I Suppose that -= →3 - , and let ℎ (·) be a function continuous on
a set X such that Pr [- ∈ X] = 1. Then, ℎ (-=) →3 ℎ(-).

I Note that contrary to convergence in probability, -= →3 - and
.= →3 . does not imply that, for example, -= +.= →3 - +. ,
unless a joint convergence result holds.
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The central limit theorem
I Let -1, . . . , -= be a sample of iid random variables such that

E [-1] = 0 and 0 < E
[
-2

1
]
< ∞. Then, as =→∞,

=−1/2 ∑=
8=1 -8 →3 N

(
0, E

[
-2

1
] )
.

I Let -1, . . . -= be a sample of iid random variables with
E [-1] = ` and Var [-1] = f2 < ∞. Define

-= = =
−1

=∑
8=1

-8 .

I Consider =−1/2 ∑=
8=1 (-8 − `) . We have that

(-1 − `) , . . . , (-= − `) are i.i.d. with the mean
E [(-1 − `)] = 0, and the variance E

[
(-1 − `)2

]
= f2 < ∞.

Therefore, by the CLT,

=1/2
(
-= − `

)
= =−1/2

=∑
8=1
(-8 − `)

→3 N
(
0,f2

)
.
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I Let -= be a random :-vector. Then, -= →3 - if and only if
_>-= →3 _

>- for all non-zero _ ∈ R: .
I Let -1, . . . , -= be a sample of i.i.d. random :-vectors such that

E [-1] = 0 (denote -8 =
(
-8,1, ..., -8,:

)>) and E
[
-2

1, 9

]
< ∞ for

all 9 = 1, . . . , : , and E
[
-1-

>
1
]
is positive definite. Then,

=−1/2 ∑=
8=1 -8 →3 N

(
0, E

[
-1-

>
1
] )
.
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Asymptotic normality of OLS

I Denote V = E
[
*2
8
-8-

>
8

]
and G = E

[
-8-

>
8

]
. Then,

√
=

(
V̂ − V

)
=

(
1
=

=∑
8=1

-8-
>
8

)−1 (
1
√
=

=∑
8=1

-8*8

)
and =−1 ∑=

8=1 -8-
>
8
→? G and =−1/2 ∑=

8=1 -8*8 →3 N (0, V).
I Then, √

=

(
V̂ − V

)
→3 N

(
0, G−1VG−1

)
.

I In the homoskedastic model, V = f2G and G−1VG−1 = f2G−1.
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Bounded in probability

I Suppose that _= =
√
=

(
\̂ − \

)
→3 N

(
0,f2) . We say that the

sequence {_=}∞==1 is bounded in probability and denote
_= = $ ? (1).

I Suppose that b= →? 0 (b= = >? (1)). Then,
b=_= = >? (1)$ ? (1) = >? (1).

I We also write

\̂ = \ + 1
√
=
· _= = \ +

1
√
=
·$ ? (1) = \ +$ ?

(
1
√
=

)
.

\̂ converges to \ at the rate =−1/2.
I More generally, we write -= = $ ? (U=) for some non-random

sequence U=, if -=/U= = $ ? (1).
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