
Introduction to Statistical Machine Learning with
Applications in Econometrics

Deep Learning

Instructor: Ma, Jun

Renmin University of China

November 22, 2022

1 / 14

Deep learning
I The neural network model became popular in the 1980s.
I Re-emerged around 2010 as Deep Learning.
I Part of success due to vast improvements in computing power,

larger training sets, and software.
I Response 𝑌 and 𝑝 different predictors 𝑋 =

(
𝑋1, 𝑋2, ..., 𝑋𝑝

)>. We
are interested in estimating 𝑓 (𝑥) = E [𝑌 | 𝑋 = 𝑥].

I Our training data consist of {(𝑋1,𝑌1) , (𝑋2,𝑌2) , ..., (𝑋𝑛,𝑌𝑛)},
where 𝑋𝑖 =

(
𝑋1,𝑖 , 𝑋2,𝑖 , ..., 𝑋𝑝,𝑖

)>.
I The neural network model is a nonlinear model:

𝑓 (𝑋) ≈ 𝑚 (𝑋 , 𝛽) for some optimal coefficients

𝛽 = argmin
𝜃

E
[
(𝑌 −𝑚 (𝑋 , 𝜃))2] = argmin

𝜃

E
[
(𝑓 (𝑋) −𝑚 (𝑋 , 𝜃))2]

to be estimated.
I 𝑚 (𝑋 , 𝛽) is nonlinear in parameters.
I Much more computational burden.

2 / 14

Single layer neural network
I Let 𝜃 = (𝑏,𝑤), 𝑏 = (𝑏0, 𝑏1, ..., 𝑏𝐾) and

𝑤 =
(
𝑤10,𝑤11, ...,𝑤1𝑝,𝑤20,𝑤21, ...,𝑤2𝑝, ...,𝑤𝐾0,𝑤𝐾1, ...,𝑤𝐾 𝑝

)
.

I The single layer neural network model:

𝑚 (𝑋 , 𝜃) = 𝑏0 +
𝐾∑︁
𝑘=1

𝑏𝑘ℎ𝑘 (𝑋)

= 𝑏0 +
𝐾∑︁
𝑘=1

𝑏𝑘𝑔
©­«𝑤𝑘0 +

𝑝∑︁
𝑗=1
𝑤𝑘 𝑗𝑋 𝑗

ª®¬ .

I The model is fit by nonlinear least squares:

min
𝑎

𝑛∑︁
𝑖=1

(𝑌𝑖 −𝑚 (𝑋𝑖 , 𝜃))2 .

3 / 14

X1

X2

X3

X4

A1

A2

A3

A4

A5

f(X) Y

Hidden
Layer

Input
Layer

Output
Layer

ISL Figure 10.1

I 𝐴𝑘 = ℎ𝑘 (𝑋) = 𝑔
(
𝑤𝑘0 +

∑𝑝

𝑗=1 𝑤𝑘 𝑗𝑋 𝑗

)
are called the activations

in the hidden layer. These are analogous to neurons in a human
brain.

I 𝑔 is called the activation function.
4 / 14

Nonlinear activation

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

g(
z)

sigmoid
ReLU

ISL Figure 10.2

I Popular are the sigmoid and rectified linear.
I Having a nonlinear activation function allows the model to

capture complex nonlinearities and interaction effects.
I E.g.,

1
4
(𝑋1 + 𝑋2)2 − 1

4
(𝑋1 − 𝑋2)2 = 𝑋1𝑋2.

I Sum of two nonlinear transformations of linear functions can give
us an interaction.

5 / 14

Fitting the model: gradient descent
I The minimization problem:

min
𝑏,𝑤

1
2

𝑛∑︁
𝑖=1

𝑌𝑖 − ©­«𝑏0 +
𝐾∑︁
𝑘=1

𝑏𝑘𝑔
©­«𝑤𝑘0 +

𝑝∑︁
𝑗=1
𝑤𝑘 𝑗𝑋 𝑗,𝑖

ª®¬ª®¬


2

is non-convex. It may have multiple local minima.
I Denote

𝑅 (𝜃) = 1
2

𝑛∑︁
𝑖=1

(𝑌𝑖 −𝑚 (𝑋𝑖 , 𝜃))2 .

I We apply the gradient descent method.
I Start with an initial guess: 𝜃0 for the true minimizer;
I Find a vector 𝛿 that reflects a small change such that 𝜃𝑡+1 = 𝜃𝑡 + 𝛿

reduces the objective: 𝑅
(
𝜃𝑡+1) < 𝑅 (𝜃𝑡);

I We pick 𝛿 = −𝜌∇𝑅 (𝜃𝑡), where ∇𝑅 (𝜃𝑡) = 𝜕𝑅 (𝜃)
𝜕𝜃

���
𝜃=𝜃 𝑡

is the
gradient and 𝜌 > 0 is the learning rate;

I The algorithm returns (𝜃𝑡 , 𝑅 (𝜃𝑡)) as the minimizer and minimum
whenever

��𝑅 (
𝜃𝑡+1) − 𝑅 (𝜃𝑡)

�� < 𝜀, where 𝜀 > 0 is the tolerance.
6 / 14

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

6

θ

R
(θ

)

θ0 θ1 θ2 θ7

●

●

●

●

R(θ0)
R(θ1)

R(θ2)

R(θ7)

ISL Figure 10.17
I The gradient ∇𝑅 (𝜃) gives the direction in 𝜃-space in which
𝑅 (𝜃) increases most rapidly: for ‖𝜃 ′ − 𝜃‖ = 1,

𝑅 (𝜃 ′) − 𝑅 (𝜃) ≈ ∇𝑅 (𝜃)> (𝜃 ′ − 𝜃)
and

|𝑅 (𝜃 ′) − 𝑅 (𝜃) | ≤ ‖∇𝑅 (𝜃)‖ .
The upper bound is attained when 𝜃 ′ − 𝜃 = ∇𝑅 (𝜃) /‖∇𝑅 (𝜃)‖.

7 / 14

Stochastic gradient descent

I Denote

𝑅𝑖 (𝜃) =
1
2

𝑌𝑖 − ©­«𝑏0 +
𝐾∑︁
𝑘=1

𝑏𝑘𝑔
©­«𝑤𝑘0 +

𝑝∑︁
𝑗=1
𝑤𝑘 𝑗𝑋 𝑗,𝑖

ª®¬ª®¬


2

.

Then
𝜕𝑅 (𝜃)
𝜕𝜃

=

𝑛∑︁
𝑖=1

𝜕𝑅𝑖 (𝜃)
𝜕𝜃

.

I When 𝑛 is large, instead of summing over all 𝑛 observations, we
can sample a small fraction of them each time we compute a
gradient step.

I This process is known as stochastic gradient descent.

8 / 14

Multilayer neural networks
I In theory a single hidden layer with a large number of units has

the ability to approximate most functions (White, 1992).
I A multiple hidden layer neural network model is called deep

learning.
I The first hidden layer has hidden activations

𝐴
(1)
𝑘

= ℎ
(1)
𝑘

(𝑋) = 𝑔 ©­«𝑤 (1)
𝑘0 +

𝑝∑︁
𝑗=1
𝑤

(1)
𝑘 𝑗
𝑋 𝑗

ª®¬
for 𝑘 = 1, ...,𝐾1.

I The second hidden layer treats the activations{
𝐴
(1)
𝑘

: 𝑘 = 1, ...,𝐾1

}
of the first hidden layer as inputs and

computes new activations

𝐴
(2)
ℓ

= ℎ
(2)
ℓ

(𝑋) = 𝑔
(
𝑤

(2)
ℓ0 +

𝐾1∑︁
𝑘=1

𝑤
(2)
ℓ𝑘
𝐴
(1)
𝑘

)
for ℓ = 1, ...,𝐾2.

9 / 14

X1

X2

X3

X4

X5

X6

.

.

.

Xp

A
(1)
1

A
(1)
2

A
(1)
3

A
(1)
4

.

.

.

A
(1)

K1

A
(2)
1

A
(2)
2

A
(2)
3

.

.

.

A
(2)

K2

f0(X) Y0

f1(X) Y1

.

.

.
.
.
.

f9(X) Y9

Hidden
layer L2

Hidden
layer L1

Input
layer

Output
layer

W1

W2

B

ISL Figure 10.4

10 / 14

I A two-layer model:

𝑚 (𝑋 , 𝜃) = 𝑏0 +
𝐾2∑︁
ℓ=1

𝑏ℓℎ
(2)
ℓ

(𝑋)

= 𝑏0 +
𝐾2∑︁
ℓ=1

𝑏ℓ𝑔

(
𝑤

(2)
ℓ0 +

𝐾1∑︁
𝑘=1

𝑤
(2)
ℓ𝑘
ℎ
(1)
𝑘

(𝑋)
)

.

I W1: weights that feed from the input layer to the first hidden
layer, 𝐾1 × (𝑝 + 1).

I W2: weights that feed from the first hidden layer to the second
hidden layer, (𝐾1 + 1) × 𝐾2.

I B: 10 × (𝐾2 + 1).

11 / 14

Example: MNIST Digits

ISL Figure 10.3
I Each grayscale image has 28 × 28 pixels (𝑝 = 784), each of

which is an eight-bit number (𝑋 𝑗 ∈ {0, 1, ..., 255}, ∀ 𝑗 = 1, ..., 𝑝).
I 60000 training images, 10000 test images.
I Labels are the digit class 0-9.
I Goal: build a classifier to predict the image class.
I Use a two-layer model with 𝐾1 = 256 and 𝐾2 = 128.

12 / 14

I (𝑌0,𝑌1, ...,𝑌9): the vector of 10 dummy variables (class labels).
I The training data:

(
𝑌𝑡 ,𝑖 , 𝑋𝑖

)
: 𝑡 = 0, 1, ..., 9, 𝑖 = 1, ..., 6000.

I Denote

𝑍𝑡 = 𝑏𝑡0 +
𝐾2∑︁
ℓ=1

𝑏𝑡ℓℎ
(2)
ℓ

(𝑋)

for 𝑡 = 0, 1, ..., 9.
I The model for approximating Pr [𝑌𝑡 = 1 | 𝑋]:

𝑚𝑡 (𝑋) =
𝑒𝑍𝑡∑9
ℓ=0 𝑒

𝑍ℓ
,

for 𝑡 = 0, 1, ..., 9.
I The model estimates a probability for each of the 10 classes. The

classifier then assigns the image to the class with the highest
probability.

I We look for coefficient estimates that minimize the negative
multinomial log-likelihood:

−
𝑛∑︁
𝑖=1

9∑︁
𝑡=0
𝑌𝑡 ,𝑖log (𝑚𝑡 (𝑋𝑖)) .

13 / 14

I Adding the number of coefficients in (W1, W2, B), we get
235146 weights/model parameters.

I To avoid overfitting, some regularization is needed.
I Dropout regularization: randomly remove units with some

probability at each gradient descent update.
I Similar to randomly omitting variables when growing trees in

random forests.
I Best reported deep learning test error rates are around 0.5%.

Human error rate is around 0.2%.

Method Test Error
Neural Network + Ridge Regularization 2.3%

Neural Network + Dropout Regularization 1.8%
Multinomial Logistic Regression 7.2%

Linear Discriminant Analysis 12.7%

14 / 14

