
Introduction to Statistical Machine Learning with
Applications in Econometrics

Deep Learning (ISL ch. 10)

Instructor: Ma, Jun

Renmin University of China

November 24, 2022

1 / 14

Deep learning
I The neural network model became popular in the 1980s.
I Re-emerged around 2010 as Deep Learning.
I Part of success due to vast improvements in computing power,

larger training sets, and software.
I Response Y and p different predictors X =

(
X1, X2, ..., Xp

)>. We
are interested in estimating f (x) = E [Y | X = x].

I Our training data consist of {(X1,Y1) , (X2,Y2) , ..., (Xn,Yn)},
where Xi =

(
X1,i, X2,i, ..., Xp,i

)>.
I The neural network model is a nonlinear model:

f (X) ≈ m (X , β) for some optimal coefficients

β = argmin
θ

E
[
(Y −m (X , θ))2

]
= argmin

θ
E

[
(f (X) −m (X , θ))2

]
to be estimated.
I m (X , β) is nonlinear in parameters.
I Much more computational burden.

2 / 14

Single layer neural network
I Let θ = (b,w), b = (b0, b1, ..., bK) and

w =
(
w10,w11, ...,w1p,w20,w21, ...,w2p, ...,wK0,wK1, ...,wKp

)
.

I The single layer neural network model:

m (X , θ) = b0 +

K∑
k=1

bkhk (X)

= b0 +

K∑
k=1

bkg
©«wk0 +

p∑
j=1

wk jXj
ª®¬ .

I The model is fit by nonlinear least squares:

min
θ

n∑
i=1
(Yi −m (Xi, θ))2 .

3 / 14

X1

X2

X3

X4

A1

A2

A3

A4

A5

f(X) Y

Hidden
Layer

Input
Layer

Output
Layer

ISL Figure 10.1

I Ak = hk (X) = g
(
wk0 +

∑p
j=1 wk jXj

)
are called the activations in

the hidden layer. These are analogous to neurons in a human
brain.

I g is called the activation function.
4 / 14

Nonlinear activation

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

g(
z)

sigmoid
ReLU

ISL Figure 10.2

I Popular are the sigmoid and rectified linear.
I Having a nonlinear activation function allows the model to

capture complex nonlinearities and interaction effects.
I E.g.,

1
4
(X1 + X2)

2 −
1
4
(X1 − X2)

2 = X1X2.

I Sum of two nonlinear transformations of linear functions can give
us an interaction.

5 / 14

Fitting the model: gradient descent
I The minimization problem:

min
b,w

1
2

n∑
i=1

Yi −
©«b0 +

K∑
k=1

bkg
©«wk0 +

p∑
j=1

wk jXj,i
ª®¬ª®¬

2

is non-convex. It may have multiple local minima.
I Denote

R (θ) =
1
2

n∑
i=1
(Yi −m (Xi, θ))2 .

I We apply the gradient descent method.
I Start with an initial guess: θ0 for the true minimizer;
I Find a vector δ that reflects a small change such that θt+1 = θt + δ

reduces the objective: R
(
θt+1) < R

(
θt

)
;

I We pick δ = −ρ∇R
(
θt

)
, where ∇R

(
θt

)
=

∂R(θ)
∂θ

���
θ=θ t

is the
gradient and ρ > 0 is the learning rate;

I The algorithm returns
(
θt , R

(
θt

))
as the minimizer and minimum

whenever
��R (

θt+1) − R
(
θt

) �� < ε, where ε > 0 is the tolerance.
6 / 14

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

6

θ

R
(θ

)

θ0 θ1 θ2 θ7

●

●

●

●

R(θ0)
R(θ1)

R(θ2)

R(θ7)

ISL Figure 10.17
I The gradient ∇R (θ) gives the direction in θ-space in which R (θ)

increases most rapidly: for ‖θ ′ − θ‖ = 1,

R (θ ′) − R (θ) ≈ ∇R (θ)> (θ ′ − θ)

and
|R (θ ′) − R (θ)| ≤ ‖∇R (θ)‖ .

The upper bound is attained when θ ′ − θ = ∇R (θ) /‖∇R (θ)‖.
7 / 14

Stochastic gradient descent

I Denote

Ri (θ) =
1
2

Yi −
©«b0 +

K∑
k=1

bkg
©«wk0 +

p∑
j=1

wk jXj,i
ª®¬ª®¬

2

.

Then
∂R (θ)
∂θ

=

n∑
i=1

∂Ri (θ)

∂θ
.

I When n is large, instead of summing over all n observations, we
can sample a small fraction of them each time we compute a
gradient step.

I This process is known as stochastic gradient descent.

8 / 14

Multilayer neural networks
I In theory a single hidden layer with a large number of units has

the ability to approximate most functions (White, 1992).
I A multiple hidden layer neural network model is called deep

learning.
I The first hidden layer has hidden activations

A(1)
k
= h(1)

k
(X) = g

©«w(1)k0 +

p∑
j=1

w
(1)
k j

Xj
ª®¬

for k = 1, ..., K1.
I The second hidden layer treats the activations{

A(1)
k

: k = 1, ..., K1

}
of the first hidden layer as inputs and

computes new activations

A(2)
`
= h(2)

`
(X) = g

(
w
(2)
`0 +

K1∑
k=1

w
(2)
`k

A(1)
k

)
for ` = 1, ..., K2.

9 / 14

X1

X2

X3

X4

X5

X6

.

.

.

Xp

A
(1)
1

A
(1)
2

A
(1)
3

A
(1)
4

.

.

.

A
(1)

K1

A
(2)
1

A
(2)
2

A
(2)
3

.

.

.

A
(2)

K2

f0(X) Y0

f1(X) Y1

.

.

.
.
.
.

f9(X) Y9

Hidden
layer L2

Hidden
layer L1

Input
layer

Output
layer

W1

W2

B

ISL Figure 10.4

10 / 14

I A two-layer model:

m (X , θ) = b0 +

K2∑̀
=1

b`h(2)
`
(X)

= b0 +

K2∑̀
=1

b`g

(
w
(2)
`0 +

K1∑
k=1

w
(2)
`k

h(1)
k
(X)

)
.

I W1: weights that feed from the input layer to the first hidden
layer, K1 × (p + 1).

I W2: weights that feed from the first hidden layer to the second
hidden layer, (K1 + 1) × K2.

I B: 10 × (K2 + 1).

11 / 14

Example: MNIST Digits

ISL Figure 10.3
I Each grayscale image has 28 × 28 pixels (p = 784), each of

which is an eight-bit number (Xj ∈ {0, 1, ..., 255}, ∀ j = 1, ..., p).
I 60000 training images, 10000 test images.
I Labels are the digit class 0-9.
I Goal: build a classifier to predict the image class.
I Use a two-layer model with K1 = 256 and K2 = 128.

12 / 14

I (Y0,Y1, ...,Y9): the vector of 10 dummy variables (class labels).
I The training data:

(
Yt,i, Xi

)
: t = 0, 1, ..., 9, i = 1, ..., 6000.

I Denote

Zt = bt0 +
K2∑̀
=1

bt`h(2)
`
(X)

for t = 0, 1, ..., 9.
I The model for approximating Pr [Yt = 1 | X]:

mt (X) =
eZt∑9
`=0 eZ`

,

for t = 0, 1, ..., 9.
I The model estimates a probability for each of the 10 classes. The

classifier then assigns the image to the class with the highest
probability.

I We look for coefficient estimates that minimize the negative
multinomial log-likelihood:

−

n∑
i=1

9∑
t=0

Yt,ilog (mt (Xi)) .

13 / 14

I Adding the number of coefficients in (W1, W2, B), we get
235146 weights/model parameters.

I To avoid overfitting, some regularization is needed.
I Dropout regularization: randomly remove units with some

probability at each gradient descent update.
I Similar to randomly omitting variables when growing trees in

random forests.
I Best reported deep learning test error rates are around 0.5%.

Human error rate is around 0.2%.

Method Test Error
Neural Network + Ridge Regularization 2.3%
Neural Network + Dropout Regularization 1.8%

Multinomial Logistic Regression 7.2%
Linear Discriminant Analysis 12.7%

14 / 14

