
Subset Selection, Ridge Regression and LASSO

Here we apply the best subset selection approach to the Hitters data. We wish to predict a baseball player’s
Salary on the basis of various statistics associated with performance in the previous year.

First of all, we note that the Salary variable is missing for some of the players. The is.na() function can
be used to identify the missing observations. It returns a vector of the same length as the input vector, with
a TRUE for any elements that are missing, and a FALSE for non-missing elements. The sum() function can
then be used to count all of the missing elements.
library(ISLR2)
names(Hitters)

## [1] "AtBat" "Hits" "HmRun" "Runs" "RBI" "Walks"
## [7] "Years" "CAtBat" "CHits" "CHmRun" "CRuns" "CRBI"
## [13] "CWalks" "League" "Division" "PutOuts" "Assists" "Errors"
## [19] "Salary" "NewLeague"
dim(Hitters)

## [1] 322 20
sum(is.na(Hitters$Salary))

## [1] 59

The na.omit() function removes all of the rows that have missing values in any variable.
Hitters <- na.omit(Hitters)
dim(Hitters)

## [1] 263 20
sum(is.na(Hitters))

## [1] 0

Best subset selection and stepwise selection
The regsubsets() function (part of the leaps library) performs best subset selection by identifying the best
model that contains a given number of predictors, where best is quantified using RSS. An asterisk indicates
that a given variable is included in the corresponding model. For instance, this output indicates that the
best two-variable model contains only Hits and CRBI.
library(leaps)
regfit.full <- regsubsets(Salary ~ ., data = Hitters)
summary(regfit.full)

## Subset selection object
## Call: regsubsets.formula(Salary ~ ., data = Hitters)
## 19 Variables (and intercept)
## Forced in Forced out
## AtBat FALSE FALSE
## Hits FALSE FALSE
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## HmRun FALSE FALSE
## Runs FALSE FALSE
## RBI FALSE FALSE
## Walks FALSE FALSE
## Years FALSE FALSE
## CAtBat FALSE FALSE
## CHits FALSE FALSE
## CHmRun FALSE FALSE
## CRuns FALSE FALSE
## CRBI FALSE FALSE
## CWalks FALSE FALSE
## LeagueN FALSE FALSE
## DivisionW FALSE FALSE
## PutOuts FALSE FALSE
## Assists FALSE FALSE
## Errors FALSE FALSE
## NewLeagueN FALSE FALSE
## 1 subsets of each size up to 8
## Selection Algorithm: exhaustive
## AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun CRuns CRBI
## 1 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " "*"
## 2 ( 1 ) " " "*" " " " " " " " " " " " " " " " " " " "*"
## 3 ( 1 ) " " "*" " " " " " " " " " " " " " " " " " " "*"
## 4 ( 1 ) " " "*" " " " " " " " " " " " " " " " " " " "*"
## 5 ( 1 ) "*" "*" " " " " " " " " " " " " " " " " " " "*"
## 6 ( 1 ) "*" "*" " " " " " " "*" " " " " " " " " " " "*"
## 7 ( 1 ) " " "*" " " " " " " "*" " " "*" "*" "*" " " " "
## 8 ( 1 ) "*" "*" " " " " " " "*" " " " " " " "*" "*" " "
## CWalks LeagueN DivisionW PutOuts Assists Errors NewLeagueN
## 1 ( 1 ) " " " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " " " "
## 3 ( 1 ) " " " " " " "*" " " " " " "
## 4 ( 1 ) " " " " "*" "*" " " " " " "
## 5 ( 1 ) " " " " "*" "*" " " " " " "
## 6 ( 1 ) " " " " "*" "*" " " " " " "
## 7 ( 1 ) " " " " "*" "*" " " " " " "
## 8 ( 1 ) "*" " " "*" "*" " " " " " "

By default, regsubsets() only reports results up to the best eight-variable model. But the nvmax option
can be used in order to return as many variables as are desired. Here we fit up to a 19-variable model.
regfit.full <- regsubsets(Salary ~ ., data = Hitters,

nvmax = 19)
reg.summary <- summary(regfit.full)

The summary() function also returns 𝑅2, RSS, adjusted 𝑅2, 𝐶𝑝, and BIC. We can examine these to try to
select the best overall model.
names(reg.summary)

## [1] "which" "rsq" "rss" "adjr2" "cp" "bic" "outmat" "obj"

The 𝑅2 statistic increases monotonically as more variables are included:
reg.summary$rsq

## [1] 0.3214501 0.4252237 0.4514294 0.4754067 0.4908036 0.5087146 0.5141227
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## [8] 0.5285569 0.5346124 0.5404950 0.5426153 0.5436302 0.5444570 0.5452164
## [15] 0.5454692 0.5457656 0.5459518 0.5460945 0.5461159

The 𝐶𝑝 statistics:
reg.summary$cp

## [1] 104.281319 50.723090 38.693127 27.856220 21.613011 14.023870
## [7] 13.128474 7.400719 6.158685 5.009317 5.874113 7.330766
## [13] 8.888112 10.481576 12.346193 14.187546 16.087831 18.011425
## [19] 20.000000
which.min(reg.summary$cp)

## [1] 10

The BIC:
reg.summary$bic

## [1] -90.84637 -128.92622 -135.62693 -141.80892 -144.07143 -147.91690
## [7] -145.25594 -147.61525 -145.44316 -143.21651 -138.86077 -133.87283
## [13] -128.77759 -123.64420 -118.21832 -112.81768 -107.35339 -101.86391
## [19] -96.30412
which.min(reg.summary$bic)

## [1] 6

We can also use the regsubsets() function to perform forward stepwise or backward stepwise selection,
using the argument method = "forward" or method = "backward".
regfit.fwd <- regsubsets(Salary ~ ., data = Hitters, nvmax = 19, method = "forward")
summary(regfit.fwd)

## Subset selection object
## Call: regsubsets.formula(Salary ~ ., data = Hitters, nvmax = 19, method = "forward")
## 19 Variables (and intercept)
## Forced in Forced out
## AtBat FALSE FALSE
## Hits FALSE FALSE
## HmRun FALSE FALSE
## Runs FALSE FALSE
## RBI FALSE FALSE
## Walks FALSE FALSE
## Years FALSE FALSE
## CAtBat FALSE FALSE
## CHits FALSE FALSE
## CHmRun FALSE FALSE
## CRuns FALSE FALSE
## CRBI FALSE FALSE
## CWalks FALSE FALSE
## LeagueN FALSE FALSE
## DivisionW FALSE FALSE
## PutOuts FALSE FALSE
## Assists FALSE FALSE
## Errors FALSE FALSE
## NewLeagueN FALSE FALSE
## 1 subsets of each size up to 19
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## Selection Algorithm: forward
## AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun CRuns CRBI
## 1 ( 1 ) " " " " " " " " " " " " " " " " " " " " " " "*"
## 2 ( 1 ) " " "*" " " " " " " " " " " " " " " " " " " "*"
## 3 ( 1 ) " " "*" " " " " " " " " " " " " " " " " " " "*"
## 4 ( 1 ) " " "*" " " " " " " " " " " " " " " " " " " "*"
## 5 ( 1 ) "*" "*" " " " " " " " " " " " " " " " " " " "*"
## 6 ( 1 ) "*" "*" " " " " " " "*" " " " " " " " " " " "*"
## 7 ( 1 ) "*" "*" " " " " " " "*" " " " " " " " " " " "*"
## 8 ( 1 ) "*" "*" " " " " " " "*" " " " " " " " " "*" "*"
## 9 ( 1 ) "*" "*" " " " " " " "*" " " "*" " " " " "*" "*"
## 10 ( 1 ) "*" "*" " " " " " " "*" " " "*" " " " " "*" "*"
## 11 ( 1 ) "*" "*" " " " " " " "*" " " "*" " " " " "*" "*"
## 12 ( 1 ) "*" "*" " " "*" " " "*" " " "*" " " " " "*" "*"
## 13 ( 1 ) "*" "*" " " "*" " " "*" " " "*" " " " " "*" "*"
## 14 ( 1 ) "*" "*" "*" "*" " " "*" " " "*" " " " " "*" "*"
## 15 ( 1 ) "*" "*" "*" "*" " " "*" " " "*" "*" " " "*" "*"
## 16 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" " " "*" "*"
## 17 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" " " "*" "*"
## 18 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*"
## 19 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## CWalks LeagueN DivisionW PutOuts Assists Errors NewLeagueN
## 1 ( 1 ) " " " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " " " "
## 3 ( 1 ) " " " " " " "*" " " " " " "
## 4 ( 1 ) " " " " "*" "*" " " " " " "
## 5 ( 1 ) " " " " "*" "*" " " " " " "
## 6 ( 1 ) " " " " "*" "*" " " " " " "
## 7 ( 1 ) "*" " " "*" "*" " " " " " "
## 8 ( 1 ) "*" " " "*" "*" " " " " " "
## 9 ( 1 ) "*" " " "*" "*" " " " " " "
## 10 ( 1 ) "*" " " "*" "*" "*" " " " "
## 11 ( 1 ) "*" "*" "*" "*" "*" " " " "
## 12 ( 1 ) "*" "*" "*" "*" "*" " " " "
## 13 ( 1 ) "*" "*" "*" "*" "*" "*" " "
## 14 ( 1 ) "*" "*" "*" "*" "*" "*" " "
## 15 ( 1 ) "*" "*" "*" "*" "*" "*" " "
## 16 ( 1 ) "*" "*" "*" "*" "*" "*" " "
## 17 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## 18 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## 19 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
regfit.bwd <- regsubsets(Salary ~ ., data = Hitters, nvmax = 19, method = "backward")
summary(regfit.bwd)

## Subset selection object
## Call: regsubsets.formula(Salary ~ ., data = Hitters, nvmax = 19, method = "backward")
## 19 Variables (and intercept)
## Forced in Forced out
## AtBat FALSE FALSE
## Hits FALSE FALSE
## HmRun FALSE FALSE
## Runs FALSE FALSE
## RBI FALSE FALSE
## Walks FALSE FALSE
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## Years FALSE FALSE
## CAtBat FALSE FALSE
## CHits FALSE FALSE
## CHmRun FALSE FALSE
## CRuns FALSE FALSE
## CRBI FALSE FALSE
## CWalks FALSE FALSE
## LeagueN FALSE FALSE
## DivisionW FALSE FALSE
## PutOuts FALSE FALSE
## Assists FALSE FALSE
## Errors FALSE FALSE
## NewLeagueN FALSE FALSE
## 1 subsets of each size up to 19
## Selection Algorithm: backward
## AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun CRuns CRBI
## 1 ( 1 ) " " " " " " " " " " " " " " " " " " " " "*" " "
## 2 ( 1 ) " " "*" " " " " " " " " " " " " " " " " "*" " "
## 3 ( 1 ) " " "*" " " " " " " " " " " " " " " " " "*" " "
## 4 ( 1 ) "*" "*" " " " " " " " " " " " " " " " " "*" " "
## 5 ( 1 ) "*" "*" " " " " " " "*" " " " " " " " " "*" " "
## 6 ( 1 ) "*" "*" " " " " " " "*" " " " " " " " " "*" " "
## 7 ( 1 ) "*" "*" " " " " " " "*" " " " " " " " " "*" " "
## 8 ( 1 ) "*" "*" " " " " " " "*" " " " " " " " " "*" "*"
## 9 ( 1 ) "*" "*" " " " " " " "*" " " "*" " " " " "*" "*"
## 10 ( 1 ) "*" "*" " " " " " " "*" " " "*" " " " " "*" "*"
## 11 ( 1 ) "*" "*" " " " " " " "*" " " "*" " " " " "*" "*"
## 12 ( 1 ) "*" "*" " " "*" " " "*" " " "*" " " " " "*" "*"
## 13 ( 1 ) "*" "*" " " "*" " " "*" " " "*" " " " " "*" "*"
## 14 ( 1 ) "*" "*" "*" "*" " " "*" " " "*" " " " " "*" "*"
## 15 ( 1 ) "*" "*" "*" "*" " " "*" " " "*" "*" " " "*" "*"
## 16 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" " " "*" "*"
## 17 ( 1 ) "*" "*" "*" "*" "*" "*" " " "*" "*" " " "*" "*"
## 18 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" " " "*" "*"
## 19 ( 1 ) "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*" "*"
## CWalks LeagueN DivisionW PutOuts Assists Errors NewLeagueN
## 1 ( 1 ) " " " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " " " "
## 3 ( 1 ) " " " " " " "*" " " " " " "
## 4 ( 1 ) " " " " " " "*" " " " " " "
## 5 ( 1 ) " " " " " " "*" " " " " " "
## 6 ( 1 ) " " " " "*" "*" " " " " " "
## 7 ( 1 ) "*" " " "*" "*" " " " " " "
## 8 ( 1 ) "*" " " "*" "*" " " " " " "
## 9 ( 1 ) "*" " " "*" "*" " " " " " "
## 10 ( 1 ) "*" " " "*" "*" "*" " " " "
## 11 ( 1 ) "*" "*" "*" "*" "*" " " " "
## 12 ( 1 ) "*" "*" "*" "*" "*" " " " "
## 13 ( 1 ) "*" "*" "*" "*" "*" "*" " "
## 14 ( 1 ) "*" "*" "*" "*" "*" "*" " "
## 15 ( 1 ) "*" "*" "*" "*" "*" "*" " "
## 16 ( 1 ) "*" "*" "*" "*" "*" "*" " "
## 17 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
## 18 ( 1 ) "*" "*" "*" "*" "*" "*" "*"
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## 19 ( 1 ) "*" "*" "*" "*" "*" "*" "*"

For this data, the best one-variable through six-variable models are each identical for best subset and forward
selection. However, the best seven-variable models identified by forward stepwise selection, backward stepwise
selection, and best subset selection are different.
coef(regfit.full, 7)

## (Intercept) Hits Walks CAtBat CHits CHmRun
## 79.4509472 1.2833513 3.2274264 -0.3752350 1.4957073 1.4420538
## DivisionW PutOuts
## -129.9866432 0.2366813
coef(regfit.fwd, 7)

## (Intercept) AtBat Hits Walks CRBI CWalks
## 109.7873062 -1.9588851 7.4498772 4.9131401 0.8537622 -0.3053070
## DivisionW PutOuts
## -127.1223928 0.2533404
coef(regfit.bwd, 7)

## (Intercept) AtBat Hits Walks CRuns CWalks
## 105.6487488 -1.9762838 6.7574914 6.0558691 1.1293095 -0.7163346
## DivisionW PutOuts
## -116.1692169 0.3028847

We just saw that it is possible to choose among a set of models of different sizes using 𝐶𝑝, BIC, and adjusted
𝑅2. We will now consider how to do this using the validation set and cross-validation approaches.

In order to use the validation set approach, we begin by splitting the observations into a training set and a
test set.
set.seed(1)
train <- sample(c(TRUE, FALSE), nrow(Hitters), replace = TRUE)
test <- (!train)

We apply regsubsets() to the training set in order to perform best subset selection.
regfit.best <- regsubsets(Salary ~ ., data = Hitters[train, ], nvmax = 19)

We now compute the validation set error for the best model of each model size. We first make a model
matrix from the test data. The model.matrix() function is used in many regression packages for building
an “X’ ’ matrix from data.
test.mat <- model.matrix(Salary ~ ., data = Hitters[test, ])

Now we run a loop,and for each size i, we extract the coefficients from regfit.best for the best model of
that size, multiply them into the appropriate columns of the test model matrix to form the predictions, and
compute the test MSE.
val.errors <- rep(NA, 19)
for (i in 1:19) {
coefi <- coef(regfit.best, id = i)
pred <- test.mat[, names(coefi)] %*% coefi
val.errors[i] <- mean((Hitters$Salary[test] - pred)^2)
}

We find that the best model is the one that contains seven variables.
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val.errors

## [1] 164377.3 144405.5 152175.7 145198.4 137902.1 139175.7 126849.0 136191.4
## [9] 132889.6 135434.9 136963.3 140694.9 140690.9 141951.2 141508.2 142164.4
## [17] 141767.4 142339.6 142238.2
which.min(val.errors)

## [1] 7
coef(regfit.best, 7)

## (Intercept) AtBat Hits Walks CRuns CWalks
## 67.1085369 -2.1462987 7.0149547 8.0716640 1.2425113 -0.8337844
## DivisionW PutOuts
## -118.4364998 0.2526925

Finally, we perform best subset selection on the full data set, and select the best seven-variable model. Note
that we perform best subset selection on the full data set and select the best seven-variable model, rather
than simply using the variables that were obtained from the training set, because the best seven-variable
model on the full data set may differ from the corresponding model on the training set.
regfit.best <- regsubsets(Salary ~ ., data = Hitters, nvmax = 19)
coef(regfit.best, 7)

## (Intercept) Hits Walks CAtBat CHits CHmRun
## 79.4509472 1.2833513 3.2274264 -0.3752350 1.4957073 1.4420538
## DivisionW PutOuts
## -129.9866432 0.2366813

We write a function for the predict() method for regsubsets().
predict.regsubsets <- function(object, newdata, id, ...) {
form <- as.formula(object$call[[2]])
mat <- model.matrix(form, newdata)
coefi <- coef(object, id = id)
xvars <- names(coefi)
mat[, xvars] %*% coefi

}

We now try to choose among the models of different sizes using cross-validation. We must perform best
subset selection within each of the 𝑘 training sets. First, we create a vector that allocates each observation
to one of 𝑘 = 10 folds, and we create a matrix in which we will store the results.
k <- 10
n <- nrow(Hitters)
set.seed(1)
folds <- sample(rep(1:k, length = n))
cv.errors <- matrix(NA, k, 19,)

In the 𝑗th fold, the elements of folds that equal j are in the test set, and the remainder are in the training
set. We make our predictions for each model size, compute the test errors on the appropriate subset, and
store them in the matrix cv.errors. This has given us a 10 × 19 matrix, of which the (𝑗, 𝑖)th element
corresponds to the test MSE for the 𝑗th cross-validation fold for the best 𝑖-variable model.
for (j in 1:k) {
best.fit <- regsubsets(Salary ~ ., data = Hitters[folds != j, ], nvmax = 19)

for (i in 1:19) {
pred <- predict(best.fit, Hitters[folds == j, ], id = i)
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cv.errors[j, i] <- mean((Hitters$Salary[folds == j] - pred)^2)
}

}

We use the apply() function to average over the columns of this matrix in order to obtain a vector for which
the 𝑖th element is the cross-validation error for the 𝑖-variable model. We see that cross-validation selects a
10-variable model.
mean.cv.errors <- apply(cv.errors, 2, mean)
mean.cv.errors

## [1] 143439.8 126817.0 134214.2 131782.9 130765.6 120382.9 121443.1 114363.7
## [9] 115163.1 109366.0 112738.5 113616.5 115557.6 115853.3 115630.6 116050.0
## [17] 116117.0 116419.3 116299.1

We now perform best subset selection on the full data set in order to obtain the 10-variable model.
reg.best <- regsubsets(Salary ~ ., data = Hitters, nvmax = 19)
coef(reg.best, 10)

## (Intercept) AtBat Hits Walks CAtBat CRuns
## 162.5354420 -2.1686501 6.9180175 5.7732246 -0.1300798 1.4082490
## CRBI CWalks DivisionW PutOuts Assists
## 0.7743122 -0.8308264 -112.3800575 0.2973726 0.2831680

Ridge regression and the LASSO
We will use the function glmnet() in the glmnet package. We will now perform ridge regression and the
lasso in order to predict Salary on the Hitters data. The model.matrix() function is useful for creating
x; not only does it produce a matrix corresponding to the 19 predictors but it also automatically transforms
any qualitative variables into dummy variables. glmnet() can only take numerical, quantitative inputs. [,
-1] removes the intercept.
x <- model.matrix(Salary ~ ., Hitters)[, -1]
y <- Hitters$Salary

The glmnet() function has an alpha argument that determines what type of model is fit. If alpha=0 then
a ridge regression model is fit, and if alpha=1 then a LASSO model is fit.We implement the function over a
grid: 𝜆 = 1010 to 𝜆 = 10−2, covering the null model containing only the intercept, to the least squares fit.
By default, the glmnet() function standardizes the variables so that they are on the same scale.
library(glmnet)

## ���������Matrix

## Loaded glmnet 4.1-2
grid <- 10^seq(10, -2, length = 100)
ridge.mod <- glmnet(x, y, alpha = 0, lambda = grid)

Associated with each value of 𝜆 is a vector of ridge regression coefficients, stored in a matrix that can be
accessed by coef(). In this case, it is a 20 × 100 matrix, with 20 rows (one for each predictor, plus an
intercept) and 100 columns (one for each value of 𝜆).
dim(coef(ridge.mod))

## [1] 20 100
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We can use the predict() function for a number of purposes. For instance, we can obtain the ridge regression
coefficients for a new value of 𝜆, say 50:
predict(ridge.mod, s = 50, type = "coefficients")[1:20, ]

## (Intercept) AtBat Hits HmRun Runs
## 4.876610e+01 -3.580999e-01 1.969359e+00 -1.278248e+00 1.145892e+00
## RBI Walks Years CAtBat CHits
## 8.038292e-01 2.716186e+00 -6.218319e+00 5.447837e-03 1.064895e-01
## CHmRun CRuns CRBI CWalks LeagueN
## 6.244860e-01 2.214985e-01 2.186914e-01 -1.500245e-01 4.592589e+01
## DivisionW PutOuts Assists Errors NewLeagueN
## -1.182011e+02 2.502322e-01 1.215665e-01 -3.278600e+00 -9.496680e+00

We now split the samples into a training set and a test set in order to estimate the test error of ridge
regression and the LASSO We randomly choose a subset of numbers between 1 and 𝑛 as the indices for the
training observations.
set.seed(1)
train <- sample(1:nrow(x), nrow(x) / 2)
test <- (-train)
y.test <- y[test]
ridge.mod <- glmnet(x[train, ], y[train], alpha = 0, lambda = grid)

We use cross-validation to choose the tuning parameter 𝜆. We can do this using the built-in cross-validation
function, cv.glmnet(). By default, the function performs ten-fold cross-validation, though this can be
changed using the argument nfolds.
set.seed(1)
cv.out <- cv.glmnet(x[train, ], y[train], alpha = 0)
plot(cv.out)
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bestlam <- cv.out$lambda.min
bestlam

## [1] 326.0828

The test MSE associated with this value of 𝜆:
ridge.pred <- predict(ridge.mod, s = bestlam, newx = x[test, ])
mean((ridge.pred - y.test)^2)

## [1] 139833.6

We examine the coefficient estimates. None of the coefficients are zero: ridge regression does not perform
variable selection.
out <- glmnet(x, y, alpha = 0)
predict(out, type = "coefficients", s = bestlam)[1:20, ]

## (Intercept) AtBat Hits HmRun Runs RBI
## 15.44383135 0.07715547 0.85911581 0.60103107 1.06369007 0.87936105
## Walks Years CAtBat CHits CHmRun CRuns
## 1.62444616 1.35254780 0.01134999 0.05746654 0.40680157 0.11456224
## CRBI CWalks LeagueN DivisionW PutOuts Assists
## 0.12116504 0.05299202 22.09143189 -79.04032637 0.16619903 0.02941950
## Errors NewLeagueN
## -1.36092945 9.12487767

In order to fit a LASSO model, we once again use the glmnet() function with alpha=1. We perform
cross-validation and compute the associated test error.
lasso.mod <- glmnet(x[train, ], y[train], alpha = 1, lambda = grid)
set.seed(1)
cv.out <- cv.glmnet(x[train, ], y[train], alpha = 1)
plot(cv.out)
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bestlam <- cv.out$lambda.min
lasso.pred <- predict(lasso.mod, s = bestlam,

newx = x[test, ])
mean((lasso.pred - y.test)^2)

## [1] 143673.6

However, the lasso has a substantial advantage over ridge regression in that the resulting coefficient estimates
are sparse.
out <- glmnet(x, y, alpha = 1, lambda = grid)
lasso.coef <- predict(out, type = "coefficients", s = bestlam)[1:20, ]
lasso.coef

## (Intercept) AtBat Hits HmRun Runs
## 1.27479059 -0.05497143 2.18034583 0.00000000 0.00000000
## RBI Walks Years CAtBat CHits
## 0.00000000 2.29192406 -0.33806109 0.00000000 0.00000000
## CHmRun CRuns CRBI CWalks LeagueN
## 0.02825013 0.21628385 0.41712537 0.00000000 20.28615023
## DivisionW PutOuts Assists Errors NewLeagueN
## -116.16755870 0.23752385 0.00000000 -0.85629148 0.00000000
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