Non-linear Modeling

We re-analyze the Wage data considered in the examples throughout this chapter. We begin by loading the
ISLR2 library, which contains the data.

library(ISLR2)
attach(Wage)

Polynomial regression

The following syntax fits a linear model, using the 1m() function, in order to predict wage using a fourth-
degree polynomial in age: poly(age, 4). The function returns a matrix whose columns are a basis of
orthogonal polynomials, which essentially means that each column is a linear combination of the variables
age, age~2, age~3 and age~4.

fit <- lm(wage ~ poly(age, 4), Wage)
coef (summary (fit))

#H# Estimate Std. Error t value Pr(>ltl)
## (Intercept) 111.70361 0.7287409 153.283015 0.000000e+00
## poly(age, 4)1 447.06785 39.9147851 11.200558 1.484604e-28
## poly(age, 4)2 -478.31581 39.9147851 -11.983424 2.355831e-32
## poly(age, 4)3 125.52169 39.9147851 3.144742 1.678622e-03
## poly(age, 4)4 -77.91118 39.9147851 -1.951938 5.103865e-02

However, we can also use poly () to obtain age, age™2, age™3 and age~4 directly, if we prefer. We can do
this by using the raw = TRUE argument to the poly () function. It does not affect the fitted values.

fit2 <- 1m(wage ~ poly(age, 4, T, Wage)

coef (summary (£it2))

#it Estimate Std. Error t value Pr(>Itl])
## (Intercept) -1.841542e+02 6.004038e+01 -3.067172 0.0021802539

T)1 2.124552e+01 5.886748e+00 3.609042 0.0003123618

6.

## poly(age, 4, raw 5.
T)2 -5.638593e-01 2.061083e-01 -2.735743 0.0062606446

3.

1.

## poly(age, 4, raw
## poly(age, 4, raw
## poly(age, 4, raw

T)3 6.810688e-03 3.065931e-03 2.221409 0.0263977518
T)4 -3.203830e-05 1.641359e-05 -1.951938 0.0510386498

We create a grid of values for age at which we want predictions, and then call the generic predict () function.
se = TRUE specifies that we want standard errors as well.

agelims <- range(age)
age.grid <- seq( agelims[1], agelims[2])
preds <- predict(fit, list( age.grid), TRUE)

In performing a polynomial regression we must decide on the degree of the polynomial to use. One way to
do this is by using hypothesis tests. We now fit models ranging from linear to a degree-5 polynomial and
seek to determine the simplest model which is sufficient to explain the relationship between wage and age.
We use the anova () function, which performs F-tests in order to test the null hypothesis that a model M is
sufficient to explain the data against the alternative hypothesis that a more complex model M, is required.
In order to use the anova() function, M, and M, must be nested models: the predictors in M ; must be a



subset of the predictors in M,. In this case, we fit five different models and sequentially compare the simpler
model to the more complex model.
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Analysis of Variance Table

Model
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Res.Df
2998
2997
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2995
2994
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wage ~
wage ~
wage ~
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RSS
5022216
4793430
4777674
4771604
4770322

Signif. codes:

age
poly(age, 2)
poly(age, 3)
poly(age, 4)
poly(age, 5)

Df Sum of Sq F Pr(>F)
1 228786 143.5931 < 2.2e-16 **x
1 15756 9.8888 0.001679 *x*
1 6070 3.8098 0.051046 .
1 1283 0.8050 0.369682
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The p-value comparing the linear Model 1 to the quadratic Model 2 is essentially zero (<107!%), indicating
that a linear fit is not sufficient. Similarly the p-value comparing the quadratic Model 2 to the cubic Model
3 is very low (0.0017), so the quadratic fit is also insufficient. The p-value comparing the cubic and degree-4
polynomials, Model 3 and Model 4, is approximately 5% while the degree-5 polynomial Model 5 seems
unnecessary because its p-value is 0.37. Hence, either a cubic or a quartic polynomial appear to provide a
reasonable fit to the data, but lower- or higher-order models are not justified.

However, the ANOVA method also works when we have other terms in the model as well.

fit.1 <- 1lm(wage ~
fit.2 <- 1lm(wage ~
fit.3 <- lm(wage ~
anova(fit.1, fit.2,
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education + age, Wage)
education + poly(age, 2), Wage)
education + poly(age, 3), Wage)
fit.3)

Analysis of Variance Table

Model 1:
Model 2:
Model 3:

Res.Df
1 2994
2 2993
3 2992

wage ~
wage ~
wage ~
RSS
3867992
3725395
3719809

Signif. codes:

Splines

education + age

education + poly(age, 2)
education + poly(age, 3)

Df Sum of Sq F Pr(OF)

1 142597 114.6969 <2e-16 *x*x
1 55687  4.4936 0.0341 *

0 "sxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

In order to fit regression splines in R, we use the splines library. Regression splines can be fit by constructing
an appropriate matrix of basis functions.



library(splines)

The bs() function generates the entire matrix of basis functions for splines with the specified set of knots.
By default, cubic splines are produced. Then we use the generic predict() function, specifying that we
want standard errors as well.

fit <- lm(wage ~ bs(age, c(25, 40, 60)), Wage)
pred <- predict(fit, list( age.grid), T)
plot(age, wage, "gray")
lines(age.grid, pred$fit, 2)
lines(age.grid, pred$fit + 2 x* pred$se, "dashed")
lines(age.grid, pred$fit - 2 * pred$se, "dashed")
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Here we have prespecified knots at ages 25, 40, and 60. We could also use the df option to produce a spline
with knots at uniform quantiles of the data. In this case R chooses knots at ages 33.8,42.0, and 51.0, which
correspond to the 25th, 50th, and 75th percentiles of age.

dim(bs (age, c(25, 40, 60)))

## [1] 3000 6
dim(bs (age, 6))

## [1] 3000 6
attr(bs(age, 6), "knots")

## 25% 50%  75%
## 33.75 42.00 51.00

In order to instead fit a natural spline, we use the ns() function. Here we fit a natural spline with four
degrees of freedom. As with the bs() function, we could instead specify the knots directly using the knots
option.

fit2 <- 1lm(wage ~ ns(age, 4), Wage)
pred2 <- predict(fit2, list( age.grid), T)



plot(age, wage, "gray")

lines(age.grid, pred2$fit, "red", 2)
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In order to fit a smoothing spline, we use the smooth.spline() function. Notice that in the first call to
smooth.spline(), we specified df = 16. The function then determines which value of A leads to 16 degrees
of freedom. In the second call to smooth.spline(), we select the smoothness level by cross-validation; this
results in a value of A that yields 6.8 degrees of freedom.

plot(age, wage, "darkgrey")
fit <- smooth.spline(age, wage, 16)
fit2 <- smooth.spline(age, wage, TRUE)

## Warning in smooth.spline(age, wage, cv = TRUE): cross-validation with non-unique
## 'x' values seems doubtful

lines(fit, "red", 2)

lines(fit2, "blue", 2)
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General Additive Models

We now fit a GAM to predict wage using natural spline functions of lyear and age, treating education as
a qualitative predictor. We can simply do this using the 1m() function.

gaml <- lm(wage ~ ns(year, 4) + ns(age, 5) + education, Wage)

In order to fit more general sorts of GAMs, using smoothing splines or other components that cannot be
expressed in terms of basis functions and then fit using least squares regression, we will need to use the gam
library in R. The s() function, which is part of the gam library, is used to indicate that we would like to use
a smoothing spline. We specify that the function of 1year should have 4 degrees of freedom, and that the
function of age will have 5 degrees of freedom. Since education is qualitative, we leave it as is, and it is
converted into four dummy variables.

library(gam)

## foreach
## Loaded gam 1.20

gam.m3 <- gam(wage ~ s(year, 4) + s(age, 5) + education, Wage)
plot(gam.m3, TRUE, "blue")
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The summary () function produces a summary of the gam fit. The “Anova for Parametric Effects” p-values
clearly demonstrate that year, age, and education are all highly statistically significant, even when only
assuming a linear relationship. Alternatively, the “Anova for Nonparametric Effects” p-values for year and
age correspond to a null hypothesis of a linear relationship versus the alternative of a non-linear relationship.
The large p-value for year shows that a linear function is adequate for this term. However, there is very
clear evidence that a non-linear term is required for age.

summary (gam.m3)

##
## Call: gam(formula = wage ~ s(year, 4) + s(age, 5) + education, data = Wage)
## Deviance Residuals:

#i# Min 1Q Median 3Q Max

## -119.43 -19.70 -3.33 14.17 213.48

##

## (Dispersion Parameter for gaussian family taken to be 1235.69)
##

## Null Deviance: 5222086 on 2999 degrees of freedom

## Residual Deviance: 3689770 on 2986 degrees of freedom
## AIC: 29887.75

##

## Number of Local Scoring Iterations: NA

##

## Anova for Parametric Effects

## Df Sum Sq Mean Sq F value Pr (>F)

## s(year, 4) 1 27162 27162 21.981 2.877e-06 ***
## s(age, 5) 1 195338 195338 158.081 < 2.2e-16 ***
## education 4 1069726 267432 216.423 < 2.2e-16 ***
## Residuals 2986 3689770 1236

# ——-

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1
##



##
##
##
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##

Anova for Nonparametric Effects

Npar Df Npar F Pr(F)
(Intercept)
s(year, 4) 3 1.086 0.3537
s(age, 5) 4 32.380 <2e-16 *xx*
education
Signif. codes: O '***x' 0.001 'xx' 0.01

l*l

0.05 '.

' 0.1
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