
Tree-based Methods

Classification Trees
The tree library is used to construct classification and regression trees. We analyze the Carseats data set.
library(tree)
library(ISLR2)
attach(Carseats)

We transform the continuous variable Sales into a categorical variable. We use the ifelse() function to
create a variable, called High, which takes on a value of Yes if the Sales variable exceeds 8, and takes on
a value of No otherwise. We use the data.frame() function to merge High with the rest of the Carseats
data.
High <- factor(ifelse(Sales <= 8, "No", "Yes"))
Carseats <- data.frame(Carseats, High)

We use the tree() function to fit a classification tree in order to predict High using all variables but Sales.
The syntax of the tree() function is quite similar to that of the lm() function.
tree.carseats <- tree(High ~ . - Sales, Carseats)

Trees can be graphically displayed. We use the plot() function to display the tree structure, and the text()
function to display the node labels.
plot(tree.carseats)
text(tree.carseats, pretty = 0)

|
ShelveLoc: Bad,Medium

Price < 92.5

Income < 57
CompPrice < 110.5Population < 207.5

Advertising < 13.5

CompPrice < 124.5

Price < 106.5
Population < 177

Income < 60.5

Price < 122.5

ShelveLoc: Bad
Price < 109.5

Age < 49.5

CompPrice < 147.5
Price < 147CompPrice < 152.5

Age < 54.5
CompPrice < 130.5
Income < 100

CompPrice < 122.5
Price < 125

Price < 135
US: No

Price < 109
Income < 46

NoYesYesYes

NoYes
No

No

No
Yes

YesNo

No
YesNoNo

NoYesYesNo
YesNo

YesNo
YesNoYes

We split the observations into a training set and a test set, build the tree using the training set, and evaluate
its performance on the test data. The predict() function can be used for this purpose. In the case of
a classification tree, the argument type = "class" instructs R to return the actual class prediction. This
approach leads to correct predictions for around 77 % of the locations in the test data set.

1

set.seed(2)
train <- sample(1:nrow(Carseats), 200)
Carseats.test <- Carseats[-train,]
High.test <- High[-train]
tree.carseats <- tree(High ~ . - Sales, Carseats, subset = train)
tree.pred <- predict(tree.carseats, Carseats.test, type = "class")
table(tree.pred, High.test)

High.test
tree.pred No Yes
No 104 33
Yes 13 50
(104 + 50) / 200

[1] 0.77

Next, we consider whether pruning the tree might lead to improved results. The function cv.tree() performs
cross-validation in order to determine the optimal level of tree complexity. We use the argument FUN =
prune.misclass in order to indicate that we want the classification error rate to guide the cross-validation
and pruning process, rather than the default for the cv.tree() function, which is deviance. The cv.tree()
function reports the number of terminal nodes of each tree considered (size) as well as the corresponding
error rate and the value of the cost-complexity parameter used (k, which corresponds to 𝛼 in (8.4)).
set.seed(7)
cv.carseats <- cv.tree(tree.carseats, FUN = prune.misclass)
names(cv.carseats)

[1] "size" "dev" "k" "method"
cv.carseats

$size
[1] 21 19 14 9 8 5 3 2 1
##
$dev
[1] 75 75 75 74 82 83 83 85 82
##
$k
[1] -Inf 0.0 1.0 1.4 2.0 3.0 4.0 9.0 18.0
##
$method
[1] "misclass"
##
attr(,"class")
[1] "prune" "tree.sequence"

Despite its name, dev corresponds to the number of cross-validation errors. The tree with 9 terminal nodes
results in only 74 cross-validation errors.

We now apply the prune.misclass() function in order to prune the tree to obtain the nine-node tree.
prune.carseats <- prune.misclass(tree.carseats, best = 9)
plot(prune.carseats)
text(prune.carseats, pretty = 0)

2

|Price < 96.5

ShelveLoc: Bad,Medium

Price < 124.5

Age < 49.5

CompPrice < 130.5

Population < 134.5
Population < 343

Income < 43

Yes

No
Yes No

Yes

No

No
No Yes

Check how the pruned tree performs on the test data. Now 77.5 % of the test observations are correctly
classified, so not only has the pruning process produced a more interpretable tree, but it has also slightly
improved the classification accuracy.
tree.pred <- predict(prune.carseats, Carseats.test, type = "class")
table(tree.pred, High.test)

High.test
tree.pred No Yes
No 97 25
Yes 20 58
(97 + 58) / 200

[1] 0.775

Regression Trees
Here we fit a regression tree to the Boston data set. First, we create a training set, and fit the tree to the
training data. Notice that the output of summary() indicates that only four of the variables have been used
in constructing the tree.
set.seed(1)
train <- sample(1:nrow(Boston), nrow(Boston) / 2)
tree.boston <- tree(medv ~ ., Boston, subset = train)
summary(tree.boston)

##
Regression tree:
tree(formula = medv ~ ., data = Boston, subset = train)
Variables actually used in tree construction:
[1] "rm" "lstat" "crim" "age"
Number of terminal nodes: 7
Residual mean deviance: 10.38 = 2555 / 246
Distribution of residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-10.1800 -1.7770 -0.1775 0.0000 1.9230 16.5800

We plot the tree.

3

plot(tree.boston)
text(tree.boston, pretty = 0)

|rm < 6.9595

lstat < 14.405

rm < 6.543 crim < 11.4863age < 93.95

rm < 7.553

21.38 27.73 18.09 14.43 10.32

33.42 45.38

Now we use the cv.tree() function to see whether pruning the tree will improve performance. In this case,
the most complex tree under consideration is selected by cross-validation.
cv.boston <- cv.tree(tree.boston)
plot(cv.boston$size, cv.boston$dev, type = "b")

1 2 3 4 5 6 7

50
00

10
00

0
15

00
0

20
00

0

cv.boston$size

cv
.b

os
to

n$
de

v

However, if we wish to prune the tree, we could do so as follows, using the prune.tree() function:
prune.boston <- prune.tree(tree.boston, best = 5)
plot(prune.boston)
text(prune.boston, pretty = 0)

4

|rm < 6.9595

lstat < 14.405

rm < 6.543

rm < 7.553

21.38 27.73
14.46

33.42 45.38

In keeping with the cross-validation results, we use the unpruned tree to make predictions on the test set.
The test set MSE associated with the regression tree is 35.29.
yhat <- predict(tree.boston, newdata = Boston[-train,])
boston.test <- Boston[-train, "medv"]
mean((yhat - boston.test)^2)

[1] 35.28688

Bagging and Random Forests
Here we apply bagging and random forests to the Boston data, using the randomForest package in R. Bagging
is simply a special case of a random forest. The argument mtry = 12 indicates that all 12 predictors should
be considered for each split of the tree. In other words, that bagging should be done.
library(randomForest)

randomForest 4.6-14

Type rfNews() to see new features/changes/bug fixes.
set.seed(1)
bag.boston <- randomForest(medv ~ ., data = Boston, subset = train, mtry = 12, importance = TRUE)
bag.boston

##
Call:
randomForest(formula = medv ~ ., data = Boston, mtry = 12, importance = TRUE, subset = train)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 12
##
Mean of squared residuals: 11.40162
% Var explained: 85.17

How well does this bagged model perform on the test set? The test set MSE associated with the bagged
regression tree is 23.42, about two-thirds of that obtained using an optimally-pruned single tree.

5

yhat.bag <- predict(bag.boston, newdata = Boston[-train,])
mean((yhat.bag - boston.test)^2)

[1] 23.41916

Growing a random forest proceeds in exactly the same way, except that we use a smaller value of the mtry
argument. By default, randomForest() uses 𝑝/3 variables when building a random forest of regression trees,
and √𝑝 variables when building a random forest of classification trees. Here we use mtry = 6. The test set
MSE is 20.07; this indicates that random forests yielded an improvement over bagging in this case.
set.seed(1)
rf.boston <- randomForest(medv ~ ., data = Boston, subset = train, mtry = 6, importance = TRUE)
yhat.rf <- predict(rf.boston, newdata = Boston[-train,])
mean((yhat.rf - boston.test)^2)

[1] 20.06644

6

	Classification Trees
	Regression Trees
	Bagging and Random Forests

