```{r,warning=FALSE} library(glmnet) library(AER) ?Fatalities data(Fatalities) F=na.omit(Fatalities) ``` We define the dependent variable as the rate of alcohol-involved vehicle fatalities: ```{r} F$afatal_rate=F$afatal/F$pop ``` We run OLS first: ```{r} OUT=lm(afatal_rate~spirits+unemp+income+beertax+baptist+mormon+drinkage+dry+youngdrivers +miles+breath+jail+service+pop+state+year,data=F) summary(OUT) ``` OLS weights for adaptive Lasso: ```{r} w=coef(OUT)[-1] # not penalizing the intercept w=1/abs(w) ``` Model matrix for glmnet(): ```{r} y=F$afatal_rate x=model.matrix(afatal_rate~spirits+unemp+income+beertax+baptist +mormon+drinkage+dry+youngdrivers+miles+breath+jail +service+pop+state+year,F)[,-1] # drop the intercept ``` * Cross-validation with adaptive weights: ```{r} set.seed(1) CV=cv.glmnet(x,y,alpha=1,family="gaussian",penalty.factor=w,standardize=FALSE) plot(CV) ``` Selected coefficients: ```{r} coef(CV,s=CV$lambda.1se) ```