Lab 9: Naive Post-LASSO

In the Monte Carlo simulations below, we illustrate the bias of the naive post-Lasso estimator. The bias
comes from the failure of Lasso to reliably detect small non-zero coefficients.

library(glmnet)

## Matrix

## Loaded glmnet 4.1-2

n=100 #sample size
R=300 #number of Monte Carlo repetitions

The data generating process for simulations:

Y, =01 X1+ 82X, 5+ B5X, 5+ U,

ﬁl = 03
8, = 0.35,
/83 = 07

Xio=pX;1+ 29,
X;1:Uiy Z; 5, X; 3 ~ iid N(0,1) and independent from each other.

Three potential regressors:

o Regressor 1 is the main regressor.
e Regressor 2 has a small coefficient and its correlation with Regressor 1 depends on the magnitude of p.
e Regressor 3 is irrelevant.

betal=0
beta2=0.35

“Large” p: p=1
We assume that Regressor 1 is strongly correlated with controls.
rho=1

We write a function for generating data:

data_sim<-function(n,betal,beta2,rho){
X=matrix(rnorm(n*3), 3)
X[,2]1<-rho*X[,1]1+X[,2]
Y=betal*X[,1]+beta2*X[,2] +rnorm(n)
data<-list (Y=Y, X=X)

}

We'll use LASSO with cross validation to select the controls, and then estimate the effect of Regressor 1 on
Y. We set the penalty weight of Regressor 1 to 0 to always include it.

w=rep(1,3)

w[1]=0



data<-data_sim(n,betal,beta2,rho)

CV.Lasso=cv.glmnet (data$X,data$y, "gaussian", 1, W)
Included=which(coef (CV.Lasso,s=CV.Lasso$lambda.lse) [-1] !=0)

Included

## [1] 1

We generate data, select covariates using LASSO (with Regressor 1 being always in) and store the t-statistic
for the coeflicient of the first regressor.
rho=1
set.seed (42, "Rejection")
IN2=0 # counter for inclusion of X2
T_Betal_post=rep(0,R) # Vector to store T-stats for the main regressor
for (r in 1:R){
data<-data_sim(n,betal,beta2,rho)

CV.Lasso=cv.glmnet (data$X,dataly, "gaussian", 1, W)
Included=which(coef (CV.Lasso,s=CV.Lasso$lambda.1se) [-1]!=0)

Post_0OLS=1m(data$Y~data$X[,Included])
T_Betal_post[r]=coef (summary(Post_0LS)) [2,3] #Selects the t-statistic on X1

IN2=IN2+(coef (CV.Lasso,s=CV.Lasso$lambda. 1se) [3] !=0)
}
print ("Prob. of X2 included")

## [1] "Prob. of X2 included"
IN2/R

## [1] 0.3733333

We plot the histogram of the post-LASSO t-statistic for the first regressor. Its asymptotic distribution
should be centered around zero since the true coefficient is zero. We compare it with the N(0, 1) distribution.
Because Regressor 2 is omitted with high probability and correlated with Regressor 1, the distribution is
distorted.

low=min(T_Betal_post)

high=max(T_Betal_post)

step=(high-low)/20

hist(T_Betal_post, seq(low-2*step,high+2*step,step), "estimates", "The exact distribution

# add a wvertical line at the true wvalue
abline(v=betal, "blue")

# add the plot of the N(0,1) pdf
x=seq(-4,4,0.01)
f=exp(-x~2/2) /sqrt (2*pi)
lines(x,f, "red")



The exact distribution of the post-LASSO t-statistic vs N(0,1)
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Repeat with a “small” p: p=0.1

We rerun the simulations with a smaller p. Regressor 2 is still dropped with a high probability.
rho=0.25
set.seed (42, "Rejection")
IN2=0 # counter for inclusion of X2
T_Betal_post=rep(0,R) # Vector to store T-stats for the main regressor
for (r in 1:R){
data<-data_sim(n,betal,beta2,rho)

CV.Lasso=cv.glmnet (data$X,data$y, "gaussian", 1, W)
Included=which(coef (CV.Lasso,s=CV.Lasso$lambda.1se) [-1] !=0)

Post_0OLS=1m(data$Y~data$X[,Included])
T_Betal_post[r]=coef (summary(Post_0LS)) [2,3] #Selects the t-statistic on X1

IN2=IN2+(coef (CV.Lasso,s=CV.Lasso$lambda.1se) [3] !=0)

b
print("Prob. of X2 included")

## [1] "Prob. of X2 included"
IN2/R

## [1] 0.3833333

The exact distribution is less skewed. When the second regressor is only weakly correlated with Regressor 1,
there is less distortion.

low=min(T_Betal_post)
high=max (T_Betal_post)



step=(high-low) /20
hist(T_Betal_post, seq(low-2*step,high+2*step,step), "estimates", "The exact distribution

# add a wvertical line at the true value
abline(v=betal, "blue")

# add the plot of the N(0,1) pdf
x=seq(-4,4,0.01)
f=exp(-x~2/2) /sqrt (2*pi)
lines(x,f, "red")

The exact distribution of the post-LASSO t-statistic vs N(0,1)
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	``Large'' \rho: \rho=1
	Repeat with a ``small'' \rho: \rho=0.1

