
Lab 9: Naive Post-LASSO

In the Monte Carlo simulations below, we illustrate the bias of the naive post-Lasso estimator. The bias
comes from the failure of Lasso to reliably detect small non-zero coefficients.
library(glmnet)

## ���������Matrix

## Loaded glmnet 4.1-2
n=100 #sample size
R=300 #number of Monte Carlo repetitions

The data generating process for simulations:

𝑌𝑖 = 𝛽1𝑋𝑖,1 + 𝛽2𝑋𝑖,2 + 𝛽3𝑋𝑖,3 + 𝑈𝑖,
𝛽1 = 0,
𝛽2 = 0.35,
𝛽3 = 0,

𝑋𝑖,2 = 𝜌𝑋𝑖,1 + 𝑍𝑖,2,
𝑋𝑖,1, 𝑈𝑖, 𝑍𝑖,2, 𝑋𝑖,3 ∼ iid 𝑁(0, 1) and independent from each other.

Three potential regressors:

• Regressor 1 is the main regressor.
• Regressor 2 has a small coefficient and its correlation with Regressor 1 depends on the magnitude of 𝜌.
• Regressor 3 is irrelevant.

beta1=0
beta2=0.35

“Large” 𝜌: 𝜌 = 1
We assume that Regressor 1 is strongly correlated with controls.
rho=1

We write a function for generating data:
data_sim<-function(n,beta1,beta2,rho){

X=matrix(rnorm(n*3),ncol=3)
X[,2]<-rho*X[,1]+X[,2]
Y=beta1*X[,1]+beta2*X[,2]+rnorm(n)
data<-list(Y=Y,X=X)

}

We’ll use LASSO with cross validation to select the controls, and then estimate the effect of Regressor 1 on
𝑌 . We set the penalty weight of Regressor 1 to 0 to always include it.
w=rep(1,3)
w[1]=0
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data<-data_sim(n,beta1,beta2,rho)
CV.Lasso=cv.glmnet(data$X,data$Y,family="gaussian",alpha=1,penalty.factor=w)
Included=which(coef(CV.Lasso,s=CV.Lasso$lambda.1se)[-1]!=0)
Included

## [1] 1

We generate data, select covariates using LASSO (with Regressor 1 being always in) and store the t-statistic
for the coefficient of the first regressor.
rho=1
set.seed(42,sample.kind = "Rejection")
IN2=0 # counter for inclusion of X2
T_Beta1_post=rep(0,R) # Vector to store T-stats for the main regressor
for (r in 1:R){
data<-data_sim(n,beta1,beta2,rho)

CV.Lasso=cv.glmnet(data$X,data$Y,family="gaussian",alpha=1,penalty.factor=w)
Included=which(coef(CV.Lasso,s=CV.Lasso$lambda.1se)[-1]!=0)

Post_OLS=lm(data$Y~data$X[,Included])
T_Beta1_post[r]=coef(summary(Post_OLS))[2,3] #Selects the t-statistic on X1

IN2=IN2+(coef(CV.Lasso,s=CV.Lasso$lambda.1se)[3]!=0)
}
print("Prob. of X2 included")

## [1] "Prob. of X2 included"
IN2/R

## [1] 0.3733333

We plot the histogram of the post-LASSO t-statistic for the first regressor. Its asymptotic distribution
should be centered around zero since the true coefficient is zero. We compare it with the 𝑁(0, 1) distribution.
Because Regressor 2 is omitted with high probability and correlated with Regressor 1, the distribution is
distorted.
low=min(T_Beta1_post)
high=max(T_Beta1_post)
step=(high-low)/20
hist(T_Beta1_post,breaks=seq(low-2*step,high+2*step,step),xlab="estimates",main="The exact distribution of the post-LASSO t-statistic vs N(0,1)",freq=FALSE,ylim=c(0,0.5))

# add a vertical line at the true value
abline(v=beta1,col="blue")

# add the plot of the N(0,1) pdf
x=seq(-4,4,0.01)
f=exp(-x^2/2)/sqrt(2*pi)
lines(x,f,col="red")
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Repeat with a “small” 𝜌: 𝜌 = 0.1
We rerun the simulations with a smaller 𝜌. Regressor 2 is still dropped with a high probability.
rho=0.25
set.seed(42,sample.kind = "Rejection")
IN2=0 # counter for inclusion of X2
T_Beta1_post=rep(0,R) # Vector to store T-stats for the main regressor
for (r in 1:R){
data<-data_sim(n,beta1,beta2,rho)

CV.Lasso=cv.glmnet(data$X,data$Y,family="gaussian",alpha=1,penalty.factor=w)
Included=which(coef(CV.Lasso,s=CV.Lasso$lambda.1se)[-1]!=0)

Post_OLS=lm(data$Y~data$X[,Included])
T_Beta1_post[r]=coef(summary(Post_OLS))[2,3] #Selects the t-statistic on X1

IN2=IN2+(coef(CV.Lasso,s=CV.Lasso$lambda.1se)[3]!=0)
}
print("Prob. of X2 included")

## [1] "Prob. of X2 included"
IN2/R

## [1] 0.3833333

The exact distribution is less skewed. When the second regressor is only weakly correlated with Regressor 1,
there is less distortion.
low=min(T_Beta1_post)
high=max(T_Beta1_post)
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step=(high-low)/20
hist(T_Beta1_post,breaks=seq(low-2*step,high+2*step,step),xlab="estimates",main="The exact distribution of the post-LASSO t-statistic vs N(0,1)",freq=FALSE,ylim=c(0,0.5))

# add a vertical line at the true value
abline(v=beta1,col="blue")

# add the plot of the N(0,1) pdf
x=seq(-4,4,0.01)
f=exp(-x^2/2)/sqrt(2*pi)
lines(x,f,col="red")
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	``Large'' \rho: \rho=1
	Repeat with a ``small'' \rho: \rho=0.1

