## **Introductory Econometrics**

Lecture 10: Multiple regression model

Instructor: Ma, Jun

Renmin University of China

October 14, 2021

# Why we need a multiple regression model

- ► There are many factors affecting the outcome variable *Y*.
- ► If we want to estimate the marginal effect of one of the factors (regressors), we need to control for other factors.
- ▶ Suppose that we are interested in the effect of  $X_1$  on Y, but Y is affected by both  $X_1$  and  $X_2$ :

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + U_i.$$

► Suppose we regress Y only against  $X_1$ :

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_{1,i} - \bar{X}_1) Y_i}{\sum_{i=1}^n (X_{1,i} - \bar{X}_1)^2}.$$

#### Omitted variable bias

Since *Y* depends on  $X_2 : Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + U_i$ ,

► We have:

$$\begin{split} \hat{\beta}_{1} &= \frac{\sum_{i=1}^{n} \left(X_{1,i} - \bar{X}_{1}\right) \left(\beta_{0} + \beta_{1} X_{1,i} + \beta_{2} X_{2,i} + U_{i}\right)}{\sum_{i=1}^{n} \left(X_{1,i} - \bar{X}_{1}\right)^{2}} \\ &= \beta_{1} + \beta_{2} \frac{\sum_{i=1}^{n} \left(X_{1,i} - \bar{X}_{1}\right) X_{2,i}}{\sum_{i=1}^{n} \left(X_{1,i} - \bar{X}_{1}\right)^{2}} + \frac{\sum_{i=1}^{n} \left(X_{1,i} - \bar{X}_{1}\right) U_{i}}{\sum_{i=1}^{n} \left(X_{1,i} - \bar{X}_{1}\right)^{2}}. \end{split}$$

Assume that  $E[U_i \mid X_{1,i}, X_{2,i}] = 0$ . Now, conditional on X's:

$$\mathrm{E}\left[\hat{\beta}_{1}\right] = \beta_{1} + \beta_{2} \frac{\sum_{i=1}^{n} \left(X_{1,i} - \bar{X}_{1}\right) X_{2,i}}{\sum_{i=1}^{n} \left(X_{1,i} - \bar{X}_{1}\right)^{2}} \neq \beta_{1}.$$

The exception is when

$$\sum_{i=1}^{n} (X_{1,i} - \bar{X}_1) X_{2,i} = 0.$$

#### Omitted variable bias

▶ When the true model is

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + U_i,$$

but we regress only on  $X_1$ ,

$$Y_i = \beta_0 + \beta_1 X_{1,i} + V_i,$$

where  $V_i$  is the new error term:

$$V_i = \beta_2 X_{2,i} + U_i.$$

- ► If  $X_1$  and  $X_2$  are related, we can no longer say that  $E[V_i \mid X_{1,i}] = 0$ .
- ▶ When  $X_1$  changes,  $X_2$  changes as well, which contaminates estimation of the effect of  $X_1$  on Y.
- ► As a result,  $\hat{\beta}_1$  from the regression of *Y* on  $X_1$  alone is biased.

# Multiple linear regression model

► The econometrician observes the data:

$$\{(Y_i, X_{1,i}, X_{2,i}, \ldots, X_{k,i}) : i = 1, \ldots, n\}.$$

► The model:

$$Y_{i} = \beta_{0} + \beta_{1} X_{1,i} + \beta_{2} X_{2,i} + \ldots + \beta_{k} X_{k,i} + U_{i},$$
  
$$\mathbb{E} \left[ U_{i} \mid X_{1,i}, X_{2,i}, \ldots, X_{k,i} \right] = 0.$$

► We also assume no multicollinearity: None of the regressors are constant and there are no exact linear relationships among the regressors.

# Interpretation of the coefficients

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \ldots + \beta_k X_{k,i} + U_i.$$

 $\triangleright$   $\beta_j$  is a partial (marginal) effect of  $X_j$  on Y:

$$\beta_j = \frac{\partial Y_i}{\partial X_{j,i}}.$$

► For example,  $\beta_1$  is the effect of  $X_1$  on Y while holding the other regressors constant (or controlling for  $X_2, \ldots, X_k$ )

$$\Delta Y = \beta_1 \Delta X_1$$
.

▶ In data, the values of all regressors usually change from observation to observation. If we do not control for other factors, we cannot identify the effect of  $X_1$ .

# Changing more than one regressor simultaneously

- ► There are cases when we want to change more than one regressor at the same time to find an effect on *Y*.
- ► Example 3.2: the results from 526 observations on workers

$$\widehat{\log Wage} = 0.284 + 0.92edu + 0.0041exper + 0.22tenure.$$

- ► The effect of staying one more year at the same firm: increasing both exper and tenure.
- ► Holding edu fixed,

$$\overline{\log Wag}e = 0.0041\Delta exper + 0.22\Delta tenure.$$

### Modelling nonlinear effects

- Recall that in Y<sub>i</sub> = β<sub>0</sub> + β<sub>1</sub>X<sub>i</sub> + U<sub>i</sub>, the effect of X<sub>i</sub> on Y<sub>i</sub> is linear:
   dY<sub>i</sub>/dX<sub>i</sub> = β<sub>1</sub> and constant for all values of X<sub>i</sub>.
   Multiple regression can be used to model nonlinear effects of regressors.
- ► To model nonlinear returns to education, consider the following equation:

$$\log \text{Wage}_i = \beta_0 + \beta_1 \text{Education}_i + \beta_2 \text{Education}_i^2 + U_i,$$

were Education $_i$  = years of education of individual i.

► In this case, the return to education is:

$$\frac{d \log \text{Wage}_i}{d \text{Education}_i} = \beta_1 + 2\beta_2 \text{Education}_i.$$

Now, return to education depends on years of education. For example, diminishing returns to education correspond to  $\beta_2 < 0$ .

#### **OLS** estimation

► The OLS estimators  $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$  are the values that minimize the squared errors function:

$$\min_{b_0, b_1, \dots, b_k} Q_n (b_0, b_1, \dots, b_k), \text{ where}$$

$$Q_n (b_0, b_1, \dots, b_k) = \sum_{i=1}^n (Y_i - b_0 - b_1 X_{1,i} - \dots - b_k X_{k,i})^2.$$

▶ The partial derivative with respect to  $b_0$  is

$$\frac{\partial Q_n (b_0, b_1, \dots, b_k)}{\partial b_0} = -2 \sum_{i=1}^n (Y_i - b_0 - b_1 X_{1,i} - \dots - b_k X_{k,i}).$$

► The partial derivative with respect to  $b_j$ , j = 1, ..., k is

$$\frac{\partial Q_n (b_0, b_1, \dots, b_k)}{\partial b_j} = -2 \sum_{i=1}^n (Y_i - b_0 - b_1 X_{1,i} - \dots - b_k X_{k,i}) X_{j,i}.$$

### Normal equations (first-order conditions for OLS)

The OLS estimators  $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$  are obtained by solving the following system of normal equations:

$$\sum_{i=1}^{n} (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} X_{1,i} - \dots - \hat{\beta}_{k} X_{k,i}) = 0,$$

$$\sum_{i=1}^{n} (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} X_{1,i} - \dots - \hat{\beta}_{k} X_{k,i}) X_{1,i} = 0,$$

$$\vdots = \vdots$$

$$\sum_{i=1}^{n} (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} X_{1,i} - \dots - \hat{\beta}_{k} X_{k,i}) X_{k,i} = 0.$$

### Normal equations (first-order conditions for OLS)

► Since the fitted residuals are

$$\hat{U}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \ldots - \hat{\beta}_k X_{k,i},$$

the normal equations can be written as

$$\sum_{i=1}^{n} \hat{U}_{i} = 0,$$

$$\sum_{i=1}^{n} \hat{U}_{i} X_{1,i} = 0,$$

$$\vdots = \vdots$$

$$\sum_{i=1}^{n} \hat{U}_{i} X_{k,i} = 0.$$

▶ We choose  $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k$  so that  $\hat{U}$ 's and regressors are orthogonal (uncorrelated in sample).

### Partitioned regression

- A representation for individual  $\hat{\beta}$ 's can be obtained through the partitioned regression result. Suppose we want to obtain an expression for  $\hat{\beta}_1$ .
- ► Consider first regressing  $X_{1,i}$  against other regressors and a constant:

$$X_{1,i} = \hat{\gamma}_0 + \hat{\gamma}_2 X_{2,i} + \ldots + \hat{\gamma}_k X_{k,i} + \tilde{X}_{1,i},$$

where  $\hat{\gamma}_0, \hat{\gamma}_2, \dots, \hat{\gamma}_k$  are the OLS coefficients, and  $\tilde{X}_{1,i}$  is the fitted OLS residual:

$$\sum_{i=1}^{n} \tilde{X}_{1,i} = 0, \text{ and } \sum_{i=1}^{n} \tilde{X}_{1,i} X_{j,i} = 0 \text{ for } j = 2, \dots, k.$$

► Then  $\hat{\beta}_1$  can be written as

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \tilde{X}_{1,i} Y_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2}.$$

# Proof of the partitioned regression result

- ► We can write  $Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1,i} + \hat{\beta}_2 X_{2,i} + \dots + \hat{\beta}_k X_{k,i} + \hat{U}_i$ , where  $\sum_{i=1}^n \hat{U}_i = \sum_{i=1}^n \hat{U}_i X_{1,i} = \dots = \sum_{i=1}^n \hat{U}_i X_{k,i} = 0$ .
- ► Now.

$$\begin{split} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} &= \\ \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} \left( \hat{\beta}_{0} + \hat{\beta}_{1} X_{1,i} + \hat{\beta}_{2} X_{2,i} + \ldots + \hat{\beta}_{k} X_{k,i} + \hat{U}_{i} \right)}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} \\ &= \hat{\beta}_{0} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} + \hat{\beta}_{1} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} X_{1,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} + \\ &+ \hat{\beta}_{2} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} X_{2,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} + \ldots + \hat{\beta}_{k} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} X_{k,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} + \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} \hat{U}_{i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}}. \end{split}$$

# Proof of the partitioned regression result

$$\begin{split} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} Y_{i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} &= \hat{\beta}_{0} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} + \hat{\beta}_{1} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} X_{1,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} + \\ &+ \hat{\beta}_{2} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} X_{2,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} + \ldots + \hat{\beta}_{k} \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} X_{k,i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}} + \frac{\sum_{i=1}^{n} \tilde{X}_{1,i} \hat{U}_{i}}{\sum_{i=1}^{n} \tilde{X}_{1,i}^{2}}. \end{split}$$

We will show that:

1. 
$$\sum_{i=1}^{n} \tilde{X}_{1,i} = 0$$
.

2. 
$$\sum_{i=1}^{n} \tilde{X}_{1,i} X_{2,i} = \ldots = \sum_{i=1}^{n} \tilde{X}_{1,i} X_{k,i} = 0.$$

3. 
$$\sum_{i=1}^{n} \tilde{X}_{1,i} X_{1,i} = \sum_{i=1}^{n} \tilde{X}_{1,i}^{2}$$
.

4. 
$$\sum_{i=1}^{n} \tilde{X}_{1,i} \hat{U}_i = 0$$
.

Then

$$\frac{\sum_{i=1}^{n} \tilde{X}_{1,i} Y_i}{\sum_{i=1}^{n} \tilde{X}_{1,i}^2} = \hat{\beta}_1.$$

# Proof of the partitioned regression result (steps 1-2)

 $ightharpoonup \tilde{X}_{1,i}$  is the fitted OLS residual:

$$X_{1,i} = \hat{\gamma}_0 + \hat{\gamma}_2 X_{2,i} + \ldots + \hat{\gamma}_k X_{k,i} + \tilde{X}_{1,i},$$

where  $\hat{\gamma}_0, \hat{\gamma}_2, \dots, \hat{\gamma}_k$  are the OLS coefficients.

► The normal equations for this regression are:

$$\sum_{i=1}^{n} \tilde{X}_{1,i} = 0,$$

$$\sum_{i=1}^{n} \tilde{X}_{1,i} X_{2,i} = 0,$$

$$\vdots = \vdots$$

$$\sum_{i=1}^{n} \tilde{X}_{1,i} X_{k,i} = 0.$$

# Proof of the partitioned regression result (step 3)

Again, because  $\tilde{X}_{1,i}$  are the OLS residuals (fitted) from the regression of  $X_1$  against  $X_2, \ldots, X_k$ :

$$\begin{split} \sum_{i=1}^{n} \tilde{X}_{1,i} X_{1,i} &= \sum_{i=1}^{n} \tilde{X}_{1,i} \left( \hat{\gamma}_{0} + \hat{\gamma}_{2} X_{2,i} + \ldots + \hat{\gamma}_{k} X_{k,i} + \tilde{X}_{1,i} \right) \\ &= \hat{\gamma}_{0} \sum_{i=1}^{n} \tilde{X}_{1,i} + \hat{\gamma}_{2} \sum_{i=1}^{n} \tilde{X}_{1,i} X_{2,i} + \ldots + \hat{\gamma}_{k} \sum_{i=1}^{n} \tilde{X}_{1,i} X_{k,i} + \sum_{i=1}^{n} \tilde{X}_{1,i} \tilde{X}_{1,i} \\ &= \hat{\gamma}_{0} \cdot 0 + \hat{\gamma}_{2} \cdot 0 + \ldots + \hat{\gamma}_{k} \cdot 0 + \sum_{i=1}^{n} \tilde{X}_{1,i}^{2} = \sum_{i=1}^{n} \tilde{X}_{1,i}^{2}, \end{split}$$

because of the normal equations for the  $X_1$  regression.

# Proof of the partitioned regression result (step 4)

Lastly, because  $\hat{U}$  are the fitted residuals from the regression of Y against all X's:

$$\sum_{i=1}^{n} \hat{U}_i = \sum_{i=1}^{n} \hat{U}_i X_{1,i} = \ldots = \sum_{i=1}^{n} \hat{U}_i X_{k,i} = 0.$$

$$\sum_{i=1}^{n} \tilde{X}_{1,i} \hat{U}_{i} = \sum_{i=1}^{n} (X_{1,i} - \hat{\gamma}_{0} - \hat{\gamma}_{2} X_{2,i} - \dots - \hat{\gamma}_{k} X_{k,i}) \hat{U}_{i}$$

$$= \sum_{i=1}^{n} X_{1,i} \hat{U}_{i} - \hat{\gamma}_{0} \sum_{i=1}^{n} \hat{U}_{i} - \hat{\gamma}_{2} \sum_{i=1}^{n} X_{2,i} \hat{U}_{i} - \dots - \hat{\gamma}_{k} \sum_{i=1}^{n} X_{k,i} \hat{U}_{i}$$

$$= 0 - \hat{\gamma}_{0} \cdot 0 - \hat{\gamma}_{2} \cdot 0 - \dots - \hat{\gamma}_{k} \cdot 0 = 0.$$

# "Partialling out"

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \tilde{X}_{1,i} Y_i}{\sum_{i=1}^n \tilde{X}_{1,i}^2}$$

- 1. First, we regress  $X_1$  against the rest of the regressors (and a constant) and keep  $\tilde{X}_1$  which is the "part" of  $X_1$  that is uncorrelated with other regressors (in sample, or orthogonal to other regressors).
- 2. Then, to obtain  $\hat{\beta}_1$ , we regress Y against  $\tilde{X}_1$  which is "clean" from correlation with other regressors (no intercept).
- 3.  $\hat{\beta}_1$  measures the effect of  $X_1$  after the effects of  $X_2, \ldots, X_k$  have been partialled out or netted out.