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Interval, Ordinal, and Categorical Variables

I Interval variable: is one where the difference between two values
is meaningful. Example: “Education” when measured in years.
There is a meaning to the difference between 12 and 10 years of
education.

I In some data sets, education is reported as an ordinal variable:
only the order between its values matters, but the difference has
no meaning. Example: The following two variables are
equivalent.

Education𝑖 =


1 if high-school graduate,
2 if college graduate,
3 if advanced degree.

Education𝑖 =


1 if high-school graduate,
10 if college graduate,
234 if advanced degree.
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I Categorical variable is one that has one or more categories, but
there is no natural ordering to the categories
Examples: Gender, race, marital status, geographic location.

I The following two variables are equivalent:

Gender𝑖 =
{

1 if observation 𝑖 corresponds to a woman,
2 if observation 𝑖 corresponds to a man.

Gender𝑖 =
{

1 if observation 𝑖 corresponds to a man,
2 if observation 𝑖 corresponds to a woman.

I Categorical and ordinal variables are also called qualitative.
I Qualitative variables cannot be simply included in regression,

because the regression technique assumes that all variables are
interval.
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Dummy variables

I A dummy variable is a binary zero-one variable which takes on
the value one if some condition is satisfied and zero if that
condition fails:
I Female𝑖 =

{
1 if observation 𝑖 corresponds to a woman,
0 if observation 𝑖 corresponds to a man.

I Male𝑖 =
{

1 if observation 𝑖 corresponds to a man,
0 if observation 𝑖 corresponds to a woman.

I Note that Female𝑖 +Male𝑖 = 1 for all observations 𝑖.
I Married𝑖 =

{
1 if married,
0 otherwise.
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Example
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A single dummy independent variable
I Consider the following regression:

Wage𝑖 = 𝛽0 + 𝛿0Female𝑖 + 𝛽1Educ𝑖 + 𝛽3Exper𝑖 + 𝛽4Tenure𝑖 +𝑈𝑖 ,

and assume that conditionally on all independent variables, E [𝑈𝑖] = 0.
I If observation 𝑖 corresponds to a woman, Female𝑖 = 1, and

E
[
Wage𝑖 | Female𝑖 = 1, Educ𝑖 , Exper𝑖 , Tenure𝑖

]
=

𝛽0 + 𝛿0+𝛽1Educ𝑖 + 𝛽3Exper𝑖 + 𝛽4Tenure𝑖 .

I If observation 𝑖 corresponds to a man, Female𝑖 = 0, and

E
[
Wage𝑖 | Female𝑖 = 0, Educ𝑖 , Exper𝑖 , Tenure𝑖

]
=

𝛽0 + 𝛽1Educ𝑖 + 𝛽3Exper𝑖 + 𝛽4Tenure𝑖 .

I Thus,

𝛿0 = E
[
Wage𝑖 | Female𝑖 = 1, Educ𝑖 , Exper𝑖 , Tenure𝑖

]
−

− E
[
Wage𝑖 | Female𝑖 = 0, Educ𝑖 , Exper𝑖 , Tenure𝑖

]
.
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An intercept shift

I The model:

Wage𝑖 = 𝛽0 + 𝛿0Female𝑖 + 𝛽1Educ𝑖 + 𝛽3Exper𝑖 + 𝛽4Tenure𝑖 +𝑈𝑖

I For men (Female𝑖 = 0):, we can write the model as

Wage𝑀𝑖 = 𝛽0 + 𝛽1Educ𝑖 + 𝛽3Exper𝑖 + 𝛽4Tenure𝑖 +𝑈𝑖 .

I For women (Female𝑖 = 1):, we can write the model as

Wage𝐹𝑖 = (𝛽0 + 𝛿0) + 𝛽1Educ𝑖 + 𝛽3Exper𝑖 + 𝛽4Tenure𝑖 +𝑈𝑖 .

I In this case, men play the role of the base group.
I 𝛿0 measures the difference relatively to the base group.
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Example

I Estimated equation:

�𝑊𝑎𝑔𝑒𝑖 = − 1.57
(0.72)

− 1.81
(0.26)

Female𝑖 + 0.572
(0.049)

Educ𝑖

+ 0.025
(0.012)

Exper𝑖 + 0.141
(0.021)

Tenure𝑖 .

I The dependent variable is the wage per hour.
I 𝛿0 = −1.81 implies that a women earns $1.81 less per hour than a

man with the same level of education, experience, and tenure.
(These are 1976 wages.)

I The difference is also statistically significant.
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When the dependent variable is in the logarithmic form
I The model:

log (𝑊𝑎𝑔𝑒) = 𝛽0 + 𝛿0𝐹𝑒𝑚𝑎𝑙𝑒 + 𝛽1𝐸𝑑𝑢𝑐 + 𝛽3𝐸𝑥𝑝𝑒𝑟 + 𝛽4𝑇𝑒𝑛𝑢𝑟𝑒 +𝑈.

I In this case,

𝛿0 = log
(
Wage𝐹

)
− log

(
Wage𝑀

)
= log

(
Wage𝐹

Wage𝑀

)
= log

(
Wage𝑀 +

(
Wage𝐹 −Wage𝑀

)
Wage𝑀

)
= log

(
1 + Wage𝐹 −Wage𝑀

Wage𝑀

)
≈ Wage𝐹 −Wage𝑀

Wage𝑀
.

I When the dependent variable is in the log form, 𝛿0 has a
percentage interpretation.
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Example

I Estimated equation:�log
(
Wage𝑖

)
= 0.417

(0.099)
− 0.297

(0.036)
Female𝑖 + 0.080

(0.007)
Educ𝑖

+ 0.029
(0.005)

Exper𝑖 − 0.00058
(0.00010)

Exper2
𝑖

+ 0.032
(0.007)

Tenure𝑖 − 0.00059
(0.00023)

Tenure2
𝑖 .

I 𝛿0 = −0.297 implies that a woman earns 29.7% less than a man
with the same level of education, experience and tenure.
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Changing the base group

I Instead of

log
(
Wage𝑖

)
= 𝛽0 + 𝛿0Female𝑖 + 𝛽1Educ𝑖 + 𝛽3Exper𝑖 + 𝛽4Tenure𝑖 +𝑈𝑖

consider:

log
(
Wage𝑖

)
= 𝜃0 + 𝛾0Male𝑖 + 𝜃1Educ𝑖 + 𝜃3Exper𝑖 + 𝜃4Tenure𝑖 +𝑈𝑖 .

I Since Male𝑖 = 1 − Female𝑖 ,

log
(
Wage𝑖

)
= 𝜃0 + 𝛾0Male𝑖 + 𝜃1Educ𝑖 + 𝜃3Exper𝑖 + 𝜃4Tenure𝑖 +𝑈𝑖

= 𝜃0 + 𝛾0 (1 − Female𝑖) + 𝜃1Educ𝑖 + 𝜃3Exper𝑖 + 𝜃4Tenure𝑖 +𝑈𝑖

= (𝜃0 + 𝛾0) − 𝛾0Female𝑖 + 𝜃1Educ𝑖 + 𝜃3Exper𝑖 + 𝜃4Tenure𝑖 +𝑈𝑖 .

I We conclude that 𝛿0 = −𝛾0, 𝛽0 = 𝜃0 − 𝛿0, 𝛽1 = 𝜃1, and etc.:

log
(
Wage𝑖

)
= (𝛽0 + 𝛿0) − 𝛿0Male𝑖 + 𝛽1Educ𝑖 + 𝛽3Exper𝑖 + 𝛽4Tenure𝑖 +𝑈𝑖 .

I Thus, changing the base group has no effect on the conclusions.
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The dummy variable trap

I Consider the equation:

log
(
Wage𝑖

)
= 𝛽0 + 𝛿0𝐹𝑒𝑚𝑎𝑙𝑒𝑖 + 𝛾0Male𝑖

+ 𝛽1Educ𝑖 + 𝛽3Exper𝑖 + 𝛽4Tenure𝑖 +𝑈𝑖 .

I Recall that the intercept is a regressor that takes the value one for
all observations.

I Since Male𝑖 + Female𝑖 − 1 = 0 for all observations 𝑖, we have the
case of perfect multicollinearity, and such an equation cannot be
estimated.

I One cannot include an intercept and dummies for all the groups!
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I One of the dummies has to be omitted and the corresponding
group becomes the base group:
I Men are the base group: log

(
Wage𝑖

)
=

𝛽0 + 𝛿0Female𝑖 + 𝛽1Educ𝑖 + 𝛽3Exper𝑖 + 𝛽4Tenure𝑖 +𝑈𝑖 .
I Women are the base group: log

(
Wage𝑖

)
=

𝜃0 + 𝛾0Male𝑖 + 𝛽1𝐸𝑑𝑢𝑐𝑖 + 𝛽3𝐸𝑥𝑝𝑒𝑟𝑖 + 𝛽4𝑇𝑒𝑛𝑢𝑟𝑒𝑖 +𝑈𝑖 .
I Alternatively, one can include both dummies without the

intercept: log
(
Wage𝑖

)
=

𝜋0Female𝑖 + 𝜋1Male𝑖 + 𝛽1𝐸𝑑𝑢𝑐𝑖 + 𝛽3𝐸𝑥𝑝𝑒𝑟𝑖 + 𝛽4Tenure𝑖 +𝑈𝑖 .
I In Stata regression with no intercept can be estimated by using the

option "no constant":
regress Y X, noconstant

I The coefficients on the dummy variables lose the difference
interpretation.
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A slope shift and interactions

I We can also allow the returns to education to be different for men and women:

log (𝑊𝑎𝑔𝑒𝑖) = 𝛽0 + 𝛿0Female𝑖 + 𝛽1Educ𝑖 + 𝛿1 (𝐹𝑒𝑚𝑎𝑙𝑒𝑖 · 𝐸𝑑𝑢𝑐𝑖)
+ 𝛽3Exper𝑖 + 𝛽4Tenure𝑖 +𝑈𝑖 .

I The variable (Female𝑖 · Educ𝑖) is called an interaction.
I The equation for men (Female𝑖 = 0):

log
(
𝑊𝑎𝑔𝑒𝑀𝑖

)
= 𝛽0 + 𝛽1Educ𝑖 + 𝛽3Exper𝑖 + 𝛽4Tenure𝑖 +𝑈𝑖 .

I The equation for women (Female𝑖 = 1):

log
(
𝑊𝑎𝑔𝑒𝐹𝑖

)
= (𝛽0 + 𝛿0) + (𝛽1 + 𝛿1) Educ𝑖

+ 𝛽3Exper𝑖 + 𝛽4Tenure𝑖 +𝑈𝑖 .

I 𝛿1 can be interpreted as the difference in return to education between the
women and men (the base group) after controlling for experience and tenure.
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A slope shift
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Example

I Estimated equation:�log (𝑊𝑎𝑔𝑒𝑖) = 0.389
(0.119)

− 0.227
(0.168)

Female𝑖

+ 0.082
(0.008)

Educ𝑖 − 0.0056
(0.0131)

Female𝑖 · Educ𝑖

+ 0.029
(0.005)

Exper𝑖 − 0.00058
(0.00011)

Exper2
𝑖

+ 0.032
(0.007)

Tenure𝑖 − 0.00059
(0.00024)

Tenure2
𝑖 .

I 𝛿1 = −0.0056 suggesting that the return to education for women
is 0.56% less than for men, however it is not statistically
significant. Thus, we can conclude that the return to education is
the same for men and women.
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Multiple categories

I In the previous examples, 𝐸𝑑𝑢𝑐 was a quantitative variable:
years of education.

I Suppose now that instead the education variable is ordinal:

𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 =


1 if high-school dropout,
2 if high-school graduate,
3 if some college,
4 if college graduate,
5 if advanced degree.

I Only the order is important, and there is no meaning to the
distance between the values.

I Adding such a variable to the regression will give a meaningless
result.
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Education𝑖 =


1 if high-school dropout,
2 if high-school graduate,
3 if some college,
4 if college graduate,
5 if advanced degree.

I Define 5 new dummy variables:

𝐸1,𝑖 =

{
1 if high-school dropout,
0 otherwise. 𝐸2,𝑖 =

{
1 if high-school graduate,
0 otherwise.

𝐸3,𝑖 =

{
1 if some college,
0 otherwise. 𝐸4,𝑖 =

{
1 if college graduate,
0 otherwise.

𝐸5,𝑖 =

{
1 if advanced degree,
0 otherwise.

I To avoid the dummy variable trap, one of the dummies has to be omitted:

𝑊𝑎𝑔𝑒𝑖 = 𝛽0 + 𝛿0Female𝑖 + 𝛿2𝐸2,𝑖 + 𝛿3𝐸3,𝑖 + 𝛿4𝐸4,𝑖 + 𝛿5𝐸5,𝑖 +Other Factors

I Group 1 (high-school dropout) becomes the base group.
I 𝛿2 measures the wage difference between high-school graduates and high-school

dropouts.
I 𝛿3 measures the wage difference between individuals with some college education and

high-school dropouts.
19 / 22



Testing for structural breaks or differences in regression
functions across groups

I Suppose for simplicity we have two groups. For example,
I Male and female workers.
I Observations before and after a certain date.

I We want to test if the intercept and all slopes are the same across
the two groups.

I The model:

𝑌𝑖 = 𝛽1,0 + 𝛽1,1𝑋1,𝑖 + . . . + 𝛽1,𝑘𝑋𝑘,𝑖 +𝑈𝑖 if 𝑖 belongs to Group 1
𝑌𝑖 = 𝛽2,0 + 𝛽2,1𝑋1,𝑖 + . . . + 𝛽2,𝑘𝑋𝑘,𝑖 +𝑈𝑖 if 𝑖 belongs to Group 2

I The hypotheses:

𝐻0 : 𝛽1,0 = 𝛽2,0, 𝛽1,1 = 𝛽2,1, . . . , 𝛽1,𝑘 = 𝛽2,𝑘 .
𝐻1 : 𝛽1, 𝑗 ≠ 𝛽2, 𝑗 at least for one 𝑗 ∈ {0, 1, . . . , 𝑘} .
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𝑌𝑖 = 𝛽1,0 + 𝛽1,1𝑋1,𝑖 + . . . + 𝛽1,𝑘𝑋𝑘,𝑖 +𝑈𝑖 if 𝑖 belongs to Group 1
𝑌𝑖 = 𝛽2,0 + 𝛽2,1𝑋1,𝑖 + . . . + 𝛽2,𝑘𝑋𝑘,𝑖 +𝑈𝑖 if 𝑖 belongs to Group 2

I The Chow 𝐹 statistic:

𝐹𝐶ℎ𝑜𝑤 =
(SSR𝑟 − SSR𝑢𝑟 ) /(𝑘 + 1)
SSR𝑢𝑟 /(𝑛 − 2 (𝑘 + 1)) =

(SSR𝑟 − (SSR1 + SSR2)) /(𝑘 + 1)
(SSR1 + SSR2) /(𝑛 − 2 (𝑘 + 1)) ,

where
I SSR1 is the SSR obtained by estimating the model using only the

observations from Group 1.
I SSR2 is the SSR obtained by estimating the model using only the

observations from Group 2.
I SSR𝑟 is the SSR obtained by pooling the groups and estimating a single

equation:

𝑌𝑖 = 𝛾0 + 𝛾1𝑋1,𝑖 + . . . + 𝛾𝑘𝑋𝑘,𝑖 +𝑈𝑖 for all 𝑖’s (Groups 1and 2).

I 𝐻0 of constancy or no structural break is rejected when

𝐹𝐶ℎ𝑜𝑤 > 𝐹𝑘+1,𝑛−2(𝑘+1) ,1−𝛼.
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I The Chow test can also be performed using the dummy variables, and
the two approaches are numerically equivalent.

I Define
𝐷𝑖 =

{
1 observation 𝑖 belongs to Group 1,
0 otherwise.

I Estimate the following single equation using all observations (Groups1
and 2):

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖

+ 𝛿0𝐷𝑖 + 𝛿1
(
𝐷𝑖 · 𝑋1,𝑖

)
+ . . . + 𝛿𝑘

(
𝐷𝑖 · 𝑋𝑘,𝑖

)
+𝑈𝑖 .

I Test:

𝐻0 : 𝛿0 = 𝛿1 = . . . = 𝛿𝑘 = 0.
𝐻1 : 𝛿 𝑗 ≠ 0 for at least one 𝑗 ∈ {0, 1, . . . , 𝑘} .
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