Introductory Econometrics Lecture 14: Dummy variables

Instructor: Ma, Jun

Renmin University of China

April 26, 2023

Interval, Ordinal, and Categorical Variables

- \triangleright Interval variable: is one where the difference between two values is meaningful*.* Example: "Education" when measured in years. There is a meaning to the difference between 12 and 10 years of education.
- \blacktriangleright In some data sets, education is reported as an ordinal variable: only the order between its values matters, but the difference has no meaning. Example: The following two variables are equivalent.

- \triangleright Categorical variable is one that has one or more categories, but there is no natural ordering to the categories Examples: Gender, race, marital status, geographic location.
- \blacktriangleright The following two variables are equivalent:

Gender_i = $\begin{cases} 1 & \text{if observation } i \text{ corresponds to a woman,} \\ 2 & \text{if observation } i \text{ correspond to a man,} \end{cases}$ 2 if observation *i* corresponds to a *man*. $\text{Gender}_{i} = \begin{cases} 1 & \text{if observation } i \text{ corresponds to a } \text{man}, \\ 2 & \text{if observation } i \text{ correspond to a } \text{num}. \end{cases}$ 2 if observation *i* corresponds to a *woman*.

- \triangleright Categorical and ordinal variables are also called qualitative.
- \triangleright Qualitative variables cannot be simply included in regression, because the regression technique assumes that all variables are interval.

Dummy variables

- \blacktriangleright A dummy variable is a binary zero-one variable which takes on the value one if some condition is satisfied and zero if that condition fails:
	- Female_i = $\begin{cases} 1 & \text{if observation } i \text{ corresponds to a woman,} \\ 0 & \text{if observation } i \text{ corresponds to a man.} \end{cases}$ 0 if observation i corresponds to a man. \blacktriangleright *Male_i* = $\begin{cases} 1 & \text{if observation } i \text{ corresponds to a man,} \\ 0 & \text{if observation } i \text{ corresponds to a sum} \end{cases}$ 0 if observation i corresponds to a woman. \triangleright Note that *Female_i* + *Male_i* = 1 for all observations *i*. \blacktriangleright *Married_i* = $\begin{cases} 1 & \text{if married,} \\ 0 & \text{otherwise.} \end{cases}$ 0 otherwise.

Example

TABLE 7.1

A Partial Listing of the Data in WAGE1.RAW

A single dummy independent variable

 \triangleright Consider the following regression:

$$
Wage_i = \beta_0 + \delta_0 Female_i + \beta_1 Educ_i + \beta_3 Expert_i + \beta_4 Tenure_i + U_i,
$$

and assume that conditionally on all independent variables, $E[U_i] = 0$.

If observation *i* corresponds to a woman, *Female* $i = 1$, and

$$
E[Wage_i | Female_i = 1, Educ_i, Expert_i, Tenure_i] =
$$

$$
\beta_0 + \beta_1 + \beta_2 + \beta_3 + \beta_4
$$

$$
B_0 + \beta_1 + \beta_2 + \beta_3 + \beta_4
$$

If observation *i* corresponds to a man, *Female* $i = 0$, and

$$
E[Wage_i | Female_i = 0, Educ_i, Expert_i, Tenure_i] =
$$

$$
\beta_0 + \beta_1 Educ_i + \beta_3 Expert_i + \beta_4 Tenure_i.
$$

Thus,

$$
\delta_0 = E \left[Wage_i \mid Female_i = 1, Educ_i, Expert, Tenure_i \right] -
$$

$$
- E \left[Wage_i \mid Female_i = 0, Educ_i, Expert_i, Tenure_i \right].
$$

An intercept shift

 \blacktriangleright The model:

 $Wage_i = \beta_0 + \delta_0 Female_i + \beta_1Educ_i + \beta_3Exper_i + \beta_4Tenure_i + U_i$ \blacktriangleright For men (*Female_i* = 0):, we can write the model as $Wage_i^M = \beta_0 + \beta_1 Educ_i + \beta_3 Experiment_i + \beta_4 Tenure_i + U_i.$ For women (*Female*_{i} = 1):, we can write the model as

 $Wage_i^F = (\beta_0 + \delta_0) + \beta_1 Educ_i + \beta_3 Expert_i + \beta_4 Tenure_i + U_i.$

- \blacktriangleright In this case, men play the role of the base group.
- \triangleright δ_0 measures the difference relatively to the base group.

Example

 \blacktriangleright Estimated equation:

$$
\begin{aligned} \widehat{Wage}_i &= -1.57 - 1.81 \quad Female_i + 0.572 \quad Educ_i \\ (0.72) \quad & (0.26) \quad (0.049) \\ &+ 0.025 \quad Exper_i + 0.141 \quad Tenure_i. \\ (0.012) \quad (0.021) \end{aligned}
$$

- \blacktriangleright The dependent variable is the wage per hour.
- $\delta_0 = -1.81$ implies that a women earns \$1.81 less per hour than a man with the same level of education, experience, and tenure. (These are 1976 wages.)
- \blacktriangleright The difference is also statistically significant.

When the dependent variable is in the logarithmic form

 \blacktriangleright The model:

 $log (Wage) = \beta_0 + \delta_0 Female + \beta_1 Educ + \beta_3 Expert + \beta_4 Tenure + U.$

 \blacktriangleright In this case,

$$
\delta_0 = \log \left(Wage^F \right) - \log \left(Wage^M \right)
$$

\n
$$
= \log \left(\frac{Wage^F}{Wage^M} \right)
$$

\n
$$
= \log \left(\frac{Wage^M + (Wage^F - Wage^M)}{Wage^M} \right)
$$

\n
$$
= \log \left(1 + \frac{Wage^F - Wage^M}{Wage^M} \right)
$$

\n
$$
\approx \frac{Wage^F - Wage^M}{Wage^M}.
$$

!

 \blacktriangleright When the dependent variable is in the log form, δ_0 has a percentage interpretation.

Example

 \blacktriangleright Estimated equation:

$$
\log\left(Wage_i\right) = 0.417 - 0.297 \quad Female_i + 0.080 \quad Educ_i
$$
\n
$$
(0.099) \quad (0.036) \quad (0.007)
$$
\n
$$
+ 0.029 \quad Expert_i - 0.00058 \quad Expert_i^2
$$
\n
$$
(0.005) \quad (0.00010)
$$
\n
$$
+ 0.032 \quad Tenure_i - 0.00059 \quad Tenure_i^2.
$$
\n
$$
(0.007) \quad (0.00023)
$$

 $\hat{\delta}_0 = -0.297$ implies that a woman earns 29.7% less than a man with the same level of education, experience and tenure.

Changing the base group

 \blacktriangleright Instead of

 $log (Wage_i) = \beta_0 + \delta_0 Female_i + \beta_1Educ_i + \beta_3Experiment_i + \beta_4Tenure_i + U_i$ consider:

 $log (Wage_i) = \theta_0 + \gamma_0 Male_i + \theta_1 Educ_i + \theta_3 Experiment_i + \theta_4 Tenure_i + U_i.$

$$
\bullet \quad \text{Since } Male_i = 1 - Female_i,
$$

$$
\begin{array}{rcl}\n\log\left(Wage_i\right) & = & \theta_0 + \gamma_0 Male_i + \theta_1 Educ_i + \theta_3 Expert_i + \theta_4 Tenure_i + U_i \\
& = & \theta_0 + \gamma_0 \left(1 - Female_i\right) + \theta_1 Educ_i + \theta_3 Expert_i + \theta_4 Tenure_i + U_i \\
& = & \left(\theta_0 + \gamma_0\right) - \gamma_0 Female_i + \theta_1 Educ_i + \theta_3 Expert_i + \theta_4 Tenure_i + U_i.\n\end{array}
$$

 \triangleright We conclude that $\delta_0 = -\gamma_0$, $\beta_0 = \theta_0 - \delta_0$, $\beta_1 = \theta_1$, and etc.:

 $log (Wage_i) = (\beta_0 + \delta_0) - \delta_0 Male_i + \beta_1 Educ_i + \beta_3 Experiment_i + \beta_4 Tenure_i + U_i.$

 \blacktriangleright Thus, changing the base group has no effect on the conclusions.

The dummy variable trap

 \triangleright Consider the equation:

 $log (Wage_i) = \beta_0 + \delta_0 Female_i + \gamma_0 Male_i$ $+\beta_1 Educ_i + \beta_3 Experiment_i + \beta_4 Tenure_i + U_i.$

- \triangleright Recall that the intercept is a regressor that takes the value one for all observations.
- \triangleright Since *Male_i* + *Female_i* 1 = 0 for all observations *i*, we have the case of perfect multicollinearity, and such an equation cannot be estimated.
- \triangleright One cannot include an intercept and dummies for all the groups!
- \triangleright One of the dummies has to be omitted and the corresponding group becomes the base group:
	- \blacktriangleright Men are the base group: $log (Wage_i) =$ $\beta_0 + \delta_0$ Female_i + β_1 Educ_i + β_3 Exper_i + β_4 Tenure_i + U_i.
	- Solution Momen are the base group: $log (Wage_i) =$ $\theta_0 + \gamma_0 Male_i + \beta_1 Educ_i + \beta_3 Experiment_i + \beta_4 Tenure_i + U_i.$
- \blacktriangleright Alternatively, one can include both dummies without the intercept: log (Wage_i) = π_0 Female_i + π_1 Male_i + β_1 Educ_i + β_3 Exper_i + β_4 Tenure_i + U_i.
	- \blacktriangleright In Stata regression with no intercept can be estimated by using the option "no constant":

regress Y X, noconstant

 \blacktriangleright The coefficients on the dummy variables lose the difference interpretation.

A slope shift and interactions

 \blacktriangleright We can also allow the returns to education to be different for men and women:

$$
\log\left(Wage_i\right) = \beta_0 + \delta_0 Female_i + \beta_1 Educ_i + \delta_1 \left(Female_i \cdot Educ_i\right) + \beta_3 Expert_i + \beta_4 Tenure_i + U_i.
$$

- \blacktriangleright The variable (*Female_i* \cdot *Educ_i*) is called an interaction.
- \blacktriangleright The equation for men (*Female_i* = 0):

$$
\log\left(Wage_i^M\right) = \beta_0 + \beta_1Educ_i + \beta_3Exper_i + \beta_4Tenure_i + U_i.
$$

 \blacktriangleright The equation for women (*Female_i* = 1):

$$
\begin{aligned} \log\left(Wage_{i}^{F}\right)&=\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right)Educ_{i}\\ &+\beta_{3}Exper_{i}+\beta_{4}Tenure_{i}+U_{i}. \end{aligned}
$$

 \triangleright δ_1 can be interpreted as the difference in return to education between the women and men (the base group) after controlling for experience and tenure.

A slope shift

Example

 \blacktriangleright Estimated equation:

$$
\log(Wage_i) = 0.389 - 0.227 \text{ Female}_i
$$

\n
$$
(0.119) (0.168)
$$

\n
$$
+ 0.082 \text{ Educ}_i - 0.0056 \text{ Female}_i \cdot \text{Educ}_i
$$

\n
$$
(0.008) (0.0131)
$$

\n
$$
+ 0.029 \text{ Expert}_i - 0.00058 \text{ Expert}_i^2
$$

\n
$$
(0.005) (0.00011)
$$

\n
$$
+ 0.032 \text{Tenure}_i - 0.00059 \text{ Tenure}_i^2.
$$

\n
$$
(0.007) (0.00024)
$$

 $\hat{\delta}_1 = -0.0056$ suggesting that the return to education for women is 0.56% less than for men, however it is not statistically significant. Thus, we can conclude that the return to education is the same for men and women.

Multiple categories

- In the previous examples, $Educ$ was a quantitative variable: years of education.
- \triangleright Suppose now that instead the education variable is ordinal:

- \triangleright Only the order is important, and there is no meaning to the distance between the values.
- \blacktriangleright Adding such a variable to the regression will give a meaningless result.

 $Education_i = \begin{cases}$ if high-school dropout, if high-school graduate, if some college, if college graduate, if advanced degree.

 \triangleright Define 5 new dummy variables:

$$
E_{1,i} = \begin{cases} 1 & \text{if high-school dropout,} \\ 0 & \text{otherwise.} \end{cases}
$$

\n
$$
E_{2,i} = \begin{cases} 1 & \text{if high-school graduate,} \\ 0 & \text{otherwise.} \end{cases}
$$

\n
$$
E_{3,i} = \begin{cases} 1 & \text{if some college,} \\ 0 & \text{otherwise.} \end{cases}
$$

\n
$$
E_{4,i} = \begin{cases} 1 & \text{if college graduate,} \\ 0 & \text{otherwise.} \end{cases}
$$

\n
$$
E_{5,i} = \begin{cases} 1 & \text{if advanced degree,} \\ 0 & \text{otherwise.} \end{cases}
$$

 \triangleright To avoid the dummy variable trap, one of the dummies has to be omitted:

 $Wage_i = \beta_0 + \delta_0Female_i + \delta_2E_{2,i} + \delta_3E_{3,i} + \delta_4E_{4,i} + \delta_5E_{5,i} + Other Factors$

- \triangleright Group 1 (high-school dropout) becomes the base group.
- \triangleright δ_2 measures the wage difference between high-school graduates and high-school dropouts.

 \triangleright δ_3 measures the wage difference between individuals with some college education and high-school dropouts.

Testing for structural breaks or differences in regression functions across groups

- \triangleright Suppose for simplicity we have two groups. For example,
	- \blacktriangleright Male and female workers.
	- \triangleright Observations before and after a certain date.
- \triangleright We want to test if the intercept and all slopes are the same across the two groups.
- \blacktriangleright The model:

 $Y_i = \beta_{1,0} + \beta_{1,1} X_{1,i} + ... + \beta_{1,k} X_{k,i} + U_i$ if *i* belongs to Group 1 $Y_i = \beta_{2,0} + \beta_{2,1} X_{1,i} + \ldots + \beta_{2,k} X_{k,i} + U_i$ if *i* belongs to Group 2

 \blacktriangleright The hypotheses:

$$
H_0 : \beta_{1,0} = \beta_{2,0}, \beta_{1,1} = \beta_{2,1}, \dots, \beta_{1,k} = \beta_{2,k}.
$$

$$
H_1 : \beta_{1,j} \neq \beta_{2,j} \text{ at least for one } j \in \{0, 1, \dots, k\}.
$$

$$
Y_i = \beta_{1,0} + \beta_{1,1} X_{1,i} + ... + \beta_{1,k} X_{k,i} + U_i
$$
 if *i* belongs to Group 1
\n $Y_i = \beta_{2,0} + \beta_{2,1} X_{1,i} + ... + \beta_{2,k} X_{k,i} + U_i$ if *i* belongs to Group 2

 \blacktriangleright The Chow *F* statistic:

$$
F^{Chow} = \frac{(SSR_r - SSR_{ur})/(k+1)}{SSR_{ur}/(n-2(k+1))} = \frac{(SSR_r - (SSR_1 + SSR_2))/(k+1)}{(SSR_1 + SSR_2)/(n-2(k+1))},
$$

where

- \triangleright *SSR*₁ is the SSR obtained by estimating the model using only the observations from Group 1.
- \triangleright *SSR*₂ is the SSR obtained by estimating the model using only the observations from Group 2.
- \triangleright *SSR_r* is the SSR obtained by pooling the groups and estimating a single equation:

$$
Y_i = \gamma_0 + \gamma_1 X_{1,i} + \dots + \gamma_k X_{k,i} + U_i
$$
 for all *i*'s (Groups 1 and 2).

 \blacktriangleright H_0 of constancy or no structural break is rejected when

$$
F^{Chow} > F_{k+1,n-2(k+1),1-\alpha}.
$$

- \blacktriangleright The Chow test can also be performed using the dummy variables, and the two approaches are numerically equivalent.
- \blacktriangleright Define

$$
D_i = \begin{cases} 1 & \text{observation } i \text{ belongs to Group 1,} \\ 0 & \text{otherwise.} \end{cases}
$$

 \blacktriangleright Estimate the following single equation using all observations (Groups1) and 2):

$$
Y_i = \beta_0 + \beta_1 X_{1,i} + \ldots + \beta_k X_{k,i} + \delta_0 D_i + \delta_1 (D_i \cdot X_{1,i}) + \ldots + \delta_k (D_i \cdot X_{k,i}) + U_i.
$$

 \blacktriangleright Test:

$$
H_0 : \delta_0 = \delta_1 = \dots = \delta_k = 0.
$$

\n
$$
H_1 : \delta_j \neq 0 \text{ for at least one } j \in \{0, 1, \dots, k\}.
$$