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Why we need the large sample theory

I We have shown that the OLS estimator 𝛽 has some desirable
properties:
I 𝛽 is unbiased if the errors are strongly exogenous: E [𝑈 | 𝑋] = 0.
I If in addition the errors are homoskedastic then

V̂ar
[
𝛽
]
= 𝑠2/∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2 is an unbiased estimator of the
conditional variance of the OLS estimator 𝛽.

I If in addition the errors are normally distributed (given 𝑋) then
𝑇 =

(
𝛽 − 𝛽

)
/
√︃

V̂ar
[
𝛽
]

has a 𝑡 distribution which can be used for
hypotheses testing.
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I If the errors are only weakly exogenous:

E [𝑋𝑖𝑈𝑖] = 0,

the OLS estimator is in general biased.
I If the errors are heteroskedastic:

E
[
𝑈2
𝑖 | 𝑋𝑖

]
= ℎ (𝑋𝑖) ,

the "usual" variance formula is invalid; we also do not have an
unbiased estimator for the variance in this case.

I If the errors are not normally distributed conditional on 𝑋 then
𝑇- and 𝐹-statistics do not have 𝑡 and 𝐹 distributions under the
null hypothesis.

I The asymptotic or large sample theory allows us to derive
approximate properties and distributions of estimators and test
statistics by assuming that the sample size 𝑛 is very large.
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Convergence in probability and LLN

I Let 𝜃𝑛 be a sequence of random variables indexed by the sample
size 𝑛. We say that 𝜃𝑛 converges in probability if

lim
𝑛→∞

Pr [|𝜃𝑛 − 𝜃 | ≥ 𝜀] = 0 for all 𝜀 > 0.

I We denote this as 𝜃𝑛 →𝑝 𝜃 or plim 𝜃𝑛 = 𝜃.
I An example of convergence in probability is a Law of Large

Numbers (LLN):
Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a random sample such that E [𝑋𝑖] = 𝜇 for
all 𝑖 = 1, . . . , 𝑛, and define �̄�𝑛 = 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖 .

Then, under certain conditions,

�̄�𝑛 →𝑝 𝜇.
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LLN

I Let 𝑋1, . . . , 𝑋𝑛 be a sample of independent identically distributed
(iid) random variables. Let E [𝑋𝑖] = 𝜇. If Var [𝑋𝑖] = 𝜎2 < ∞
then

�̄�𝑛 →𝑝 𝜇.

I In fact when the data are iid, the LLN holds if

E [|𝑋𝑖 |] < ∞,

but we prove the result under a stronger assumption that
Var [𝑋𝑖] < ∞.
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Markov’s inequality

I Markov’s inequality. Let 𝑊 be a random variable. For 𝜀 > 0 and
𝑟 > 0,

Pr [|𝑊 | ≥ 𝜀] ≤ E [|𝑊 |𝑟 ]
𝜀𝑟

.

I With 𝑟 = 2, we have Chebyshev’s inequality. Suppose that
E [𝑋] = 𝜇. Take 𝑊 = 𝑋 − 𝜇 and apply Markov’s inequality with
𝑟 = 2. For 𝜀 > 0,

Pr [|𝑋 − 𝜇 | ≥ 𝜀] ≤
E

[
(𝑋 − 𝜇)2]
𝜀2

=
Var [𝑋]

𝜀2 .

I Probability of observing an outlier (a large deviation of 𝑋 from
its mean 𝜇) can be bounded by the variance.
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Proof of the LLN
Fix 𝜀 > 0 and apply Markov’s inequality with 𝑟 = 2 :

Pr
[���̄�𝑛 − 𝜇

�� ≥ 𝜀
]
= Pr

[�����1𝑛 𝑛∑︁
𝑖=1

𝑋𝑖 − 𝜇

����� ≥ 𝜀

]

= Pr

[�����1𝑛 𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝜇)
����� ≥ 𝜖

]
≤

E
[(

1
𝑛

∑𝑛
𝑖=1 (𝑋𝑖 − 𝜇)

)2
]

𝜖2

=
1

𝑛2𝜖2

(
𝑛∑︁
𝑖=1

E
[
(𝑋𝑖 − 𝜇)2] + 𝑛∑︁

𝑖=1

∑︁
𝑗≠𝑖

E
[
(𝑋𝑖 − 𝜇)

(
𝑋 𝑗 − 𝜇

) ] )
=

1
𝑛2𝜖2

(
𝑛∑︁
𝑖=1

Var [𝑋𝑖] +
𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

Cov
[
𝑋𝑖 , 𝑋 𝑗

] )
=

𝑛𝜎2

𝑛2𝜖2 =
𝜎2

𝑛𝜖2 → 0 as 𝑛 → ∞ for all 𝜖 > 0.
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Averaging and variance reduction
I Let 𝑋1, . . . , 𝑋𝑛 be a sample and suppose that

E [𝑋𝑖] = 𝜇 for all 𝑖 = 1, . . . , 𝑛,
Var [𝑋𝑖] = 𝜎2 for all 𝑖 = 1, . . . , 𝑛,

Cov
[
𝑋𝑖 , 𝑋 𝑗

]
= 0 for all 𝑗 ≠ 𝑖.

I Consider the mean of the average:

E
[
�̄�𝑛

]
= E

[
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖

]
=

1
𝑛

𝑛∑︁
𝑖=1

E [𝑋𝑖]

=
1
𝑛

𝑛∑︁
𝑖=1

𝜇 =
1
𝑛
𝑛𝜇 = 𝜇.

8 / 21



I Consider the variance of the average:

Var
[
�̄�𝑛

]
= Var

[
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖

]
=

1
𝑛2 Var

[
𝑛∑︁
𝑖=1

𝑋𝑖

]
=

1
𝑛2

(
𝑛∑︁
𝑖=1

Var [𝑋𝑖] +
𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

Cov
[
𝑋𝑖 , 𝑋 𝑗

] )
=

1
𝑛2

(
𝑛∑︁
𝑖=1

𝜎2 +
𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

0

)
=

1
𝑛2 𝑛𝜎

2 =
𝜎2

𝑛
.

I The variance of the average approaches zero as 𝑛 → ∞ if the
observations are uncorrelated.
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Convergence in probability: properties

I Slutsky’s Lemma. Suppose that 𝜃𝑛 →𝑝 𝜃, and let 𝑔 be a function
continuous at 𝜃. Then,

𝑔 (𝜃𝑛) →𝑝 𝑔 (𝜃) .

I If 𝜃𝑛 →𝑝 𝜃, then 𝜃2
𝑛 →𝑝 𝜃2.

I If 𝜃𝑛 →𝑝 𝜃 and 𝜃 ≠ 0, then 1/𝜃𝑛 →𝑝 1/𝜃.
I Suppose that 𝜃𝑛 →𝑝 𝜃 and 𝜆𝑛 →𝑝 𝜆. Then,

I 𝜃𝑛 + 𝜆𝑛 →𝑝 𝜃 + 𝜆.
I 𝜃𝑛𝜆𝑛 →𝑝 𝜃𝜆.
I 𝜃𝑛/𝜆𝑛 →𝑝 𝜃/𝜆 provided that 𝜆 ≠ 0.
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Consistency

I Let 𝛽𝑛 be an estimator of 𝛽 based on a sample of size 𝑛.
I We say that 𝛽𝑛 is a consistent estimator of 𝛽 if as 𝑛 → ∞,

𝛽𝑛 →𝑝 𝛽.

I Consistency means that the probability of the event that the
distance between 𝛽𝑛 and 𝛽 exceeds 𝜀 > 0 can be made arbitrary
small by increasing the sample size.
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Consistency of OLS

I Suppose that:
1. The data {(𝑌𝑖 , 𝑋𝑖) : 𝑖 = 1, . . . , 𝑛} are iid.
2. 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 +𝑈𝑖 , where E [𝑈𝑖] = 0.
3. E [𝑋𝑖𝑈𝑖] = 0.
4. 0 < Var [𝑋𝑖] < ∞.

I Let 𝛽0,𝑛 and 𝛽1,𝑛 be the OLS estimators of 𝛽0 and 𝛽1 respectively
based on a sample of size 𝑛. Under Assumptions 1-4,

𝛽0,𝑛 →𝑝 𝛽0,
𝛽1,𝑛 →𝑝 𝛽1.

I The key identifying assumption is Assumption 3:
Cov [𝑋𝑖 ,𝑈𝑖] = 0.
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Proof of consistency
I Write

𝛽1,𝑛 =

∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�𝑛

)
𝑌𝑖∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�𝑛

)2 = 𝛽1 +
∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�𝑛

)
𝑈𝑖∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�𝑛

)2
= 𝛽1 +

1
𝑛

∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�𝑛

)
𝑈𝑖

1
𝑛

∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�𝑛

)2 .

I We will show that

1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − �̄�𝑛

)
𝑈𝑖 →𝑝 0,

1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − �̄�𝑛

)2 →𝑝 Var [𝑋𝑖] ,

I Since Var [𝑋𝑖] ≠ 0,

𝛽1,𝑛= 𝛽1 +
1
𝑛

∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�𝑛

)
𝑈𝑖

1
𝑛

∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�𝑛

)2 →𝑝 𝛽1 +
0

Var [𝑋𝑖]
= 𝛽1.
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1
𝑛

∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�𝑛

)
𝑈𝑖 →𝑝 0

1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − �̄�𝑛

)
𝑈𝑖 =

1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑈𝑖 − �̄�𝑛

(
1
𝑛

𝑛∑︁
𝑖=1

𝑈𝑖

)
.

By the LLN,

1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑈𝑖 →𝑝 E [𝑋𝑖𝑈𝑖] = 0,

�̄�𝑛 →𝑝 E [𝑋𝑖] ,

1
𝑛

𝑛∑︁
𝑖=1

𝑈𝑖 →𝑝 E [𝑈𝑖] = 0.

Hence,

1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − �̄�𝑛

)
𝑈𝑖 =

1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖𝑈𝑖 − �̄�𝑛

(
1
𝑛

𝑛∑︁
𝑖=1

𝑈𝑖

)
→𝑝 0 − E [𝑋𝑖] · 0

= 0.
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1
𝑛

∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�𝑛

)2 →𝑝 Var [𝑋𝑖]
I First,

1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − �̄�𝑛

)2
=

1
𝑛

𝑛∑︁
𝑖=1

(
𝑋2
𝑖 − 2�̄�𝑛𝑋𝑖 + �̄�2

𝑛

)
=

1
𝑛

𝑛∑︁
𝑖=1

𝑋2
𝑖 − 2�̄�𝑛

1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 + �̄�2
𝑛

=
1
𝑛

𝑛∑︁
𝑖=1

𝑋2
𝑖 − 2�̄�𝑛 �̄�𝑛 + �̄�2

𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

𝑋2
𝑖 − �̄�2

𝑛.

I By the LLN, 1
𝑛

∑𝑛
𝑖=1 𝑋

2
𝑖
→𝑝 E

[
𝑋2
𝑖

]
and �̄�𝑛 →𝑝 E [𝑋𝑖] .

I By Slutsky’s Lemma, �̄�2
𝑛 →𝑝 (E [𝑋𝑖])2.

I Thus,

1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − �̄�𝑛

)2
=

1
𝑛

𝑛∑︁
𝑖=1

𝑋2
𝑖 − �̄�2

𝑛 →𝑝 E
[
𝑋2
𝑖

]
− (E [𝑋𝑖])2 = Var [𝑋𝑖] .
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Multiple regression

I Under similar conditions to 1-4, one can establish consistency of
OLS for the multiple linear regression model:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 ,

where E [𝑈𝑖] = 0.
I The key assumption is that the errors and regressors are

uncorrelated:

E
[
𝑋1,𝑖𝑈𝑖

]
= . . . = E

[
𝑋𝑘,𝑖𝑈𝑖

]
= 0.
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Omitted variables and the inconsistency of OLS
I Suppose that the true model has two regressors:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 +𝑈𝑖 ,
E [𝑈𝑖] = E

[
𝑋1,𝑖𝑈𝑖

]
= E

[
𝑋2,𝑖𝑈𝑖

]
= 0.

I Suppose that the econometrician includes only 𝑋1 in the
regression when estimating 𝛽1:

𝛽1,𝑛 =

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)
𝑌𝑖∑𝑛

𝑖=1
(
𝑋1,𝑖 − �̄�1,𝑛

)2

=

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

) (
𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 +𝑈𝑖

)∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)2

= 𝛽1 + 𝛽2

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)
𝑋2,𝑖∑𝑛

𝑖=1
(
𝑋1,𝑖 − �̄�1,𝑛

)2 +
∑𝑛

𝑖=1
(
𝑋1,𝑖 − �̄�1,𝑛

)
𝑈𝑖∑𝑛

𝑖=1
(
𝑋1,𝑖 − �̄�1,𝑛

)2 .
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𝛽1,𝑛 = 𝛽1 + 𝛽2

1
𝑛

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)
𝑋2,𝑖

1
𝑛

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)2 +
1
𝑛

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)
𝑈𝑖

1
𝑛

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)2 .

I As before,

1
𝑛

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)
𝑈𝑖

1
𝑛

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)2 =

1
𝑛

∑𝑛
𝑖=1 𝑋1,𝑖𝑈𝑖 − �̄�1,𝑛�̄�𝑛

1
𝑛

∑𝑛
𝑖=1 𝑋

2
1,𝑖 − �̄�1,𝑛

→𝑝

0

E
[
𝑋2

1,𝑖

]
−

(
E

[
𝑋1,𝑖

] )2

=
0

Var
[
𝑋1,𝑖

] = 0.
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𝛽1,𝑛 = 𝛽1 + 𝛽2

1
𝑛

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)
𝑋2,𝑖

1
𝑛

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)2 +
1
𝑛

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)
𝑈𝑖

1
𝑛

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)2 .

I However,

1
𝑛

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)
𝑋2,𝑖

1
𝑛

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)2 =

1
𝑛

∑𝑛
𝑖=1 𝑋1,𝑖𝑋2,𝑖 − �̄�1,𝑛 �̄�2,𝑛
1
𝑛

∑𝑛
𝑖=1 𝑋

2
1,𝑖 − �̄�2

1,𝑛

→𝑝

E
[
𝑋1,𝑖𝑋2,𝑖

]
−

(
E

[
𝑋1,𝑖

] ) (
E

[
𝑋2,𝑖

] )
E

[
𝑋2

1,𝑖

]
−

(
E

[
𝑋1,𝑖

] )2

=
Cov

[
𝑋1,𝑖 , 𝑋2,𝑖

]
Var

[
𝑋1,𝑖

] .
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I We have,

𝛽1,𝑛 = 𝛽1 + 𝛽2

1
𝑛

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)
𝑋2,𝑖

1
𝑛

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)2 +
1
𝑛

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)
𝑈𝑖

1
𝑛

∑𝑛
𝑖=1

(
𝑋1,𝑖 − �̄�1,𝑛

)2

→𝑝 𝛽1 + 𝛽2
Cov

[
𝑋1,𝑖 , 𝑋2,𝑖

]
Var

[
𝑋1,𝑖

] + 0
Var

[
𝑋1,𝑖

]
= 𝛽1 + 𝛽2

Cov
[
𝑋1,𝑖 , 𝑋2,𝑖

]
Var

[
𝑋1,𝑖

] .

I Thus, 𝛽1,𝑛 is inconsistent unless:
1. 𝛽2 = 0 (the model is correctly specified).
2. Cov

[
𝑋1,𝑖 , 𝑋2,𝑖

]
= 0 (the omitted variable is uncorrelated with the

included regressor).
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I In this example, the model contains two regressors:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 +𝑈𝑖 ,

E [𝑈𝑖] = E
[
𝑋1,𝑖𝑈𝑖

]
= E

[
𝑋2,𝑖𝑈𝑖

]
= 0.

I However, since 𝑋2 is not controlled for, it goes into the error term:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 +𝑉𝑖 , where
𝑉𝑖 = 𝛽2𝑋2,𝑖 +𝑈𝑖 .

For consistency of 𝛽1,𝑛 we need Cov
[
𝑋1,𝑖 ,𝑉𝑖

]
to be equal to zero,

however,

Cov
[
𝑋1,𝑖 ,𝑉𝑖

]
= Cov

[
𝑋1,𝑖 , 𝛽2𝑋2,𝑖 +𝑈𝑖

]
= Cov

[
𝑋1,𝑖 , 𝛽2𝑋2,𝑖

]
+Cov

[
𝑋1,𝑖 ,𝑈𝑖

]
= 𝛽2Cov

[
𝑋1,𝑖 , 𝑋2,𝑖

]
+ 0

≠ 0, unless 𝛽2 = 0 or Cov
[
𝑋1,𝑖 , 𝑋2,𝑖

]
= 0.
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