Introductory Econometrics

Lecture 20: Multiple linear IV model and two-stage least squares (2SLS)

Instructor: Ma, Jun

Renmin University of China

November 24, 2021

Multiple linear IV model

- ► In empirical research, we often have to estimate models that include multiple endogenous and exogenous regressors.
- ► Example:

$$\log Wage_i = \gamma_0 + \gamma_1 Age_i + \gamma_2 Sex_i + \beta_1 Educ_i + \beta_2 Children_i + U_i.$$

- ► Exogenous regressors: age, sex, and a constant.
- ► Endogenous regressors: education and children (family size).

► Consider the following model:

$$y_i = \gamma_0 + \gamma_1 X_{1,i} + \ldots + \gamma_k X_{k,i} + \beta_1 Y_{1,i} + \ldots + \beta_m Y_{m,i} + U_i,$$

where

- \triangleright y_i is the dependent variable.
- γ_0 is the coefficient on the constant regressor: $E[U_i] = 0$.
- $ightharpoonup X_{1,i}, \ldots, X_{k,i}$ are the k exogenous regressors:

$$Cov[X_{1,i}, U_i] = ... = Cov[X_{k,i}, U_i] = 0.$$

 $ightharpoonup Y_{1,i}, \ldots, Y_{m,i}$ are the *m* endogenous regressors:

$$\operatorname{Cov}\left[Y_{1,i},U_{i}\right]\neq0,\ldots,\operatorname{Cov}\left[Y_{k,i},U_{i}\right]\neq0.$$

Identification problem

▶ There are k + 1 + m unknown coefficients

$$y_i = \gamma_0 + \gamma_1 X_{1,i} + \ldots + \gamma_k X_{k,i} + \beta_1 Y_{1,i} + \ldots + \beta_m Y_{m,i} + U_i.$$

► The exogeneity conditions $E[U_i] = 0$ and $Cov[X_{1,i}, U_i] = \ldots = Cov[X_{k,i}, U_i] = 0$ give us only k + 1 equations:

$$0 = E[y_{i} - \gamma_{0} - \gamma_{1}X_{1,i} - \dots - \gamma_{k}X_{k,i} - \beta_{1}Y_{1,i} - \dots - \beta_{m}Y_{m,i}],$$

$$0 = E[X_{1,i}(y_{i} - \gamma_{0} - \gamma_{1}X_{1,i} - \dots - \gamma_{k}X_{k,i} - \beta_{1}Y_{1,i} - \dots - \beta_{m}Y_{m,i})],$$

$$\vdots : \vdots$$

$$0 = E[X_{k,i}(y_{i} - \gamma_{0} - \gamma_{1}X_{1,i} - \dots - \gamma_{k}X_{k,i} - \beta_{1}Y_{1,i} - \dots - \beta_{m}Y_{m,i})].$$

- There are more unknowns than equations. Thus, the knowledge of the true covariances between X's, Y's and y is not sufficient to recover the unknown coefficients $\gamma_0, \gamma_1, \ldots, \gamma_k, \beta_1, \ldots, \beta_m$.
- ► Without additional information, the coefficients are not identified even at the population level.
- ► We need at least *m* additional equations!

IVs

- ▶ Suppose that the econometrician observes l additional exogenous variables (IVs) $Z_{1,i}, \ldots, Z_{l,i}$
- ▶ We assume that the IVs $Z_{1,i}, \ldots, Z_{l,i}$ are excluded from the structural equation:

$$y_i = \gamma_0 + \gamma_1 X_{1,i} + \ldots + \gamma_k X_{k,i} + \beta_1 Y_{1,i} + \ldots + \beta_m Y_{m,i} + U_i,$$

so we still have k + 1 + m structural coefficients to estimate.

► Since the IVs are exogenous, we have now k + 1 + l equations determining the structural coefficients:

$$\begin{array}{lll} 0 & = & E \left[y_i - \gamma_0 - \gamma_1 X_{1,i} - \ldots - \gamma_k X_{k,i} - \beta_1 Y_{1,i} - \ldots - \beta_m Y_{m,i} \right], \\ 0 & = & E \left[X_{1,i} \left(y_i - \gamma_0 - \gamma_1 X_{1,i} - \ldots - \gamma_k X_{k,i} - \beta_1 Y_{1,i} - \ldots - \beta_m Y_{m,i} \right) \right], \\ \vdots & \vdots & \vdots & \vdots \\ 0 & = & E \left[X_{k,i} \left(y_i - \gamma_0 - \gamma_1 X_{1,i} - \ldots - \gamma_k X_{k,i} - \beta_1 Y_{1,i} - \ldots - \beta_m Y_{m,i} \right) \right], \\ 0 & = & E \left[Z_{1,i} \left(y_i - \gamma_0 - \gamma_1 X_{1,i} - \ldots - \gamma_k X_{k,i} - \beta_1 Y_{1,i} - \ldots - \beta_m Y_{m,i} \right) \right], \\ \vdots & \vdots & \vdots & \vdots \\ 0 & = & E \left[Z_{l,i} \left(y_i - \gamma_0 - \gamma_1 X_{1,i} - \ldots - \gamma_k X_{k,i} - \beta_1 Y_{1,i} - \ldots - \beta_m Y_{m,i} \right) \right]. \end{array}$$

► The necessary condition for identification is that the number of equations is at least as large as the number of unknowns or $l \ge m$.

- ► In addition to being exogenous, the IVs have to be related to the endogenous regressors (or they have to determine the endogenous regressors).
- ► The system can be described using the following structural equation:

$$y_i = \gamma_0 + \gamma_1 X_{1,i} + \dots + \gamma_k X_{k,i} + \beta_1 Y_{1,i} + \dots + \beta_m Y_{m,i} + U_i,$$

and m first-stage (reduced-form) equations:

$$\begin{array}{rcl} Y_{1,i} & = & \pi_{0,1} + \pi_{1,1} Z_{1,i} + \ldots + \pi_{l,1} Z_{l,i} + \pi_{l+1,1} X_{1,i} + \ldots \\ & & + \pi_{l+k,1} X_{k,i} + V_{1,i}, \\ \\ \vdots & \vdots & \vdots \\ Y_{m,i} & = & \pi_{0,m} + \pi_{1,m} Z_{1,i} + \ldots + \pi_{l,m} Z_{l,i} + \pi_{l+1,m} X_{1,i} + \ldots \\ & & + \pi_{l+k,m} X_{k,i} + V_{m,i}. \end{array}$$

- ► Note that in general the exogenous regressors *X*'s can be correlated with the endogenous regressors *Y*'s and therefore should be included in the first-stage equations.
- ► It is assumed that the exogenous regressors X's and IVs Z's are uncorrelated with the errors U and V's.

The order condition for identification

► The necessary condition for identification is that for every endogenous regressors *Y* we bring at least one exogenous variable *Z* excluded from the structural equation:

$$l \geq m$$
.

- \blacktriangleright When l=m, the system is exactly identified.
- ▶ When l > m, the system is overidentified.
- ▶ When l < m, the system is underidentified, and the estimation of the structural coefficients γ 's and β 's is impossible.

2SLS estimation: the first stage

► Consider the first-stage equations:

$$Y_{1,i} = \pi_{0,1} + \pi_{1,1}Z_{1,i} + \ldots + \pi_{l,1}Z_{l,i} + \pi_{l+1,1}X_{1,i} + \ldots + \pi_{l+k,1}X_{k,i} + V_{1,i},$$

$$\vdots \quad \vdots \quad \vdots$$

$$Y_{m,i} = \pi_{0,m} + \pi_{1,m}Z_{1,i} + \ldots + \pi_{l,m}Z_{l,i} + \pi_{l+1,m}X_{1,i} + \ldots + \pi_{l+k,m}X_{k,i} + V_{m,i}.$$

- ► All right-hand side variables are exogenous.
- ► The first stage coefficients π 's can be estimated consistently by OLS by regressing Y's against Z's and X's.

- Let $\hat{\pi}$'s denote the OLS estimators of π .
- \blacktriangleright After estimating π 's, obtain the fitted (predicted) values for Y's:

$$\hat{Y}_{1,i} = \hat{\pi}_{0,1} + \hat{\pi}_{1,1} Z_{1,i} + \ldots + \hat{\pi}_{l,1} Z_{l,i}$$

$$+ \hat{\pi}_{l+1,1} X_{1,i} + \ldots + \hat{\pi}_{l+k,1} X_{k,i},$$

$$\vdots \quad \vdots \quad \vdots$$

$$\hat{Y}_{m,i} = \hat{\pi}_{0,m} + \hat{\pi}_{1,m} Z_{1,i} + \ldots + \hat{\pi}_{l,m} Z_{l,i}$$

$$+ \hat{\pi}_{l+1,m} X_{1,i} + \ldots + \hat{\pi}_{l+k,m} X_{k,i}.$$

 $ightharpoonup \hat{Y}$'s are functions of Z's and X's (all exogenous) and asymptotically uncorrelated with the errors.

2SLS: the second stage

► In the second stage, regress (OLS) the dependent variable y against a constant, X's, and \hat{Y} 's obtained in the first stage:

$$y_i = \hat{\gamma}_0^{2SLS} + \hat{\gamma}_1^{2SLS} X_{1,i} + \dots + \hat{\gamma}_k^{2SLS} X_{k,i} + \hat{\beta}_1^{2SLS} \hat{Y}_{1,i} + \dots + \hat{\beta}_m^{2SLS} \hat{Y}_{m,i} + \hat{U}_i.$$

- ▶ One can show that the resulting 2SLS estimators $\hat{\gamma}_0^{2SLS}, \hat{\gamma}_1^{2SLS}, \dots, \hat{\gamma}_k^{2SLS}, \hat{\beta}_1^{2SLS}, \dots, \hat{\beta}_m^{2SLS}$ are consistent and asymptotically normal.
- When using the above steps to obtain the 2SLS estimates, the standard errors reported from the second-stage OLS estimation do not take into the account that \hat{Y} 's were constructed using $\hat{\pi}$'s and not the true (unknown) π 's. Therefore, they are incorrect and have to adjusted for the estimation error in the first stage.
- ► Most statistical packages have pre-programmed procedures that report the estimation results for both stages and report the corrected standard errors for the second stage.

Stata

► In Stata, 2SLS estimator can be obtained using the command ivregress 2sls. The command accepts the options robust to compute heteroskedasticity robust standard errors and first to report the first stage.

. ivregress 2s	ls lwage	(educ=motheduc	fatheduc)	exper expe	rsq, robus	t first		
First-stage regressions								
				Number o	f obs =	428		
				F(4,	423) =	25.76		
				Prob > F	=	0.0000		
				R-square	d =	0.2115		
				Adj R-sq	uared =	0.2040		
				Root MSE	=	2.0390		
I		Robust						
educ	Coe	ef. Std. Err.	t	P> t	[95% Conf.	Interval]		
exper	.04522	.0419107	1.08	0.281 -	.0371538	.1276046		
expersq	00100	091 .0013233	-0.76	0.446 -	.0036101	.0015919		
motheduc	. 1575	.0354502	4.45	0.000	.0879165	.2272776		
fatheduc	. 18954	.0324419	5.84	0.000	.125781	.2533159		
_cons	9.102	264 .4241444	21.46	0.000	8.268947 9.93			

Instrumental	variables	(2SLS)	regression	Numbe	er of obs	=	428
				Wald	chi2(3)	=	18.61
				Prob	> chi2	=	0.0003
				R-squ	ıared	=	0.1357
				Root	MSE	=	.67155

 lwage	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
educ	.0613966	.0331824	1.85	0.064	0036397	.126433
exper	.0441704	.0154736	2.85	0.004	.0138428	.074498
expersq	000899	.0004281	-2.10	0.036	001738	00006
_cons	.0481003	.4277846	0.11	0.910	7903421	.8865427

Instrumented: educ

Instruments: exper expersq motheduc fatheduc

► For comparison, the OLS estimates are below:

. regress lwage educ exper expersq, robust

 lwage 	Coef.	Robust Std. Err.	t	P> t		. Interval]
 educ exper expersq _cons	.1074896 .0415665 0008112 5220406	.013219 .015273 .0004201 .2016505	8.13 2.72 -1.93 -2.59	0.000 0.007 0.054 0.010	.0815068 .0115462 0016369 9183996	.1334725 .0715868 .0000145 1256815