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Definition of maximum likelihood: discrete sample

Let (𝑋1, ..., 𝑋𝑛) be a random (i.i.d.) sample on a discrete population
characterized by a vector of parameters 𝜃 = (𝜃1, ..., 𝜃𝑘) and let 𝑥𝑖 be
the observed value of 𝑋𝑖 . Then we call

𝐿 (𝜃;𝑥1, ..., 𝑥𝑛) =
𝑛∏
𝑖=1

Pr [𝑋𝑖 = 𝑥𝑖;𝜃]

the likelihood function of 𝜃 given (𝑥1, ..., 𝑥𝑛), and we call the value of
𝜃 that maximizes 𝐿 (𝜃;𝑋1, ..., 𝑋𝑛) the maximum likelihood estimator.
I The purpose of estimation is to pick a probability distribution

among many (usually infinite) probability distributions that could
have generated given observations.

I Maximum likelihood estimation means choosing the probability
distribution under which the observed values could have
occurred with the highest probability.
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An example

I Suppose 𝑋 ∼ Bin (𝑛, 𝑝∗) (binomial distribution) for some
unknown 𝑝∗ and 𝑛 is known. Suppose our sample size is 1.

I The likelihood function at any parameter value 𝑝 ∈ (0,1) is given
by

𝐿 (𝑝;𝑥) = 𝐶𝑥
𝑛 𝑝

𝑥 (1− 𝑝)𝑛−𝑥 .
I We shall maximize log (𝐿) rather than 𝐿 because it is simpler.

Since log is a monotonically increasing function, the value of the
maximum likelihood estimator is unchanged by this
transformation.

I We have

log (𝐿 (𝑝;𝑥)) = log
(
𝐶𝑥
𝑛

)
+ 𝑥log (𝑝) + (𝑛− 𝑥) log (1− 𝑝) .

I Solving the first order condition, the maximum likelihood
estimator is 𝑝 = 𝑋/𝑛.
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Definition of maximum likelihood: continuous sample

I Let (𝑋1, ..., 𝑋𝑛) be a random (i.i.d.) sample on a continuous with
a density function 𝑓 (·;𝜃) where 𝜃 = (𝜃1, ..., 𝜃𝑘), and let 𝑥𝑖 be the
observed value of 𝑋𝑖 . Then we call

𝐿 (𝜃;𝑥1, ..., 𝑥𝑛) =
𝑛∏
𝑖=1

𝑓 (𝑥𝑖;𝜃)

the likelihood function of 𝜃 given (𝑥1, 𝑥2, ..., 𝑥𝑛), and we call the
value of 𝜃 that maximizes 𝐿 (𝜃;𝑋1, ..., 𝑋𝑛) the maximum
likelihood estimator.

I The function

ℓ (𝜃;𝑥1, ..., 𝑥𝑛) =
𝑛∑︁
𝑖=1

log 𝑓 (𝑥𝑖;𝜃)

is usually called the log-likelihood function.
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An Example

I Let 𝑋𝑖 , 𝑖 = 1,2, ..., 𝑛 be a random (i.i.d.) sample from the
population N

(
𝜇∗,𝜎2

∗
)

with some unknown (𝜇∗,𝜎∗).
I Then the likelihood function is given by

𝐿

(
𝜇,𝜎2;𝑥1, 𝑥2, ..., 𝑥𝑛

)
=

𝑛∏
𝑖=1

1
√

2𝜋𝜎
exp

(
− 1

2𝜎2 (𝑥𝑖 − 𝜇)2
)

so that

ℓ

(
𝜇,𝜎2;𝑥1, 𝑥2, ..., 𝑥𝑛

)
=− 𝑛

2
log (2𝜋) − 𝑛

2
log

(
𝜎2

)
− 1

2𝜎2

𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝜇)2 .
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I Equating the derivatives to zero, we have

𝜕log𝐿
𝜕𝜇

=
1
𝜎2

𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝜇) = 0

and
𝜕log𝐿
𝜕𝜎2 = − 𝑛

2𝜎2 +
1

2𝜎4

𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝜇)2 = 0.

I By solving the first order conditions, the maximum likelihood
estimators are

𝜇̂ = 𝑋 =
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖

and

𝜎̂2 =
1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝑋

)2
,

which are simply the sample mean and the sample variance.
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MLE in a general set-up

I Suppose now we have observations for a dependent variable 𝑌
and an explanatory variable (vector) 𝑋: (𝑌1, 𝑋1) , ..., (𝑌𝑛, 𝑋𝑛).

I Suppose we have a parametric model for the true joint density
function of (𝑌1, 𝑋1, ...,𝑌𝑛, 𝑋𝑛):

𝑓 (𝑦1, 𝑥1, ..., 𝑦𝑛, 𝑥𝑛;𝜃) .

I In the case where the observations (𝑌1, 𝑋1) , ..., (𝑌𝑛, 𝑋𝑛) are i.i.d.,

𝑓 (𝑦1, 𝑥1, ..., 𝑦𝑛, 𝑥𝑛;𝜃) =
𝑛∏
𝑖=1

𝑓𝑌 |𝑋 (𝑦𝑖 | 𝑥𝑖;𝜃) 𝑓𝑋 (𝑥𝑖;𝜃) ,

where 𝑓𝑌 |𝑋 (· | 𝑥;𝜃) is the conditional density function of 𝑌𝑖
given 𝑋𝑖 = 𝑥 and 𝑓𝑋 (·;𝜃) is the marginal density of 𝑋𝑖 .
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I Typically, we assume that 𝑓𝑋 is not parametrized, meaning that
we leave the marginal density function unspecified.

I Then we take the logarithm of the density function to obtain

𝑛∑︁
𝑖=1

log 𝑓𝑌 |𝑋 (𝑦𝑖 | 𝑥𝑖;𝜃) +
𝑛∑︁
𝑖=1

log 𝑓𝑋 (𝑥𝑖) .

I We define the log-likelihood function to be

ℓ (𝜃;𝑌1, 𝑋1, ...,𝑌𝑛, 𝑋𝑛) =
𝑛∑︁
𝑖=1

log 𝑓𝑌 |𝑋 (𝑌𝑖 | 𝑋𝑖;𝜃) +
𝑛∑︁
𝑖=1

log 𝑓𝑋 (𝑋𝑖) .

I The MLE is the maximizer of ℓ (𝜃;𝑌1, 𝑋1, ...,𝑌𝑛, 𝑋𝑛) with respect
to 𝜃:

𝜃 = argmax
𝜃

ℓ (𝜃;𝑌1, 𝑋1, ...,𝑌𝑛, 𝑋𝑛) = argmax
𝜃

𝑛∑︁
𝑖=1

log 𝑓𝑌 |𝑋 (𝑌𝑖 | 𝑋𝑖;𝜃) ,

since
∑𝑛

𝑖=1 log 𝑓𝑋 (𝑋𝑖) is independent of 𝜃.
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An example: linear regression model with normal errors
I Now extend the sample mean example to the regression model:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 +𝑈𝑖 .

I Suppose the observations are i.i.d. and 𝑈𝑖 | 𝑋𝑖 ∼ N (0,1). This
implies 𝑌𝑖 | 𝑋𝑖 ∼ N (𝛽0 + 𝛽1𝑋𝑖 ,1).

I The conditional density is

𝑓𝑌 |𝑋 (𝑦 | 𝑥, 𝛽0, 𝛽1) =
1

√
2𝜋

exp
(
− (𝑦− 𝛽0 − 𝛽1𝑥)2

2

)
.

I The likelihood function is

𝐿 (𝑏0, 𝑏1;𝑌1, 𝑋1, ...,𝑌𝑛, 𝑋𝑛)

=

𝑛∏
𝑖=1

1
√

2𝜋
exp

(
− (𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)2

2

)
𝑓𝑋 (𝑋𝑖) ,

where we left 𝑓𝑋 unspecified.
9 / 24



I The log-likelihood function is

ℓ (𝑏0, 𝑏1;𝑌1, 𝑋1, ...,𝑌𝑛, 𝑋𝑛) =
𝑛∑︁
𝑖=1

log
(

1
√

2𝜋

)
− 1

2

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)2 +
𝑛∑︁
𝑖=1

log 𝑓𝑋 (𝑋𝑖) .

I Therefore, maximizing ℓ (𝑏0, 𝑏1;𝑌1, 𝑋1, ...,𝑌𝑛, 𝑋𝑛) with respect to
(𝑏0, 𝑏1) is equivalent to minimizing

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑏0 − 𝑏1𝑋𝑖)2

with respect to (𝑏0, 𝑏1). The minimizer is just the OLS.
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Computation

I In both examples, it has been possible to solve the likelihood
equation explicitly, equating the derivative of the log likelihood
function to zero.

I The likelihood equation is often highly nonlinear in the
parameters. It can be solved only by numerical method.

I The most common (numerical) method is the Newton-Raphson
method, which can be used to maximize or minimize a general
function, not just the likelihood function.

I Let 𝑄 (𝜃) be the function we want to maximize. Its quadratic
Taylor expansion around an initial value 𝜃1 is given by

𝑄 (𝜃) ≈𝑄 (𝜃1) +
𝜕𝑄 (𝜃)
𝜕𝜃

����
𝜃=𝜃1

(𝜃 − 𝜃1) +
1
2
𝜕2𝑄 (𝜃)
𝜕𝜃2

����
𝜃=𝜃1

(𝜃 − 𝜃1)2

where the derivatives are evaluated at 𝜃1.
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I The second-round estimator of the iteration, denoted by 𝜃2, is the
value of 𝜃 that maximizes the right hand of the quadratic
approximation.

I Therefore,

𝜃2 = 𝜃1 −
(
𝜕2𝑄 (𝜃)
𝜕𝜃2

����
𝜃=𝜃1

)−1
𝜕𝑄 (𝜃)
𝜕𝜃

����
𝜃=𝜃1

.

I Next 𝜃2 can be used as the initial value to compute the
third-round estimator, and the iteration should be repeated until it
converges.

I Whether the iteration will converge to the global maximum,
rather than some other stationary point, and if it does, how fast it
converges depend upon the shape of 𝑄 and the initial value.
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Cramér Rao Lower Bound (CRLB)
I Let 𝐿 (𝜃;𝑋1, ..., 𝑋𝑛) be the likelihood function and let 𝜃 be an

unbiased estimator of 𝜃∗, the true parameter. Then under general
conditions, we have

Var
[
𝜃
]
≥ −

(
E

[
𝜕2log𝐿
𝜕𝜃2

����
𝜃=𝜃∗

])−1

where the right hand side is known to be the Cramer Rao lower
bound.

I When we discuss the definition and computation, the likelihood
function was always evaluated at the observed values of the
sample, since we are concerned with the definition and
computation only. When we are concerned with the properties of
the maximum likelihood estimator, we need to evaluate the
likelihood function at the random variables 𝑋1, 𝑋2,...,𝑋𝑛, which
makes the likelihood function itself random.
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Proof of the Cramér Rao Theorem
First we notice

E

[
𝜕2log𝐿
𝜕𝜃2

����
𝜃=𝜃∗

]
= 𝑛 ·E

[
𝜕2log 𝑓 (𝑋;𝜃)

𝜕𝜃2

����
𝜃=𝜃∗

]
.

Define S (𝜃) as the score function:

S (𝜃) = 𝜕log𝐿 (𝜃;𝑋1, ..., 𝑋𝑛)
𝜕𝜃

=

𝑛∑︁
𝑖=1

𝜕log 𝑓 (𝑋𝑖;𝜃)
𝜕𝜃

=

𝑛∑︁
𝑖=1

1
𝑓 (𝑋𝑖;𝜃)

𝜕 𝑓 (𝑋𝑖;𝜃)
𝜕𝜃

.

We have the following equalities (noticing that
∫

𝑓 (𝑥;𝜃) d𝑥 = 1 for all
𝜃)∫

𝜕log 𝑓 (𝑥;𝜃)
𝜕𝜃

𝑓 (𝑥;𝜃) d𝑥 =
∫

𝜕 𝑓 (𝑥;𝜃)
𝜕𝜃

d𝑥 =
𝜕

𝜕𝜃

∫
𝑓 (𝑥;𝜃) d𝑥 = 0,

where the integral and partial derivative have been interchanged.
Therefore we have E [S (𝜃∗)] = 0.
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By standard rules of differentiation, we have

𝜕2log 𝑓 (𝑥;𝜃)
𝜕𝜃2 =

𝜕

𝜕𝜃

𝜕log 𝑓 (𝑥;𝜃)
𝜕𝜃

=
𝜕

𝜕𝜃

(
1

𝑓 (𝑥;𝜃)
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃

)
and also

𝜕

𝜕𝜃

(
1

𝑓 (𝑥;𝜃)
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃

)
=− 1

𝑓 (𝑥;𝜃)2

(
𝜕 𝑓 (𝑥;𝜃)

𝜕𝜃

)2
+ 1
𝑓 (𝑥;𝜃)

𝜕2 𝑓 (𝑥;𝜃)
𝜕𝜃2

= −
(
𝜕log 𝑓 (𝑥;𝜃)

𝜕𝜃

)2
+ 1
𝑓 (𝑥;𝜃)

𝜕2 𝑓 (𝑥;𝜃)
𝜕𝜃2 .

Therefore we have

E

[
𝜕2log𝐿 (𝜃;𝑋1, ..., 𝑋𝑛)

𝜕𝜃2

����
𝜃=𝜃∗

]
= −𝑛 ·E


(
𝜕log 𝑓 (𝑋;𝜃)

𝜕𝜃

����
𝜃=𝜃∗

)2
+𝑛 ·E

[
1

𝑓 (𝑋;𝜃∗)
𝜕2 𝑓 (𝑋;𝜃)

𝜕𝜃2

����
𝜃=𝜃∗

]
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We have for any 𝜃∫
𝜕2 𝑓 (𝑥;𝜃)

𝜕𝜃2 d𝑥 =
𝜕2

𝜕𝜃2

∫
𝑓 (𝑥;𝜃) d𝑥 = 0

since
∫

𝑓 (𝜃;𝑥) d𝑥 = 1 for all 𝜃. Therefore we have

E

[
1

𝑓 (𝑋;𝜃∗)
𝜕2 𝑓 (𝑋;𝜃)

𝜕𝜃2

����
𝜃=𝜃∗

]
= 0

and

E

[
𝜕2log 𝑓 (𝑋;𝜃)

𝜕𝜃2

����
𝜃=𝜃∗

]
= −E


(
𝜕log 𝑓 (𝑋;𝜃)

𝜕𝜃

����
𝜃=𝜃∗

)2 .
This implies that

Var [S (𝜃∗)] = −E

[
𝜕2log𝐿 (𝜃;𝑋1, ..., 𝑋𝑛)

𝜕𝜃2

����
𝜃=𝜃∗

]
.
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For all 𝜃, we have∫
· · ·

∫
𝜃
𝜕log𝐿 (𝜃;𝑥1, ..., 𝑥𝑛)

𝜕𝜃
𝐿 (𝜃;𝑥1, ..., 𝑥𝑛) d𝑥1 · · ·d𝑥𝑛

=

∫
· · ·

∫
𝜃
𝜕𝐿 (𝜃;𝑥1, ..., 𝑥𝑛)

𝜕𝜃
d𝑥1 · · ·d𝑥𝑛

=
𝜕

𝜕𝜃

∫
· · ·

∫
𝜃𝐿 (𝜃;𝑥1, ..., 𝑥𝑛) d𝑥1 · · ·d𝑥𝑛 = 1.

The covariance of 𝜃 and S (𝜃∗) is (since E [𝑆 (𝜃∗)] = 0)

Cov
[
𝜃, 𝑆 (𝜃∗)

]
= E

[
𝜃
𝜕log𝐿 (𝜃;𝑋1, ..., 𝑋𝑛)

𝜕𝜃

����
𝜃=𝜃∗

]
= 1.

By the Cauchy-Schwarz inequality, we have��Cov
[
𝜃, 𝑆 (𝜃∗)

] �� ≤ √︃
Var

[
𝜃
]
·
√︁

Var [𝑆 (𝜃∗)] .

Therefore, we have

Var
[
𝜃
]
≥ Var [𝑆 (𝜃∗)]−1 .
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CRLB Example
Let 𝑋 ∼ Bin (𝑛, 𝑝∗) (𝑛 is known). We have

𝜕2log𝐿 (𝑝;𝑋)
𝜕𝑝2 = − 𝑋

𝑝2 −
𝑛− 𝑋

(1− 𝑝)2 .

Therefore we obtain

CRLB =
𝑝∗ (1− 𝑝∗)

𝑛

since E [𝑋] = 𝑛𝑝∗. In this case, the maximum likelihood estimator

𝑝 =
𝑋

𝑛

has variance
Var [𝑝] = CRLB.

Therefore it is the best unbiased estimator.
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Consistency of Maximum Likelihood
I The maximum likelihood estimator can be shown to be

consistent under general conditions. Let us define

𝑄𝑛 (𝜃) =
1
𝑛

log𝐿 (𝜃;𝑋1, ..., 𝑋𝑛) =
1
𝑛

𝑛∑︁
𝑖=1

log 𝑓 (𝑋𝑖;𝜃) .

I By LLN, we know that for each 𝜃,

𝑄𝑛 (𝜃) −→𝑝 𝑄 (𝜃)

where 𝑄 (𝜃) = E [log 𝑓 (𝑋;𝜃)].
I The maximum likelihood estimator is defined to be the

maximizer of 𝑄𝑛 (𝜃). We expect the maximizer should converge
to the maximizer of its limit 𝑄 (𝜃) in probability.

I We can show that 𝑄 (𝜃) is maximized at 𝜃∗ (the true density of 𝑋
is 𝑓 (·;𝜃∗)).
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I Jensen’s inequality: Let 𝑋 be a random variable and 𝑔 be a
strictly concave function. That is,

𝑔 (𝜆𝑎 + (1−𝜆) 𝑏) > 𝜆𝑔 (𝑎) + (1−𝜆) 𝑔 (𝑏)

for any 𝑎 < 𝑏 and 0 < 𝜆 < 1. Then

E [𝑔 (𝑋)] < 𝑔 (E [𝑋]) .

I Take 𝑔 to be log and 𝑋 to be 𝑓 (𝑋;𝜃) / 𝑓 (𝑋;𝜃∗) for arbitrary 𝜃. If
𝜃 ≠ 𝜃∗.

E
[
log

(
𝑓 (𝑋;𝜃)
𝑓 (𝑋;𝜃∗)

)]
< log

(
E

[
𝑓 (𝑋;𝜃)
𝑓 (𝑋;𝜃∗)

] )
.

I But we have

E
[
𝑓 (𝑋;𝜃)
𝑓 (𝑋;𝜃∗)

]
=

∫
𝑓 (𝑥;𝜃)
𝑓 (𝑥;𝜃∗)

𝑓 (𝑥;𝜃∗) d𝑥 = 1, for all 𝜃.
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Asymptotic Normality of Maximum Likelihood
I Under general conditions, we have

√
𝑛
(
𝜃ML − 𝜃∗

)
→𝑑 N (0,𝑉ML) ,

where

𝑉ML = −𝑛
(
E

[
𝜕2log𝐿
𝜕𝜃2

����
𝜃=𝜃∗

])−1

=
©­«E


(
𝜕log 𝑓 (𝑋;𝜃)

𝜕𝜃

����
𝜃=𝜃∗

)2ª®¬
−1

I This means

𝜃ML
𝑎∼ N©­«𝜃∗,−

(
E

[
𝜕2log𝐿
𝜕𝜃2

����
𝜃=𝜃∗

])−1ª®¬
when 𝑛 is very large, i.e. the maximum likelihood estimator
attains the Cramer-Rao lower bound asymptotically.

I Loosely speaking, the maximum likelihood estimator has the
smallest asymptotic variance among all the consistent estimators
𝜃 such that

√
𝑛
(
𝜃 − 𝜃∗

)
is asymptotically normal.
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An Example

I Let 𝑋 have density belonging to the family

𝑓 (𝑥;𝜇) =

(
1+ 1−2𝜇

𝜇−1

)
𝑥

1−2𝜇
𝜇−1 𝑥 ∈ (0,1)

0 𝑥 ∉ (0,1) ,

for 0 < 𝜇 < 1, with true density 𝑓 (𝑥;𝜇∗).
I It can be shown that 𝜇 =

∫
𝑥 𝑓 (𝑥;𝜇) d𝑥, i.e., in this

parametrization, 𝜇 is also the population mean.
I We observe a random sample 𝑋1, ..., 𝑋𝑛. The log-maximum

likelihood function is

log𝐿 (𝜇;𝑋1, ..., 𝑋𝑛) = 𝑛log
(

𝜇

1− 𝜇

)
+ 1−2𝜇

𝜇−1

𝑛∑︁
𝑖=1

log (𝑋𝑖) .
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I Differentiating with respect to 𝜇:

𝜕log𝐿
𝜕𝜇

=
𝑛

𝜇 (1− 𝜇) +
1

(1− 𝜇)2

𝑛∑︁
𝑖=1

log (𝑋𝑖) .

I Solving the first order condition, the maximum likelihood
estimator is

𝜇̂ =
𝑛

𝑛−∑𝑛
𝑖=1 log (𝑋𝑖)

.
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I It can be shown that

𝜕2log𝐿
𝜕𝜇2 = − (1−2𝜇) 𝑛

𝜇2 (1− 𝜇)2 +
2

(1− 𝜇)3

𝑛∑︁
𝑖=1

log (𝑋𝑖)

and ∫
log (𝑥) 𝑓 (𝑥;𝜇) d𝑥 =

𝜇−1
𝜇

.

I Therefore the asymptotic variance of the maximum likelihood
estimator is 𝜇2

∗ (1− 𝜇∗)2 .

I For this example, the asymptotic variance of the sample mean is
𝜇∗ (1− 𝜇∗)2 /(2− 𝜇∗).

I It can be shown that

𝜇∗ (1− 𝜇∗)2

2− 𝜇∗
− 𝜇2

∗ (1− 𝜇∗)2 > 0

for 0 < 𝜇∗ < 1.
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