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Binary dependent variable

» The explained variable could be binary, e.g. in a population
survey dataset, with the subset of women considered, the
explained variable can be a binary variable equal to one if the
lady was participating work zero if not.

» Let Y; be the explained variable and let Xi;, Xo;, ..., Xx; be
explainatory variables. We have i.i.d. observationsi =1,2,...,n.

» A linear regression of ¥; on the explainatory variables
consistently estimates the best linear approximation to
E[Y; | Xii, .. Xii].

» However, apparently, since Y; is binary we have
E[Y: [ Xii, .. Xiil =Pr[Y; = 1| Xui, ..., X ] -

Therefore E[Y; | X1;, ..., Xi;] must be bounded between 0 and 1.

» The predicted value from a linear regression can be bigger than 1
or smaller than 0.
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Specifying Logit and Probit models

| 4

Since Pr[Y =1 Xj,..., X; ] must be bounded between 0 and 1,
we specify a parametric function form that respects this prior
information.

We consider a class of binary choice models of the form

PriY=1|X,...Xx] =G (Bo+L1 X1+ +BrXx)

where G is a function taking on values strictly between 0 and 1:
0<G(x)<l1forall x eR.

The parameters to be estimated are By, 51, ..., Bx. The estimated
choice probabilities are strictly between O and 1.

G can be taken to be a CDF with 0 < G (x) < 1 for all x € R. We
can take G to be the standard normal CDF. This is Probit model.
Alternatively, we can take G to be the logitstic function:

exp (z)
l+exp(z)
This is the CDF for a standard logistic random variable. This is
called a Logit model.

G(z)=
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Latent variable model

>

Logit and probit models can be derived from an underlying latent
variable model.
Suppose that we have an unobserved latent variable Y*, generated
by

Y* =ﬁ0+ﬁ1X1 +'~-+ﬁka+E.
where € is independent of X’s, e.g. Y™ is the net “return” of
working for women.
We observe Y =1 [Y* > 0] where 1 [-] is called the indicator
function, which takes on one if the event in the brackets is true,
and zero otherwise. Y is a binary random variable.
We have

PI‘[Y= 1 |X1,...,Xk] :Pr[Y* >0 | X],...,Xk]
=Prle>—(Bo+p1 X1+ +BiXi) | X1,..., Xk ]
=1-G (= (Bo+p1 X1+ +BxXr)) =G (Bo+B1 X1+ +Br Xk)

if the conditional distribution of € is G.

4/15



Identification and normalization

> What if we take G to be the CDF of N (¢, 02)?
> Suppose k = 1. We observe

Y = [ﬂ0+ﬂ1X1+€>O]
| |Botr B

+—X +€>0
(oa

where € ~ N (0, 1). Let ®@ denote the CDF of N (0,1).
» Denote B9 = (Bo+u) /o and B; = 81 /0. Now we have

Pr(Y=1|X;=x] =®(Bo+fix).

One cannot separately estimate 3y, 81, # and . Only By and f3,
are identified and estimable.

» As far as the “partial effect” is concerned, one does not need to
separately estimate Sy, 81, ¢ and o. It suffices to estimate Sy and

B
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Partial effect

> The partial effect of X; on Pr[Y =1 X, ..., Xi] is just

OPr [Yz L Xy =x1,..,Xj =xj,..., X :xk]

axj

=g (Bo+pixi+---+Brxi) B

where g =G’.
» Because G is the CDF of a continuous random variable, g is a

probability density function. In Logit and Probit models, G is a
strictly increasing CDF and so g (z) > O for all z € R.

» The partial effect depends on (x,...,xz) but always has the same
sign as ;.

» We are often interested in estimating the average partial effect:
E[g(Bo+B1Xi+ - +BiXk) Bj] -
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Maximum likelihood estimation of Logit and Probit

» To obtain the maximum likelihood estimator, conditional on the
explanatory variables, we need the conditional probability mass
of Y given X1, ..., Xk.

» We can write this as

Pr [Y =)y I X17 '“an;ﬁO’Bl’ ""ﬂk]
=[G (Bo+Bi X1+ +BiX)]” [1-G (Bo+Bi1 X1+ -+ Bk Xi)]' ™

with y =0, 1.
» The log-likelihood function is

n
t(bgo,b1,....,by) = Z{Yilog(G (bo+b1 X1i+- -+ br Xy;))
i=1
+(1=-Y)log(1 -G (bo+b1 X1+ +biXyi))}-

» Because G is strictly between 0 and 1 for Logit and Probit, £ (-) is
well-defined for all values of bg, by, ..., by.

» The MLE j maximizes this log-likelihood function.
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If G is the standard Logit CDF, then f3 is the Logit estimator. If
G is the standard normal CDF, then ﬁ is the Probit estimator.

Because of the nonlinear nature of the maximization problem

we cannot write the maximum likelihood estimator as an explicit
function of the data {(Y;, X1;,..., Xxi) :i=1,...,n}.

The general theory of maximum likelihood implies that under
general conditions, the maximum likelihood estimator is
consistent and asymptotically normal: for each j =0,...,k,

Vi (B;=B;) =a N (0, V)

with some asymptotic variance V ;.

The form of V; is very complex and not given in the class, but
V; is estimable.
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Likelihood ratio test

» TotestHo: B = ,8}‘., we construct the usual 7-statistic by using an
estimate of V.

» Instead, we can conduct a likelihood ratio test.

> Suppose we want to test Ho : Bo = B+ ; Bg = By for g < k. The
unconstrained maximum likelihood is

Cue = bmax {(by,....,br) .
» The Hy—constrained maximum likelihood is

f.= max f(ﬁg,...,ﬁ;,bq+1,...,bk).

bq+l ----- bk

» The likelihood ratio statistic is
LR =2({yc—"%.).

> Under Ho : Bo =B 384 = By LR >4 )(621+1-
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Bayes theorem

» Continuous (X,Y):
fxiy (1Y) fr (v)
S iy (1) fr () dy”

where [ fxy (x| y) fr () dy = fx (x).
» Discrete (X,Y):

frix(ylx)=

Pr[X=x|Y=k]-Pr(Y =k)

PrlY=k|X=x]= SK Pr[X=x|Y=k]-Pr(Y=k)

where Y € {1,...,K} and

K
ZPr[X:x|Y:k]-Pr[Y:k] =Pr[X =x].
k=1
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Linear discriminant analysis (LDA) for two classes
» Specify:
X1, X5 | Y =0 ~N (o, X)
Xt Xi | Y =1 ~N(u,2),

where (uo, 1t1) are k-dimensional vectors specifying the means
and X is the variance-covariance matrix.
» By the Bayes theorem,

Xi,...X
Pr[Y=1|Xy,...X] = 71 (X Xb)
7o fo (X1,..., Xi) + 71 f1 (X1, .00, Xi)

Pr[Y=0]|X,.... Xx] = 7ofo (X1, ..., Xi) ,
7T0f0 (Xl, ...,Xk) +7T1f1 (Xl, ...,Xk)
where 1, =Pr[Y = k] and f} is the conditional PDF of
(X1,...,Xy) givenY =k, k € {0,1}.

» The marginal distribution of Y (g, 1) is left unspecified.
(mo, 1) are easily estimated by sample averages.

» Estimation of ( fy, f1) reduces to estimation of (u, u1,2), which
does not require numerical maximization (maximum likelihood).
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LDA for k=1

» The normal density has the form

exp ! (x —H )2

X . b
\/_(T] Tj

where 1 is the mean and O'j is the variance, j =0, 1.

» We assume that ag = 012 = 02. Denote

pj(x)=Pr[Y =j| X =x] and then,
7 fi(x)
7o fo (x) +my f1 (x)
exp (6, (x))
exp (6o (x)) +exp (61 (x))’

where the discriminant score ¢ (x) is defined by

Ji(x) =

pj(x)

wi K
J
6_,(x)=x-;—2 2+10g(7r,)
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Estimating the parameters

» Estimator of 7;:

n;
A J
ﬂj—_’

n

where n; is the number of observations in the j-th class, j =0, 1.

> Estimator of y;:
1 n
A= 2N K= Xe
i=1

average of all the observations from the j-th class.
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» Estimator of o2

in-—l

52 = STl o

kZOn—Z J

AD 1 S . A \2

;. = nj—lz;l(Y":])(Xi_“j)'
i=

» &2 is a weighted average of the sample variances for each of the
classes.

» Then,
. ~2
N .
5j(x)—x'p—2&2+10g(”j)’

and we can turn these into estimates for conditional probabilities:

= exp (6 (x))
J exp (8o (x)) +exp (61 (x))
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Logit/Probit versus LDA

» Logit/Probit:
» Model the conditional distribution Y | X.
» The distribution of X is not modeled.

> Use MLE to estimate. This requires numerical optimization.

» Economic justification: random utility model.
» LDA:

» Model the conditional distribution X | Y.
» The distribution of Y is not modeled.

» Estimation: sample means, variances, and covariances of X.

» No clear economic model.
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