Introductory Econometrics

Lecture 23: Binary Choice Models

Instructor: Ma, Jun

Renmin University of China

December 1, 2021

Binary dependent variable

- ► The explained variable could be binary, e.g. in a population survey dataset, with the subset of women considered, the explained variable can be a binary variable equal to one if the lady was participating work zero if not.
- Let Y_i be the explained variable and let $X_{1i}, X_{2i}, ..., X_{ki}$ be explainatory variables. We have i.i.d. observations i = 1, 2, ..., n.
- ▶ A linear regression of Y_i on the explainatory variables consistently estimates the best linear approximation to $E[Y_i \mid X_{1i},...,X_{ki}]$.
- ightharpoonup However, apparently, since Y_i is binary we have

$$E[Y_i | X_{1i},...,X_{ki}] = Pr[Y_i = 1 | X_{1i},...,X_{ki}].$$

Therefore $E[Y_i \mid X_{1i},...,X_{ki}]$ must be bounded between 0 and 1.

► The predicted value from a linear regression can be bigger than 1 or smaller than 0.

Specifying Logit and Probit models

- ► Since $Pr[Y = 1 \mid X_1, ..., X_k]$ must be bounded between 0 and 1, we specify a parametric function form that respects this prior information.
- ▶ We consider a class of binary choice models of the form

$$\Pr[Y = 1 \mid X_1, ..., X_k] = G(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k)$$

where *G* is a function taking on values strictly between 0 and 1: 0 < G(x) < 1 for all $x \in \mathbb{R}$.

- ▶ The parameters to be estimated are $\beta_0, \beta_1, ..., \beta_k$. The estimated choice probabilities are strictly between 0 and 1.
- ▶ *G* can be taken to be a CDF with 0 < G(x) < 1 for all $x \in \mathbb{R}$. We can take *G* to be the standard normal CDF. This is Probit model.
- ightharpoonup Alternatively, we can take G to be the logitstic function:

$$G(z) = \frac{\exp(z)}{1 + \exp(z)}.$$

This is the CDF for a standard logistic random variable. This is called a Logit model.

Latent variable model

- ► Logit and probit models can be derived from an underlying latent variable model.
- ► Suppose that we have an unobserved latent variable Y^* , generated by

$$Y^* = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \epsilon.$$

where ϵ is independent of X's, e.g. Y^* is the net "return" of working for women.

- ▶ We observe Y = 1 [$Y^* > 0$] where 1 [·] is called the indicator function, which takes on one if the event in the brackets is true, and zero otherwise. Y is a binary random variable.
- ► We have

$$Pr[Y = 1 \mid X_1, ..., X_k] = Pr[Y^* > 0 \mid X_1, ..., X_k]$$

$$= Pr[\epsilon > -(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k) \mid X_1, ..., X_k]$$

$$= 1 - G(-(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k)) = G(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k)$$

if the conditional distribution of ϵ is G.

Identification and normalization

- ▶ What if we take *G* to be the CDF of N (μ, σ^2) ?
- ► Suppose k = 1. We observe

$$Y = 1 \left[\beta_0 + \beta_1 X_1 + \epsilon > 0 \right]$$
$$= 1 \left[\frac{\beta_0 + \mu}{\sigma} + \frac{\beta_1}{\sigma} X_1 + \tilde{\epsilon} > 0 \right]$$

where $\tilde{\epsilon} \sim N(0,1)$. Let Φ denote the CDF of N(0,1).

▶ Denote $\tilde{\beta}_0 = (\beta_0 + \mu) / \sigma$ and $\tilde{\beta}_1 = \beta_1 / \sigma$. Now we have

$$\Pr\left[Y=1\mid X_1=x\right]=\Phi\left(\tilde{\beta}_0+\tilde{\beta}_1x\right).$$

One cannot separately estimate β_0 , β_1 , μ and σ . Only $\tilde{\beta}_0$ and $\tilde{\beta}_1$ are identified and estimable.

As far as the "partial effect" is concerned, one does not need to separately estimate β_0 , β_1 , μ and σ . It suffices to estimate $\tilde{\beta}_0$ and $\tilde{\beta}_1$.

Partial effect

► The partial effect of X_j on Pr $[Y = 1 \mid X_1, ..., X_k]$ is just

$$\frac{\partial \Pr\left[Y=1 \mid X_1=x_1,...,X_j=x_j,...,X_k=x_k\right]}{\partial x_j}$$

$$= g\left(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k\right) \beta_j$$

where g = G'.

- ▶ Because *G* is the CDF of a continuous random variable, *g* is a probability density function. In Logit and Probit models, *G* is a strictly increasing CDF and so g(z) > 0 for all $z \in \mathbb{R}$.
- ► The partial effect depends on $(x_1,...,x_k)$ but always has the same sign as β_i .
- ► We are often interested in estimating the average partial effect:

$$E\left[g\left(\beta_0+\beta_1X_1+\cdots+\beta_kX_k\right)\beta_j\right].$$

Maximum likelihood estimation of Logit and Probit

- ▶ To obtain the maximum likelihood estimator, conditional on the explanatory variables, we need the conditional probability mass of Y given $X_1, ..., X_k$.
- ► We can write this as

Pr
$$[Y = y \mid X_1, ..., X_k; \beta_0, \beta_1, ..., \beta_k]$$

= $[G(\beta_0 + \beta_1 X_1 + ... + \beta_k X_k)]^y [1 - G(\beta_0 + \beta_1 X_1 + ... + \beta_k X_k)]^{1-y}$
with $y = 0, 1$.

► The log-likelihood function is

$$\ell(b_0, b_1, ..., b_k) = \sum_{i=1}^{n} \{ Y_i \log (G(b_0 + b_1 X_{1i} + \dots + b_k X_{ki})) + (1 - Y_i) \log (1 - G(b_0 + b_1 X_{1i} + \dots + b_k X_{ki})) \}.$$

- ▶ Because *G* is strictly between 0 and 1 for Logit and Probit, $\ell(\cdot)$ is well-defined for all values of $b_0, b_1, ..., b_k$.
- ► The MLE $\hat{\beta}$ maximizes this log-likelihood function.

- ▶ If *G* is the standard Logit CDF, then $\hat{\beta}$ is the Logit estimator. If *G* is the standard normal CDF, then $\hat{\beta}$ is the Probit estimator.
- ▶ Because of the nonlinear nature of the maximization problem

$$\max_{b_0,...,b_k} \ell(b_0,...,b_k),$$

we cannot write the maximum likelihood estimator as an explicit function of the data $\{(Y_i, X_{1i}, ..., X_{ki}) : i = 1, ..., n\}$.

▶ The general theory of maximum likelihood implies that under general conditions, the maximum likelihood estimator is consistent and asymptotically normal: for each j = 0,...,k,

$$\sqrt{n}\left(\hat{\beta}_{j}-\beta_{j}\right) \rightarrow_{d} N\left(0,V_{j}\right)$$

with some asymptotic variance V_j .

► The form of V_j is very complex and not given in the class, but V_j is estimable.

Likelihood ratio test

- ► To test $H_0: \beta_j = \beta_j^*$, we construct the usual *t*-statistic by using an estimate of V_j .
- ► Instead, we can conduct a likelihood ratio test.
- ▶ Suppose we want to test $H_0: \beta_0 = \beta_0^*; \dots; \beta_q = \beta_q^*$ for $q \le k$. The unconstrained maximum likelihood is

$$\ell_{uc} = \max_{b_0,...,b_k} \ell\left(b_0,...,b_k\right).$$

► The H₀-constrained maximum likelihood is

$$\ell_c = \max_{b_{q+1},...,b_k} \ell\left(\beta_0^*,...,\beta_q^*,b_{q+1},...,b_k\right).$$

► The likelihood ratio statistic is

$$LR = 2(\ell_{uc} - \ell_c)$$
.

► Under $H_0: \beta_0 = \beta_0^*; \dots; \beta_q = \beta_q^*, LR \rightarrow_d \chi_{q+1}^2$.

Bayes theorem

ightharpoonup Continuous (X,Y):

$$f_{Y\mid X}\left(y\mid x\right) = \frac{f_{X\mid Y}\left(x\mid y\right)f_{Y}\left(y\right)}{\int f_{X\mid Y}\left(x\mid y\right)f_{Y}\left(y\right)dy},$$

where $\int f_{X|Y}(x \mid y) f_Y(y) dy = f_X(x)$.

ightharpoonup Discrete (X,Y):

$$\Pr\left[Y = k \mid X = x\right] = \frac{\Pr\left[X = x \mid Y = k\right] \cdot \Pr\left(Y = k\right)}{\sum_{k=1}^{K} \Pr\left[X = x \mid Y = k\right] \cdot \Pr\left(Y = k\right)}$$

where $Y \in \{1, ..., K\}$ and

$$\sum_{k=1}^{K} \Pr[X = x \mid Y = k] \cdot \Pr[Y = k] = \Pr[X = x].$$

Linear discriminant analysis (LDA) for two classes

► Specify:

$$X_1, ..., X_k \mid Y = 0 \sim N(\mu_0, \Sigma)$$

 $X_1, ..., X_k \mid Y = 1 \sim N(\mu_1, \Sigma),$

where (μ_0, μ_1) are *k*-dimensional vectors specifying the means and Σ is the variance-covariance matrix.

▶ By the Bayes theorem,

$$\Pr[Y = 1 \mid X_1, ..., X_k] = \frac{\pi_1 f_1(X_1, ..., X_k)}{\pi_0 f_0(X_1, ..., X_k) + \pi_1 f_1(X_1, ..., X_k)}$$

$$\Pr[Y = 0 \mid X_1, ..., X_k] = \frac{\pi_0 f_0(X_1, ..., X_k)}{\pi_0 f_0(X_1, ..., X_k) + \pi_1 f_1(X_1, ..., X_k)},$$

where $\pi_k = \Pr[Y = k]$ and f_k is the conditional PDF of $(X_1, ..., X_k)$ given $Y = k, k \in \{0, 1\}$.

- The marginal distribution of $Y(\pi_0, \pi_1)$ is left unspecified. (π_0, π_1) are easily estimated by sample averages.
- Estimation of (f_0, f_1) reduces to estimation of (μ_0, μ_1, Σ) , which does not require numerical maximization (maximum likelihood).

LDA for k = 1

► The normal density has the form

$$f_j(x) = \frac{1}{\sqrt{2\pi}\sigma_j} \exp\left(-\frac{1}{2}\left(\frac{x-\mu_j}{\sigma_j}\right)^2\right),$$

where μ_j is the mean and σ_j^2 is the variance, j = 0, 1.

We assume that $\sigma_0^2 = \sigma_1^2 = \sigma^2$. Denote $p_j(x) = \Pr[Y = j \mid X = x]$ and then,

$$p_{j}(x) = \frac{\pi_{j}f_{j}(x)}{\pi_{0}f_{0}(x) + \pi_{1}f_{1}(x)}$$
$$= \frac{\exp(\delta_{j}(x))}{\exp(\delta_{0}(x)) + \exp(\delta_{1}(x))},$$

where the discriminant score $\delta_j(x)$ is defined by

$$\delta_j(x) = x \cdot \frac{\mu_j}{\sigma^2} - \frac{\mu_j^2}{2\sigma^2} + \log(\pi_j).$$

Estimating the parameters

ightharpoonup Estimator of π_i :

$$\hat{\pi}_j = \frac{n_j}{n},$$

where n_j is the number of observations in the *j*-th class, j = 0, 1.

ightharpoonup Estimator of μ_i :

$$\hat{\mu}_j = \frac{1}{n_j} \sum_{i=1}^n 1(Y_i = j) X_i,$$

average of all the observations from the j-th class.

 \blacktriangleright Estimator of σ^2 :

$$\hat{\sigma}^{2} = \sum_{k=0}^{K} \frac{n_{j} - 1}{n - 2} \cdot \hat{\sigma}_{j}^{2}$$

$$\hat{\sigma}_{j}^{2} = \frac{1}{n_{j} - 1} \sum_{i=1}^{n} 1 (Y_{i} = j) (X_{i} - \hat{\mu}_{j})^{2}.$$

- $\hat{\sigma}^2$ is a weighted average of the sample variances for each of the classes.
- ► Then,

$$\hat{\delta}_{j}(x) = x \cdot \frac{\hat{\mu}_{j}}{\hat{\sigma}^{2}} - \frac{\hat{\mu}_{j}^{2}}{2\hat{\sigma}^{2}} + \log(\hat{\pi}_{j}),$$

and we can turn these into estimates for conditional probabilities:

$$\hat{p}_{j}(x) = \frac{\exp(\hat{\delta}_{j}(x))}{\exp(\hat{\delta}_{0}(x)) + \exp(\hat{\delta}_{1}(x))}.$$

Logit/Probit versus LDA

► Logit/Probit:

- ightharpoonup Model the conditional distribution $Y \mid X$.
- ► The distribution of *X* is not modeled.
- ▶ Use MLE to estimate. This requires numerical optimization.
- ► Economic justification: random utility model.

► LDA:

- ightharpoonup Model the conditional distribution $X \mid Y$.
- ► The distribution of *Y* is not modeled.
- ightharpoonup Estimation: sample means, variances, and covariances of X.
- ► No clear economic model.