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Binary dependent variable
I The explained variable could be binary, e.g. in a population

survey dataset, with the subset of women considered, the
explained variable can be a binary variable equal to one if the
lady was participating work zero if not.

I Let .8 be the explained variable and let -18 , -28 , ..., -:8 be
explainatory variables. We have i.i.d. observations 8 = 1,2, ..., =.

I A linear regression of .8 on the explainatory variables
consistently estimates the best linear approximation to
E [.8 | -18 , ..., -:8].

I However, apparently, since .8 is binary we have

E [.8 | -18 , ..., -:8] = Pr [.8 = 1 | -18 , ..., -:8] .

Therefore E [.8 | -18 , ..., -:8] must be bounded between 0 and 1.
I The predicted value from a linear regression can be bigger than 1

or smaller than 0.
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Specifying Logit and Probit models
I Since Pr [. = 1 | -1, ..., -:] must be bounded between 0 and 1,

we specify a parametric function form that respects this prior
information.

I We consider a class of binary choice models of the form

Pr [. = 1 | -1, ..., -:] = � (V0 + V1-1 + · · · + V:-:)
where � is a function taking on values strictly between 0 and 1:
0 < � (G) < 1 for all G ∈ R.

I The parameters to be estimated are V0, V1, ..., V: . The estimated
choice probabilities are strictly between 0 and 1.

I � can be taken to be a CDF with 0 < � (G) < 1 for all G ∈ R. We
can take � to be the standard normal CDF. This is Probit model.

I Alternatively, we can take � to be the logitstic function:

� (I) = exp (I)
1+ exp (I) .

This is the CDF for a standard logistic random variable. This is
called a Logit model.
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Latent variable model
I Logit and probit models can be derived from an underlying latent

variable model.
I Suppose that we have an unobserved latent variable . ∗, generated

by
. ∗ = V0 + V1-1 + · · · + V:-: + n .

where n is independent of -’s, e.g. . ∗ is the net “return” of
working for women.

I We observe . = 1 [. ∗ > 0] where 1 [·] is called the indicator
function, which takes on one if the event in the brackets is true,
and zero otherwise. . is a binary random variable.

I We have

Pr [. = 1 | -1, ..., -:] = Pr [. ∗ > 0 | -1, ..., -:]
= Pr [n > − (V0 + V1-1 + · · · + V:-:) | -1, ..., -:]

= 1−� (− (V0 + V1-1 + · · · + V:-:)) =� (V0 + V1-1 + · · · + V:-:)

if the conditional distribution of n is �.
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Identification and normalization
I What if we take � to be the CDF of N

(
`,f2)?

I Suppose : = 1. We observe

. = 1 [V0 + V1-1 + n > 0]

= 1
[
V0 + `
f
+ V1
f
-1 + ñ > 0

]
where ñ ∼ N (0,1). Let Φ denote the CDF of N (0,1).

I Denote Ṽ0 = (V0 + `) /f and Ṽ1 = V1/f. Now we have

Pr [. = 1 | -1 = G] = Φ
(
Ṽ0 + Ṽ1G

)
.

One cannot separately estimate V0, V1, ` and f. Only Ṽ0 and Ṽ1
are identified and estimable.

I As far as the “partial effect” is concerned, one does not need to
separately estimate V0, V1, ` and f. It suffices to estimate Ṽ0 and
Ṽ1.
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Partial effect
I The partial effect of - 9 on Pr [. = 1 | -1, ..., -:] is just

mPr
[
. = 1 | -1 = G1, ..., - 9 = G 9 , ..., -: = G:

]
mG 9

= 6 (V0 + V1G1 + · · · + V:G:) V 9

where 6 = � ′.
I Because � is the CDF of a continuous random variable, 6 is a

probability density function. In Logit and Probit models, � is a
strictly increasing CDF and so 6 (I) > 0 for all I ∈ R.

I The partial effect depends on (G1, ..., G:) but always has the same
sign as V 9 .

I We are often interested in estimating the average partial effect:

E
[
6 (V0 + V1-1 + · · · + V:-:) V 9

]
.
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Maximum likelihood estimation of Logit and Probit
I To obtain the maximum likelihood estimator, conditional on the

explanatory variables, we need the conditional probability mass
of . given -1, ..., -: .

I We can write this as

Pr [. = H | -1, ..., -: ; V0, V1, ..., V:]
= [� (V0 + V1-1 + · · · + V:-:)]H [1−� (V0 + V1-1 + · · · + V:-:)]1−H

with H = 0,1.
I The log-likelihood function is

ℓ (10, 11, ..., 1:) =
=∑
8=1
{.8log (� (10 + 11-18 + · · · + 1:-:8))

+ (1−.8) log (1−� (10 + 11-18 + · · · + 1:-:8))} .
I Because � is strictly between 0 and 1 for Logit and Probit, ℓ (·) is

well-defined for all values of 10, 11, ..., 1: .
I The MLE V̂ maximizes this log-likelihood function.
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I If � is the standard Logit CDF, then V̂ is the Logit estimator. If
� is the standard normal CDF, then V̂ is the Probit estimator.

I Because of the nonlinear nature of the maximization problem

max
10,...,1:

ℓ (10, ..., 1:) ,

we cannot write the maximum likelihood estimator as an explicit
function of the data {(.8 , -18 , ..., -:8) : 8 = 1, ..., =}.

I The general theory of maximum likelihood implies that under
general conditions, the maximum likelihood estimator is
consistent and asymptotically normal: for each 9 = 0, ..., : ,

√
=
(
V̂ 9 − V 9

)
→3 N

(
0,V 9

)
with some asymptotic variance V 9 .

I The form of V 9 is very complex and not given in the class, but
V 9 is estimable.
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Likelihood ratio test
I To test H0 : V 9 = V∗9 , we construct the usual C-statistic by using an

estimate of V 9 .
I Instead, we can conduct a likelihood ratio test.
I Suppose we want to test H0 : V0 = V

∗
0; · · · ; V@ = V∗@ for @ ≤ : . The

unconstrained maximum likelihood is

ℓD2 = max
10,...,1:

ℓ (10, ..., 1:) .

I The H0−constrained maximum likelihood is

ℓ2 = max
1@+1,...,1:

ℓ

(
V∗0, ..., V

∗
@, 1@+1, ..., 1:

)
.

I The likelihood ratio statistic is

!' = 2 (ℓD2 − ℓ2) .

I Under H0 : V0 = V
∗
0; · · · ; V@ = V∗@, !'→3 j

2
@+1.
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Bayes theorem

I Continuous (-,. ):

5. |- (H | G) =
5- |. (G | H) 5. (H)∫
5- |. (G | H) 5. (H) dH

,

where
∫
5- |. (G | H) 5. (H) dH = 5- (G).

I Discrete (-,. ):

Pr [. = : | - = G] = Pr [- = G | . = :] ·Pr (. = :)∑ 
:=1 Pr [- = G | . = :] ·Pr (. = :)

where . ∈ {1, ..., } and

 ∑
:=1

Pr [- = G | . = :] ·Pr [. = :] = Pr [- = G] .
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Linear discriminant analysis (LDA) for two classes
I Specify:

-1, ..., -: | . = 0 ∼ N (`0,Σ)
-1, ..., -: | . = 1 ∼ N (`1,Σ) ,

where (`0, `1) are :-dimensional vectors specifying the means
and Σ is the variance-covariance matrix.

I By the Bayes theorem,

Pr [. = 1 | -1, ..., -:] =
c1 51 (-1, ..., -:)

c0 50 (-1, ..., -:) + c1 51 (-1, ..., -:)

Pr [. = 0 | -1, ..., -:] =
c0 50 (-1, ..., -:)

c0 50 (-1, ..., -:) + c1 51 (-1, ..., -:)
,

where c: = Pr [. = :] and 5: is the conditional PDF of
(-1, ..., -:) given . = : , : ∈ {0,1}.

I The marginal distribution of . (c0, c1) is left unspecified.
(c0, c1) are easily estimated by sample averages.

I Estimation of ( 50, 51) reduces to estimation of (`0, `1,Σ), which
does not require numerical maximization (maximum likelihood).
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LDA for : = 1
I The normal density has the form

5 9 (G) =
1

√
2cf9

exp

(
−1

2

(
G− ` 9
f9

)2
)
,

where ` 9 is the mean and f2
9
is the variance, 9 = 0,1.

I We assume that f2
0 = f

2
1 = f

2. Denote
? 9 (G) = Pr [. = 9 | - = G] and then,

? 9 (G) =
c 9 5 9 (G)

c0 50 (G) + c1 51 (G)

=
exp

(
X 9 (G)

)
exp (X0 (G)) + exp (X1 (G))

,

where the discriminant score X 9 (G) is defined by

X 9 (G) = G ·
` 9

f2 −
`2
9

2f2 + log
(
c 9

)
.

12 / 15



Estimating the parameters

I Estimator of c 9 :
ĉ 9 =

= 9

=
,

where = 9 is the number of observations in the 9-th class, 9 = 0,1.
I Estimator of ` 9 :

ˆ̀ 9 =
1
= 9

=∑
8=1

1 (.8 = 9) -8 ,

average of all the observations from the 9-th class.

13 / 15



I Estimator of f2:

f̂2 =

 ∑
:=0

= 9 −1
=−2

· f̂2
9

f̂2
9 =

1
= 9 −1

=∑
8=1

1 (.8 = 9)
(
-8 − ˆ̀ 9

)2
.

I f̂2 is a weighted average of the sample variances for each of the
classes.

I Then,

X̂ 9 (G) = G ·
ˆ̀ 9
f̂2 −

ˆ̀2
9

2f̂2 + log
(
ĉ 9

)
,

and we can turn these into estimates for conditional probabilities:

?̂ 9 (G) =
exp

(
X̂ 9 (G)

)
exp

(
X̂0 (G)

)
+ exp

(
X̂1 (G)

) .
14 / 15



Logit/Probit versus LDA

I Logit/Probit:
I Model the conditional distribution . | - .
I The distribution of - is not modeled.
I Use MLE to estimate. This requires numerical optimization.
I Economic justification: random utility model.

I LDA:
I Model the conditional distribution - | . .
I The distribution of . is not modeled.
I Estimation: sample means, variances, and covariances of - .
I No clear economic model.
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