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Binary dependent variable
I The explained variable could be binary, e.g. in a population

survey dataset, with the subset of women considered, the
explained variable can be a binary variable equal to one if the
lady was participating work zero if not.

I Let 𝑌𝑖 be the explained variable and let 𝑋1𝑖 , 𝑋2𝑖 , ..., 𝑋𝑘𝑖 be
explainatory variables. We have i.i.d. observations 𝑖 = 1,2, ..., 𝑛.

I A linear regression of 𝑌𝑖 on the explainatory variables
consistently estimates the best linear approximation to
E [𝑌𝑖 | 𝑋1𝑖 , ..., 𝑋𝑘𝑖].

I However, apparently, since 𝑌𝑖 is binary we have

E [𝑌𝑖 | 𝑋1𝑖 , ..., 𝑋𝑘𝑖] = Pr [𝑌𝑖 = 1 | 𝑋1𝑖 , ..., 𝑋𝑘𝑖] .

Therefore E [𝑌𝑖 | 𝑋1𝑖 , ..., 𝑋𝑘𝑖] must be bounded between 0 and 1.
I The predicted value from a linear regression can be bigger than 1

or smaller than 0.
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Specifying Logit and Probit models
I Since Pr [𝑌 = 1 | 𝑋1, ..., 𝑋𝑘] must be bounded between 0 and 1,

we specify a parametric function form that respects this prior
information.

I We consider a class of binary choice models of the form

Pr [𝑌 = 1 | 𝑋1, ..., 𝑋𝑘] = 𝐺 (𝛽0 + 𝛽1𝑋1 + · · · + 𝛽𝑘𝑋𝑘)
where 𝐺 is a function taking on values strictly between 0 and 1:
0 < 𝐺 (𝑥) < 1 for all 𝑥 ∈ R.

I The parameters to be estimated are 𝛽0, 𝛽1, ..., 𝛽𝑘 . The estimated
choice probabilities are strictly between 0 and 1.

I 𝐺 can be taken to be a CDF with 0 < 𝐺 (𝑥) < 1 for all 𝑥 ∈ R. We
can take 𝐺 to be the standard normal CDF. This is Probit model.

I Alternatively, we can take 𝐺 to be the logitstic function:

𝐺 (𝑧) = exp (𝑧)
1+ exp (𝑧) .

This is the CDF for a standard logistic random variable. This is
called a Logit model.
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Latent variable model
I Logit and probit models can be derived from an underlying latent

variable model.
I Suppose that we have an unobserved latent variable 𝑌 ∗, generated

by
𝑌 ∗ = 𝛽0 + 𝛽1𝑋1 + · · · + 𝛽𝑘𝑋𝑘 + 𝜖 .

where 𝜖 is independent of 𝑋’s, e.g. 𝑌 ∗ is the net “return” of
working for women.

I We observe 𝑌 = 1 [𝑌 ∗ > 0] where 1 [·] is called the indicator
function, which takes on one if the event in the brackets is true,
and zero otherwise. 𝑌 is a binary random variable.

I We have

Pr [𝑌 = 1 | 𝑋1, ..., 𝑋𝑘] = Pr [𝑌 ∗ > 0 | 𝑋1, ..., 𝑋𝑘]
= Pr [𝜖 > − (𝛽0 + 𝛽1𝑋1 + · · · + 𝛽𝑘𝑋𝑘) | 𝑋1, ..., 𝑋𝑘]

= 1−𝐺 (− (𝛽0 + 𝛽1𝑋1 + · · · + 𝛽𝑘𝑋𝑘)) =𝐺 (𝛽0 + 𝛽1𝑋1 + · · · + 𝛽𝑘𝑋𝑘)

if the conditional distribution of 𝜖 is 𝐺.
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Identification and normalization
I What if we take 𝐺 to be the CDF of N

(
𝜇,𝜎2)?

I Suppose 𝑘 = 1. We observe

𝑌 = 1 [𝛽0 + 𝛽1𝑋1 + 𝜖 > 0]

= 1
[
𝛽0 + 𝜇
𝜎

+ 𝛽1
𝜎
𝑋1 + 𝜖 > 0

]
where 𝜖 ∼ N (0,1). Let Φ denote the CDF of N (0,1).

I Denote 𝛽0 = (𝛽0 + 𝜇) /𝜎 and 𝛽1 = 𝛽1/𝜎. Now we have

Pr [𝑌 = 1 | 𝑋1 = 𝑥] = Φ
(
𝛽0 + 𝛽1𝑥

)
.

One cannot separately estimate 𝛽0, 𝛽1, 𝜇 and 𝜎. Only 𝛽0 and 𝛽1
are identified and estimable.

I As far as the “partial effect” is concerned, one does not need to
separately estimate 𝛽0, 𝛽1, 𝜇 and 𝜎. It suffices to estimate 𝛽0 and
𝛽1.
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Partial effect
I The partial effect of 𝑋 𝑗 on Pr [𝑌 = 1 | 𝑋1, ..., 𝑋𝑘] is just

𝜕Pr
[
𝑌 = 1 | 𝑋1 = 𝑥1, ..., 𝑋 𝑗 = 𝑥 𝑗 , ..., 𝑋𝑘 = 𝑥𝑘

]
𝜕𝑥 𝑗

= 𝑔 (𝛽0 + 𝛽1𝑥1 + · · · + 𝛽𝑘𝑥𝑘) 𝛽 𝑗

where 𝑔 = 𝐺 ′.
I Because 𝐺 is the CDF of a continuous random variable, 𝑔 is a

probability density function. In Logit and Probit models, 𝐺 is a
strictly increasing CDF and so 𝑔 (𝑧) > 0 for all 𝑧 ∈ R.

I The partial effect depends on (𝑥1, ..., 𝑥𝑘) but always has the same
sign as 𝛽 𝑗 .

I We are often interested in estimating the average partial effect:

E
[
𝑔 (𝛽0 + 𝛽1𝑋1 + · · · + 𝛽𝑘𝑋𝑘) 𝛽 𝑗

]
.
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Maximum likelihood estimation of Logit and Probit
I To obtain the maximum likelihood estimator, conditional on the

explanatory variables, we need the conditional probability mass
of 𝑌 given 𝑋1, ..., 𝑋𝑘 .

I We can write this as

Pr [𝑌 = 𝑦 | 𝑋1, ..., 𝑋𝑘 ; 𝛽0, 𝛽1, ..., 𝛽𝑘]
= [𝐺 (𝛽0 + 𝛽1𝑋1 + · · · + 𝛽𝑘𝑋𝑘)]𝑦 [1−𝐺 (𝛽0 + 𝛽1𝑋1 + · · · + 𝛽𝑘𝑋𝑘)]1−𝑦

with 𝑦 = 0,1.
I The log-likelihood function is

ℓ (𝑏0, 𝑏1, ..., 𝑏𝑘) =
𝑛∑︁
𝑖=1

{𝑌𝑖log (𝐺 (𝑏0 + 𝑏1𝑋1𝑖 + · · · + 𝑏𝑘𝑋𝑘𝑖))

+ (1−𝑌𝑖) log (1−𝐺 (𝑏0 + 𝑏1𝑋1𝑖 + · · · + 𝑏𝑘𝑋𝑘𝑖))} .
I Because 𝐺 is strictly between 0 and 1 for Logit and Probit, ℓ (·) is

well-defined for all values of 𝑏0, 𝑏1, ..., 𝑏𝑘 .
I The MLE 𝛽 maximizes this log-likelihood function.
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I If 𝐺 is the standard Logit CDF, then 𝛽 is the Logit estimator. If
𝐺 is the standard normal CDF, then 𝛽 is the Probit estimator.

I Because of the nonlinear nature of the maximization problem

max
𝑏0,...,𝑏𝑘

ℓ (𝑏0, ..., 𝑏𝑘) ,

we cannot write the maximum likelihood estimator as an explicit
function of the data {(𝑌𝑖 , 𝑋1𝑖 , ..., 𝑋𝑘𝑖) : 𝑖 = 1, ..., 𝑛}.

I The general theory of maximum likelihood implies that under
general conditions, the maximum likelihood estimator is
consistent and asymptotically normal: for each 𝑗 = 0, ..., 𝑘 ,

√
𝑛
(
𝛽 𝑗 − 𝛽 𝑗

)
→𝑑 N

(
0,V 𝑗

)
with some asymptotic variance V 𝑗 .

I The form of V 𝑗 is very complex and not given in the class, but
V 𝑗 is estimable.
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Likelihood ratio test
I To test H0 : 𝛽 𝑗 = 𝛽∗𝑗 , we construct the usual 𝑡-statistic by using an

estimate of V 𝑗 .
I Instead, we can conduct a likelihood ratio test.
I Suppose we want to test H0 : 𝛽0 = 𝛽

∗
0; · · · ; 𝛽𝑞 = 𝛽∗𝑞 for 𝑞 ≤ 𝑘 . The

unconstrained maximum likelihood is

ℓ𝑢𝑐 = max
𝑏0,...,𝑏𝑘

ℓ (𝑏0, ..., 𝑏𝑘) .

I The H0−constrained maximum likelihood is

ℓ𝑐 = max
𝑏𝑞+1,...,𝑏𝑘

ℓ

(
𝛽∗0, ..., 𝛽

∗
𝑞, 𝑏𝑞+1, ..., 𝑏𝑘

)
.

I The likelihood ratio statistic is

𝐿𝑅 = 2 (ℓ𝑢𝑐 − ℓ𝑐) .

I Under H0 : 𝛽0 = 𝛽
∗
0; · · · ; 𝛽𝑞 = 𝛽∗𝑞, 𝐿𝑅→𝑑 𝜒

2
𝑞+1.
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Bayes theorem

I Continuous (𝑋,𝑌 ):

𝑓𝑌 |𝑋 (𝑦 | 𝑥) =
𝑓𝑋 |𝑌 (𝑥 | 𝑦) 𝑓𝑌 (𝑦)∫
𝑓𝑋 |𝑌 (𝑥 | 𝑦) 𝑓𝑌 (𝑦) d𝑦

,

where
∫
𝑓𝑋 |𝑌 (𝑥 | 𝑦) 𝑓𝑌 (𝑦) d𝑦 = 𝑓𝑋 (𝑥).

I Discrete (𝑋,𝑌 ):

Pr [𝑌 = 𝑘 | 𝑋 = 𝑥] = Pr [𝑋 = 𝑥 | 𝑌 = 𝑘] ·Pr (𝑌 = 𝑘)∑𝐾
𝑘=1 Pr [𝑋 = 𝑥 | 𝑌 = 𝑘] ·Pr (𝑌 = 𝑘)

where 𝑌 ∈ {1, ...,𝐾} and

𝐾∑︁
𝑘=1

Pr [𝑋 = 𝑥 | 𝑌 = 𝑘] ·Pr [𝑌 = 𝑘] = Pr [𝑋 = 𝑥] .
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Linear discriminant analysis (LDA) for two classes
I Specify:

𝑋1, ..., 𝑋𝑘 | 𝑌 = 0 ∼ N (𝜇0,Σ)
𝑋1, ..., 𝑋𝑘 | 𝑌 = 1 ∼ N (𝜇1,Σ) ,

where (𝜇0, 𝜇1) are 𝑘-dimensional vectors specifying the means
and Σ is the variance-covariance matrix.

I By the Bayes theorem,

Pr [𝑌 = 1 | 𝑋1, ..., 𝑋𝑘] =
𝜋1 𝑓1 (𝑋1, ..., 𝑋𝑘)

𝜋0 𝑓0 (𝑋1, ..., 𝑋𝑘) + 𝜋1 𝑓1 (𝑋1, ..., 𝑋𝑘)

Pr [𝑌 = 0 | 𝑋1, ..., 𝑋𝑘] =
𝜋0 𝑓0 (𝑋1, ..., 𝑋𝑘)

𝜋0 𝑓0 (𝑋1, ..., 𝑋𝑘) + 𝜋1 𝑓1 (𝑋1, ..., 𝑋𝑘)
,

where 𝜋𝑘 = Pr [𝑌 = 𝑘] and 𝑓𝑘 is the conditional PDF of
(𝑋1, ..., 𝑋𝑘) given 𝑌 = 𝑘 , 𝑘 ∈ {0,1}.

I The marginal distribution of 𝑌 (𝜋0, 𝜋1) is left unspecified.
(𝜋0, 𝜋1) are easily estimated by sample averages.

I Estimation of ( 𝑓0, 𝑓1) reduces to estimation of (𝜇0, 𝜇1,Σ), which
does not require numerical maximization (maximum likelihood).
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LDA for 𝑘 = 1
I The normal density has the form

𝑓 𝑗 (𝑥) =
1

√
2𝜋𝜎𝑗

exp

(
−1

2

(
𝑥− 𝜇 𝑗
𝜎𝑗

)2
)
,

where 𝜇 𝑗 is the mean and 𝜎2
𝑗

is the variance, 𝑗 = 0,1.
I We assume that 𝜎2

0 = 𝜎2
1 = 𝜎2. Denote

𝑝 𝑗 (𝑥) = Pr [𝑌 = 𝑗 | 𝑋 = 𝑥] and then,

𝑝 𝑗 (𝑥) =
𝜋 𝑗 𝑓 𝑗 (𝑥)

𝜋0 𝑓0 (𝑥) + 𝜋1 𝑓1 (𝑥)

=
exp

(
𝛿 𝑗 (𝑥)

)
exp (𝛿0 (𝑥)) + exp (𝛿1 (𝑥))

,

where the discriminant score 𝛿 𝑗 (𝑥) is defined by

𝛿 𝑗 (𝑥) = 𝑥 ·
𝜇 𝑗

𝜎2 −
𝜇2
𝑗

2𝜎2 + log
(
𝜋 𝑗

)
.
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Estimating the parameters

I Estimator of 𝜋 𝑗 :
�̂� 𝑗 =

𝑛 𝑗

𝑛
,

where 𝑛 𝑗 is the number of observations in the 𝑗-th class, 𝑗 = 0,1.
I Estimator of 𝜇 𝑗 :

�̂� 𝑗 =
1
𝑛 𝑗

𝑛∑︁
𝑖=1

1 (𝑌𝑖 = 𝑗) 𝑋𝑖 ,

average of all the observations from the 𝑗-th class.
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I Estimator of 𝜎2:

�̂�2 =

𝐾∑︁
𝑘=0

𝑛 𝑗 −1
𝑛−2

· �̂�2
𝑗

�̂�2
𝑗 =

1
𝑛 𝑗 −1

𝑛∑︁
𝑖=1

1 (𝑌𝑖 = 𝑗)
(
𝑋𝑖 − �̂� 𝑗

)2
.

I �̂�2 is a weighted average of the sample variances for each of the
classes.

I Then,

𝛿 𝑗 (𝑥) = 𝑥 ·
�̂� 𝑗

�̂�2 −
�̂�2
𝑗

2�̂�2 + log
(
�̂� 𝑗

)
,

and we can turn these into estimates for conditional probabilities:

𝑝 𝑗 (𝑥) =
exp

(
𝛿 𝑗 (𝑥)

)
exp

(
𝛿0 (𝑥)

)
+ exp

(
𝛿1 (𝑥)

) .
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Logit/Probit versus LDA

I Logit/Probit:
I Model the conditional distribution 𝑌 | 𝑋 .
I The distribution of 𝑋 is not modeled.
I Use MLE to estimate. This requires numerical optimization.
I Economic justification: random utility model.

I LDA:
I Model the conditional distribution 𝑋 | 𝑌 .
I The distribution of 𝑌 is not modeled.
I Estimation: sample means, variances, and covariances of 𝑋 .
I No clear economic model.
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