Introductory Econometrics Lecture 23: Binary choice models

Instructor: Ma, Jun

Renmin University of China

June 7, 2023

Binary dependent variable

- \triangleright The explained variable could be binary, e.g. in a population survey dataset, with the subset of women considered, the explained variable can be a binary variable equal to one if the lady was participating work zero if not.
- Eet Y_i be the explained variable and let $X_{1i}, X_{2i}, ..., X_{ki}$ be explainatory variables. We have i.i.d. observations $i = 1, 2, ..., n$.
- A linear regression of Y_i on the explainatory variables consistently estimates the best linear approximation to $E[Y_i | X_{1i},...,X_{ki}].$
- \blacktriangleright However, apparently, since Y_i is binary we have

$$
E[Y_i | X_{1i},...,X_{ki}] = Pr[Y_i = 1 | X_{1i},...,X_{ki}].
$$

Therefore $E[Y_i | X_{1i},...,X_{ki}]$ must be bounded between 0 and 1.

 \triangleright The predicted value from a linear regression can be bigger than 1 or smaller than 0.

Specifying Logit and Probit models

- \triangleright Since Pr $[Y = 1 | X_1, ..., X_k]$ must be bounded between 0 and 1, we specify a parametric function form that respects this prior information.
- \triangleright We consider a class of binary choice models of the form

$$
Pr[Y = 1 | X_1, ..., X_k] = G(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k)
$$

where G is a function taking on values strictly between 0 and 1: $0 < G(x) < 1$ for all $x \in \mathbb{R}$.

- \blacktriangleright The parameters to be estimated are $\beta_0, \beta_1, ..., \beta_k$. The estimated choice probabilities are strictly between 0 and 1.
- ► G can be taken to be a CDF with $0 < G(x) < 1$ for all $x \in \mathbb{R}$. We can take G to be the standard normal CDF. This is Probit model.
- \blacktriangleright Alternatively, we can take G to be the logitstic function:

$$
G(z) = \frac{\exp(z)}{1 + \exp(z)}.
$$

This is the CDF for a standard logistic random variable. This is called a Logit model.

Latent variable model

- \triangleright Logit and probit models can be derived from an underlying latent variable model.
- Suppose that we have an unobserved latent variable Y^* , generated by

$$
Y^* = \beta_0 + \beta_1 X_1 + \cdots + \beta_k X_k + \epsilon.
$$

where ϵ is independent of X's, e.g. Y^* is the net "return" of working for women.

- We observe $Y = 1$ [$Y^* > 0$] where 1 [\cdot] is called the indicator function, which takes on one if the event in the brackets is true, and zero otherwise. Y is a binary random variable.
- \blacktriangleright We have

$$
\Pr[Y = 1 | X_1, ..., X_k] = \Pr[Y^* > 0 | X_1, ..., X_k]
$$

= $\Pr[\epsilon > -(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k) | X_1, ..., X_k]$
= $1 - G(-(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k)) = G(\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k)$
if the conditional distribution of ϵ is G .

Identification and normalization

- \blacktriangleright What if we take G to be the CDF of N (μ, σ^2) ?
- \blacktriangleright Suppose $k = 1$. We observe

$$
Y = 1 [\beta_0 + \beta_1 X_1 + \epsilon > 0]
$$

=
$$
1 \left[\frac{\beta_0 + \mu}{\sigma} + \frac{\beta_1}{\sigma} X_1 + \tilde{\epsilon} > 0 \right]
$$

where $\tilde{\epsilon} \sim N(0,1)$. Let Φ denote the CDF of N(0,1).

Denote $\tilde{\beta}_0 = (\beta_0 + \mu) / \sigma$ and $\tilde{\beta}_1 = \beta_1 / \sigma$. Now we have

$$
Pr[Y = 1 | X_1 = x] = \Phi(\tilde{\beta}_0 + \tilde{\beta}_1 x).
$$

One cannot separately estimate β_0 , β_1 , μ and σ . Only $\tilde{\beta}_0$ and $\tilde{\beta}_1$ are identified and estimable.

I As far as the "partial effect" is concerned, one does not need to separately estimate β_0 , β_1 , μ and σ . It suffices to estimate $\tilde{\beta}_0$ and $\tilde{\beta}_1$.

Partial effect

 \blacktriangleright The partial effect of X_i on Pr $[Y = 1 | X_1, ..., X_k]$ is just

$$
\frac{\partial \Pr \left[Y = 1 \mid X_1 = x_1, ..., X_j = x_j, ..., X_k = x_k \right]}{\partial x_j}
$$
\n
$$
= g \left(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k \right) \beta_j
$$

where $g = G'$.

- Because G is the CDF of a continuous random variable, g is a probability density function. In Logit and Probit models, G is a strictly increasing CDF and so $g(z) > 0$ for all $z \in \mathbb{R}$.
- \blacktriangleright The partial effect depends on $(x_1, ..., x_k)$ but always has the same sign as β_j .
- \triangleright We are often interested in estimating the average partial effect:

$$
\mathrm{E}\left[g\left(\beta_0+\beta_1X_1+\cdots+\beta_kX_k\right)\beta_j\right].
$$

Maximum likelihood estimation of Logit and Probit

- \triangleright To obtain the maximum likelihood estimator, conditional on the explanatory variables, we need the conditional probability mass of Y given $X_1, ..., X_k$.
- \triangleright We can write this as

$$
\Pr[Y = y | X_1, ..., X_k; \beta_0, \beta_1, ..., \beta_k]
$$

= $[G (\beta_0 + \beta_1 X_1 + ... + \beta_k X_k)]^y [1 - G (\beta_0 + \beta_1 X_1 + ... + \beta_k X_k)]^{1-y}$
with $y = 0, 1$.

 \blacktriangleright The log-likelihood function is

$$
\ell(b_0, b_1, ..., b_k) = \sum_{i=1}^n \{ Y_i \log (G (b_0 + b_1 X_{1i} + ... + b_k X_{ki}))
$$

$$
+ (1 - Y_i) \log (1 - G (b_0 + b_1 X_{1i} + ... + b_k X_{ki})) \}.
$$

- \triangleright Because G is strictly between 0 and 1 for Logit and Probit, $\ell(\cdot)$ is well-defined for all values of $b_0, b_1, ..., b_k$.
- \triangleright The MLE $\hat{\beta}$ maximizes this log-likelihood function.
- If G is the standard Logit CDF, then $\hat{\beta}$ is the Logit estimator. If G is the standard normal CDF, then $\hat{\beta}$ is the Probit estimator.
- \triangleright Because of the nonlinear nature of the maximization problem

$$
\max_{b_0,...,b_k} \ell(b_0,...,b_k),
$$

we cannot write the maximum likelihood estimator as an explicit function of the data $\{(Y_i, X_{1i}, ..., X_{ki}) : i = 1, ..., n\}.$

 \blacktriangleright The general theory of maximum likelihood implies that under general conditions, the maximum likelihood estimator is consistent and asymptotically normal: for each $i = 0, ..., k$,

$$
\sqrt{n} \left(\hat{\beta}_j - \beta_j \right) \longrightarrow_d \mathcal{N} \left(0, \mathcal{V}_j \right)
$$

with some asymptotic variance V_i .

 \blacktriangleright The form of V_i is very complex and not given in the class, but V_i is estimable.

Likelihood ratio test

- \triangleright To test H₀: $\beta_j = \beta_j^*$, we construct the usual *t*-statistic by using an estimate of V_j .
- \blacktriangleright Instead, we can conduct a likelihood ratio test.
- Suppose we want to test H₀ : $\beta_0 = \beta_0^*$ j_0^* ; \cdots ; $\beta_q = \beta_q^*$ for $q \leq k$. The unconstrained maximum likelihood is

$$
\ell_{uc} = \max_{b_0, ..., b_k} \ell(b_0, ..., b_k).
$$

 \triangleright The H₀−constrained maximum likelihood is

$$
\ell_c = \max_{b_{q+1},...,b_k} \ell\left(\beta_0^*,...,\beta_q^*,b_{q+1},...,b_k\right).
$$

 \blacktriangleright The likelihood ratio statistic is

$$
LR=2\left(\ell_{uc}-\ell_{c}\right).
$$

• Under H₀:
$$
\beta_0 = \beta_0^*, \cdots; \beta_q = \beta_q^*, LR \rightarrow_d \chi_{q+1}^2
$$
.

Bayes theorem

 \blacktriangleright Continuous (X,Y) :

$$
f_{Y|X}(y | x) = \frac{f_{X|Y}(x | y) f_Y(y)}{\int f_{X|Y}(x | y) f_Y(y) dy},
$$

where $\int f_{X|Y}(x | y) f_Y(y) dy = f_X(x)$. \blacktriangleright Discrete (X,Y) :

$$
\Pr[Y = k | X = x] = \frac{\Pr[X = x | Y = k] \cdot \Pr(Y = k)}{\sum_{k=1}^{K} \Pr[X = x | Y = k] \cdot \Pr(Y = k)}
$$

where $Y \in \{1, ..., K\}$ and

$$
\sum_{k=1}^{K} \Pr[X = x | Y = k] \cdot \Pr[Y = k] = \Pr[X = x].
$$

Linear discriminant analysis (LDA) for two classes

 \blacktriangleright Specify:

$$
X_1, ..., X_k | Y = 0 \sim N(\mu_0, \Sigma)
$$

 $X_1, ..., X_k | Y = 1 \sim N(\mu_1, \Sigma)$,

where (μ_0, μ_1) are k-dimensional vectors specifying the means and Σ is the variance-covariance matrix.

 \blacktriangleright By the Bayes theorem,

$$
\Pr[Y = 1 | X_1, ..., X_k] = \frac{\pi_1 f_1(X_1, ..., X_k)}{\pi_0 f_0(X_1, ..., X_k) + \pi_1 f_1(X_1, ..., X_k)}
$$

$$
\Pr[Y = 0 | X_1, ..., X_k] = \frac{\pi_0 f_0(X_1, ..., X_k)}{\pi_0 f_0(X_1, ..., X_k) + \pi_1 f_1(X_1, ..., X_k)},
$$

where $\pi_k = \Pr[Y = k]$ and f_k is the conditional PDF of $(X_1, ..., X_k)$ given $Y = k, k \in \{0, 1\}.$

- \blacktriangleright The marginal distribution of $Y(\pi_0, \pi_1)$ is left unspecified. (π_0, π_1) are easily estimated by sample averages.
- Estimation of (f_0, f_1) reduces to estimation of (μ_0, μ_1, Σ) , which does not require numerical maximization (maximum likelihood).

LDA for $k = 1$

 \blacktriangleright The normal density has the form

$$
f_j(x) = \frac{1}{\sqrt{2\pi}\sigma_j} \exp\left(-\frac{1}{2}\left(\frac{x-\mu_j}{\sigma_j}\right)^2\right),\,
$$

where μ_j is the mean and σ_j^2 is the variance, $j = 0, 1$. \blacktriangleright We assume that $\sigma_0^2 = \sigma_1^2 = \sigma^2$. Denote

$$
p_j(x) = Pr[Y = j | X = x]
$$
 and then,

$$
p_j(x) = \frac{\pi_j f_j(x)}{\pi_0 f_0(x) + \pi_1 f_1(x)}
$$

=
$$
\frac{\exp(\delta_j(x))}{\exp(\delta_0(x)) + \exp(\delta_1(x))},
$$

where the discriminant score $\delta_i(x)$ is defined by

$$
\delta_j(x) = x \cdot \frac{\mu_j}{\sigma^2} - \frac{\mu_j^2}{2\sigma^2} + \log(\pi_j).
$$

Estimating the parameters

Estimator of π_j :

$$
\hat{\pi}_j = \frac{n_j}{n},
$$

where n_j is the number of observations in the j-th class, $j = 0, 1$. Estimator of μ_j :

$$
\hat{\mu}_j = \frac{1}{n_j} \sum_{i=1}^n 1 (Y_i = j) X_i,
$$

average of all the observations from the j -th class.

Estimator of σ^2 :

$$
\hat{\sigma}^2 = \sum_{k=0}^K \frac{n_j - 1}{n - 2} \cdot \hat{\sigma}_j^2
$$

$$
\hat{\sigma}_j^2 = \frac{1}{n_j - 1} \sum_{i=1}^n 1 (Y_i = j) (X_i - \hat{\mu}_j)^2.
$$

 $\rightarrow \hat{\sigma}^2$ is a weighted average of the sample variances for each of the classes.

 \blacktriangleright Then,

$$
\hat{\delta}_j(x) = x \cdot \frac{\hat{\mu}_j}{\hat{\sigma}^2} - \frac{\hat{\mu}_j^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_j),
$$

and we can turn these into estimates for conditional probabilities:

$$
\hat{p}_j(x) = \frac{\exp(\hat{\delta}_j(x))}{\exp(\hat{\delta}_0(x)) + \exp(\hat{\delta}_1(x))}.
$$

Logit/Probit versus LDA

\blacktriangleright Logit/Probit:

- \blacktriangleright Model the conditional distribution $Y \mid X$.
- \blacktriangleright The distribution of X is not modeled.
- \triangleright Use MLE to estimate. This requires numerical optimization.
- \blacktriangleright Economic justification: random utility model.
- \blacktriangleright I.DA:
	- \blacktriangleright Model the conditional distribution $X \mid Y$.
	- \blacktriangleright The distribution of Y is not modeled.
	- \blacktriangleright Estimation: sample means, variances, and covariances of X.
	- \triangleright No clear economic model.