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Multinomial dependent variables

» Ordered multinomial response: Magnitude of values attached to
outcomes matters.
e.g. health status, 1 = bad, 2 = average, 3 = good.

» Unordered multinomial response: Values attached to outcomes
contain no information.
e.g. Choice of occupation: 1 = self-employed, 2 = part-time,
3 = full-time.
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Parametric specification

> Suppose that the dependent variable Y takes value in {0, 1,...,J}.

» Like the case of binary choice model, our goal is to model the
response (conditional) probability mass function conditionally on
the explanatory variables. For each alternative j,

Pr(Y=j|Xi,...Xk] =p;(X1,..., Xk:6)

where p; is user-specified conditional probability mass
depending on some parameter 6.

» Different models give different parametric forms for p ;.

» Our goal is to estimate the unknown parameter 8 by maximum
likelihood and the marginal effect given by

opj(x1,....,xk;0)
axi

for the i-th explanatory variable.
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Maximum likelihood

» The likelihood function is
n J ]
L(0)= l_[ HP./ (Xits oo Xig: ) 1]
i=1 j=0
and the log-likelihood function is
log (L () = 221 Jlogp; (Xit, ... Xix: ).
i=1 j=0

» For each i, only one of the indicator functions 1 [¥; = j],
j€{0,1,....,J} is equal to 1.

» Consistency and asymptotic normality follows from standard
arguments.
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Ordered multinomial choice model

» Suppose the explained variable corresponds to an ordered
response, taking values in {0, 1,...,J}.

» The ordered Probit model can be derived from the latent variable
model:
Y’ = CL’+ﬁ]X]i+~ : ',Bka,'+Ei

1
where Y is the latent variable, e.g. a latent index of “health”.

» The error term ¢; is assumed to be independent from X; and has a
standard normal distribution.

» Similarly, we can derive the ordered Logit model.
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» Assume that our observed choice variable Y; is generated in the
following way: with

YI<VY2<:-<YJ

to be unknown thresholds,

Y, =0if Y7 <y,
Yi=jify; <Yl-* <vyj+, J=12,..,J-1
Yi=JifY: > y;.

» There are J thresholds in contrast to J + 1 categories.
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» Under the normality assumption, we can derive the J + 1
response probabilities

Pr[Y;=0]| X1, ..., Xkil po (X1 ...s Xki, 0)

= O(yi—a-BiXi——BrXk)
Pr[Y[=j|X]i,...,Xk[] = Pj (X]i""7Xk[59)
= ®O(yjr—a—BiXii——BrXi)
-®(yj—a—piXii— - — B Xri)
PrY;i=J| X1,... Xiil = ps (X, Xiis 0)
= 1-®(y;—a-p X~ —BeXki).

» If J =1, we return to binary Probit model.
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» The intercept @ and 71, ...,y cannot be estimated separately. We
canestimate y; =y;—a, j=1,...,J.
» We maximize the log-likelihood function

log(L(Cll,-~~,Clj,bls~~-,bk)) =

n J-1
221(5’1':]') (@ (ajr1—b1X1i— - — b Xpi)
=1 j=1
—dD(aA,»—lell-—u-—kaki))
n
+ ) 1Y;=0)P (a1 -b1X1; == brXki)
=1
n
+Z1(Yi=J)(1_q>(aJ_leli_"’—kaki))

i=1

with respectto ay,...,ay,by,..., by subject to a constraint
ar<ay<---<ay.
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Marginal effects in ordered probit model

» The marginal effects (change in response probability for small
change in Xj,) are:

Apo (X1, ....x,6)
(9)6;,

= =Bnd(ur—pL1x1—---—Brxr)

op; (x1,....xk,0)
Oxp,

= Bu(p(uj—Pixi—--—Prxr)
—¢ (Hje1 = Bix1 =+ = Bixk))

opy (x1,....,xk,0)
6xh

Br (uy = Brxi —--- = Brxr) .

» In empirical applications, we are often interested in estimating
the marginal effects at the sample averages of the explanatory
variables.
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Unordered multinomial response model

» The choice variable Y takes non-negative integer values, with
more than 2 alternatives, Y € {0,1,...,J}.

» The magnitude and ordering of outcomes is irrevelant.

» We first introduce the simplest model: the multinomial logit. We
assume the explanatory variables are individual-specific and do
not change across alternatives.

» The multinomial logit uses only variables that describe
characteristics of the individuals and not of the alternatives.

» E.g., when the explained variable is “employment status’:
employed, unemployed, out-of-labor-market.
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Multinomial logit

» When the choice depends on characteristics of individuals but
not on attributes of the alternatives, it is typical to use a
multinomial logit model.

» Assuming that we have only one explanatory variable, we
specify:
exp (B;X;)
I+ Z,anl exp (BmXi)

Pr(Y; =j | Xi]l =p; (Xi,p1,....8s) =

forj=1,2,....,J.
» Since response probabilities should be summed up to 1, we have
the natural restriction:

1
1+3] _ exp(BmXi)

» The log-likelihood function can be readily written down and the
maximum likelihood estimator can be computed.

Pr [Yl =0 | Xl] =Po (Xi’ﬁl"“’ﬁf) =
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Odds ratio interpretation

» The odds-ratio between the “base” choice Y = 0 and the j-th
alternative is given by

pj (Xi,B1,....8r)
po(Xi,B1,...87)
forj=1,2,...,J.

» [, is the marginal effect of X on the log-odds of choosing j # 0
relative to the “base” choice 0:

pj (Xi’ﬁl"“’ﬁf)
Po (Xi’ﬁl’---’ﬂ.])

exp (B, X;)

log

= Bin

forj=1,2,...,J.
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Linear discriminant analysis

» The linear discriminant analysis is an alternative method to
multinomial logit.

> Assume X | Y = €{0,1,...,J} ~N(u;,X). Note that we assume
the variances are the same.

» Note that in applications, X may have discrete variables like
student status. The normality assumption is clearly violated but
should be interpreted as a convenient model assumption.

» Then,

nifi(x)

Siomifi ()
where ; =Pr[Y = j] and f; is the conditional PDF of X given
Y=j,j€{0,1,...,J}.

> We easily estimate f; and r; and get

7if; (x)
o7 (x)

pj(x)=Pr[Y=j|X=x]=

pj(x)=
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Conditional logit

>

>

In many cases, the choice depends on the attributes of the
alternatives.

Travellers choose among a set of travel modes: “bus”, “train”,

113 LR N3

car”, “plane”. There are variables that describe the traveller,

such as her income. There is no information on the travel modes.

In this example, there may be a variable “travel time” which is
alternative specific and a variable “travel costs” that depends on
the travel mode.
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> We begin with a random utility framework. Each individual has
(unobserved) random utility of choosing option k as

Uik = Bo+P1Xik + €k,

where for simplicity we assume that we have only one
explanatory variable, e.g., “travel cost”. The marginal effect of
X« is assumed to be constant across kK =0,1, ...,J.

» The observed choices are generated by

1[Y =k] :l[Uik > max Uim]-

0<m<J

» We assume that €;;’s are i.i.d. across i’s and k’s and have the
following CDF:

Prlex <t] =exp(—exp(-t)),
so-called extreme value distribution.
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» We can show that the choice probability is

exp (Bo +B1Xik)

¥ —0exp (Bo+B1Xim)
exp (B1Xix)

ZL:O exp (B1Xim) .

» It is straight forward to generalize this model to
multiple-attribute cases:

PrlY; =k | Xio,....Xis] =

exp (B1 X +2X5)
S0P (B1X}, + B2 X7, )

X!,) and X? = (Xzzo’ .

Pr|Yi=k|X!,X7]| =

1 _ (yl
where X! = (X, ...,

» The log-likelihood function is

,X%).

n

N exXp ,BIX-I +B2X.2
f(blabZ) ZZI[Yl:k] 7 ( ik 1 lk)2 .
i=1 =0 S0 €Xp (B1X}, +BaX2)

16/20



Independence from irrelevant alternatives

» Note that
Pr(Yi=j|Xi] _exp(B1Xi))
PrY;=k|X;] exp(BiXix)’
where X; = (X0, ..., Xiy). The relative odds between choosing j
and k do not depend on attributes of other alternatives.

» Suppose one chooses between a red bus and a car for
transportation. Suppose that X; is the cost of transportation and
for individual i,

Pr[Y; = RedBus | X;] _ &Xp (,lei,RedBus) _
Pr[Y; = Car | X;] exp (B1Xi,car)

and hence

1
Pr[Y; =RedBus | X;] =Pr[Y; =Car | X;] = 3
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» Now suppose that one more alternative appears: a blue bus. One
should have X; reaBus = Xi BlueBus Since either the red bus or the
blue bus is a perfect substitute of each other.

» We should have

Pr[Y; = BlueBus | X;] _ exp (B1Xi,BlueBus)

= =1,
Pr[Y; =Car| X;] exp (B1Xi,car)

1
Pr[Y; =RedBus | X;] =P[Y; =Car | X;] =Pr[Y; =BlueBus | X;] = 3

which implies
2 1
Pr[Y; = RedBusorBlueBus | X;] = 3 Pr[Y; =Car| X;] = 3

» But this result is counter-intuitive, since it seems to be correct that

1 1
Pr[Y; = RedBusorBlueBus | X;] = 5 Pr[Y; =Car| X;] = 5
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» Independence from irrelevant alternatives, i.e., the relative odds
between choosing j and k do not depend on attributes of other
alternatives, for all j and k is a consequence of the model
specification which is essentially the assumption that €;; follows
an extreme value distribution.

» This property could generate a quite counter-intuitive result.

» There exists modifications to the conditional logit model to
address this issue.
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“Mixed” logit

» In reality, we can often have both individual-specific and
alternative-specific explanatory variables, we specify:

exp (BXix +vi W)
¥ exp (BXim+ymWi)

Pr|y;=k|X;, W] =

for j =0,1,...,J, where X; = (Xj0, ..., X;7) are alternative-specific
and W; is an individual-specific explanatory variable, e.g.,
income.

» One coefficient for the alternative-invariant regressor W; is
normalized to zero (e.g., yo = 0), which is considered to be the
base alternative.
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