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Multinomial dependent variables

I Ordered multinomial response: Magnitude of values attached to
outcomes matters.
e.g. health status, 1 = bad, 2 = average, 3 = good.

I Unordered multinomial response: Values attached to outcomes
contain no information.
e.g. Choice of occupation: 1 = self-employed, 2 = part-time,
3 = full-time.
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Parametric specification
I Suppose that the dependent variable . takes value in {0,1, ..., �}.
I Like the case of binary choice model, our goal is to model the

response (conditional) probability mass function conditionally on
the explanatory variables. For each alternative 9 ,

Pr [. = 9 | -1, ..., -:] = ? 9 (-1, ..., -: ;\)

where ? 9 is user-specified conditional probability mass
depending on some parameter \.

I Different models give different parametric forms for ? 9 .
I Our goal is to estimate the unknown parameter \ by maximum

likelihood and the marginal effect given by

m? 9 (G1, ..., G: ;\)
mG8

for the 8-th explanatory variable.
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Maximum likelihood

I The likelihood function is

! (\) =
=∏
8=1

�∏
9=0

? 9 (-81, ..., -8: ;\)1[.8= 9 ]

and the log-likelihood function is

log (! (\)) =
=∑
8=1

�∑
9=0

1 [.8 = 9] log ? 9 (-81, ..., -8: ;\) .

I For each 8, only one of the indicator functions 1 [.8 = 9],
9 ∈ {0,1, ..., �} is equal to 1.

I Consistency and asymptotic normality follows from standard
arguments.
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Ordered multinomial choice model

I Suppose the explained variable corresponds to an ordered
response, taking values in {0,1, ..., �}.

I The ordered Probit model can be derived from the latent variable
model:

. ∗8 = U+ V1-18 + · · · V:-:8 + n8
where . ∗

8
is the latent variable, e.g. a latent index of “health”.

I The error term n8 is assumed to be independent from -8 and has a
standard normal distribution.

I Similarly, we can derive the ordered Logit model.
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I Assume that our observed choice variable .8 is generated in the
following way: with

W1 < W2 < · · · < W�

to be unknown thresholds,

.8 = 0 if . ∗8 ≤ W1

.8 = 9 if W 9 < . ∗8 ≤ W 9+1, 9 = 1,2, ..., � −1

.8 = � if . ∗8 > W� .

I There are � thresholds in contrast to � +1 categories.
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I Under the normality assumption, we can derive the � +1
response probabilities

Pr [.8 = 0 | -18 , ..., -:8] = ?0 (-18 , ..., -:8 , \)
= Φ (W1−U− V1-18 − · · · − V:-:8)
· · ·

Pr [.8 = 9 | -18 , ..., -:8] = ? 9 (-18 , ..., -:8 , \)
= Φ

(
W 9+1−U− V1-18 − · · · − V:-:8

)
−Φ

(
W 9 −U− V1-18 − · · · − V:-:8

)
· · ·

Pr [.8 = � | -18 , ..., -:8] = ?� (-18 , ..., -:8 , \)
= 1−Φ (W� −U− V1-18 − · · · − V:-:8) .

I If � = 1, we return to binary Probit model.

7 / 20



I The intercept U and W1, ..., W� cannot be estimated separately. We
can estimate ` 9 = W 9 −U, 9 = 1, ..., �.

I We maximize the log-likelihood function

log (! (01, ..., 0� , 11, ..., 1: )) =
=∑
8=1

�−1∑
9=1

1 (.8 = 9)
(
Φ

(
0 9+1− 11-18 − · · · − 1:-:8

)
−Φ

(
0 9 − 11-18 − · · · − 1:-:8

) )
+

=∑
8=1

1 (.8 = 0)Φ (01− 11-18 − · · · − 1:-:8)

+
=∑
8=1

1 (.8 = �) (1−Φ (0� − 11-18 − · · · − 1:-:8))

with respect to 01, ..., 0� , 11, ..., 1: subject to a constraint
01 < 02 < · · · < 0� .
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Marginal effects in ordered probit model

I The marginal effects (change in response probability for small
change in -ℎ) are:

m?0 (G1, ..., G: , \)
mGℎ

= −Vℎq (`1− V1G1− · · · − V:G: )
· · ·

m? 9 (G1, ..., G: , \)
mGℎ

= Vℎ
(
q
(
` 9 − V1G1− · · · − V:G:

)
−q

(
` 9+1− V1G1− · · · − V:G:

) )
· · ·

m?� (G1, ..., G: , \)
mGℎ

= Vℎq (`� − V1G1− · · · − V:G: ) .

I In empirical applications, we are often interested in estimating
the marginal effects at the sample averages of the explanatory
variables.
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Unordered multinomial response model

I The choice variable . takes non-negative integer values, with
more than 2 alternatives, . ∈ {0,1, ..., �}.

I The magnitude and ordering of outcomes is irrevelant.
I We first introduce the simplest model: the multinomial logit. We

assume the explanatory variables are individual-specific and do
not change across alternatives.

I The multinomial logit uses only variables that describe
characteristics of the individuals and not of the alternatives.

I E.g., when the explained variable is “employment status”:
employed, unemployed, out-of-labor-market.
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Multinomial logit
I When the choice depends on characteristics of individuals but

not on attributes of the alternatives, it is typical to use a
multinomial logit model.

I Assuming that we have only one explanatory variable, we
specify:

Pr [.8 = 9 | -8] = ? 9 (-8 , V1, ..., V� ) =
exp

(
V 9-8

)
1+∑�

<=1 exp (V<-8)

for 9 = 1,2, ..., �.
I Since response probabilities should be summed up to 1, we have

the natural restriction:

Pr [.8 = 0 | -8] = ?0 (-8 , V1, ..., V� ) =
1

1+∑�
<=1 exp (V<-8)

.

I The log-likelihood function can be readily written down and the
maximum likelihood estimator can be computed.
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Odds ratio interpretation

I The odds-ratio between the “base” choice . = 0 and the 9-th
alternative is given by

? 9 (-8 , V1, ..., V� )
?0 (-8 , V1, ..., V� )

= exp
(
V 9-8

)
for 9 = 1,2, ..., �.

I V 9 is the marginal effect of - on the log-odds of choosing 9 ≠ 0
relative to the “base” choice 0:

log
(
? 9 (-8 , V1, ..., V� )
?0 (-8 , V1, ..., V� )

)
= V 9-8

for 9 = 1,2, ..., �.
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Linear discriminant analysis
I The linear discriminant analysis is an alternative method to

multinomial logit.
I Assume - | . = 9 ∈ {0,1, ..., �} ∼ N

(
` 9 ,Σ

)
. Note that we assume

the variances are the same.
I Note that in applications, - may have discrete variables like

student status. The normality assumption is clearly violated but
should be interpreted as a convenient model assumption.

I Then,

? 9 (G) = Pr [. = 9 | - = G] =
c 9 5 9 (G)∑�
9=0 c 9 5 9 (G)

,

where c 9 = Pr [. = 9] and 5 9 is the conditional PDF of - given
. = 9 , 9 ∈ {0,1, ..., �}.

I We easily estimate 5 9 and c 9 and get

?̂ 9 (G) =
ĉ 9 5̂ 9 (G)∑�
9=0 ĉ 9 5̂ 9 (G)

.
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Conditional logit

I In many cases, the choice depends on the attributes of the
alternatives.

I Travellers choose among a set of travel modes: “bus”, “train”,
“car”, “plane”. There are variables that describe the traveller,
such as her income. There is no information on the travel modes.
In this example, there may be a variable “travel time” which is
alternative specific and a variable “travel costs” that depends on
the travel mode.
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I We begin with a random utility framework. Each individual has
(unobserved) random utility of choosing option : as

*8: = V0 + V1-8: + n8: ,

where for simplicity we assume that we have only one
explanatory variable, e.g., “travel cost”. The marginal effect of
-8: is assumed to be constant across : = 0,1, ..., �.

I The observed choices are generated by

1 [. = :] = 1
[
*8: ≥ max

0≤<≤�
*8<

]
.

I We assume that n8:’s are i.i.d. across 8’s and :’s and have the
following CDF:

Pr [n8: ≤ C] = exp (−exp (−C)) ,

so-called extreme value distribution.
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I We can show that the choice probability is

Pr [.8 = : | -80, ..., -8� ] =
exp (V0 + V1-8:)∑�
<=0 exp (V0 + V1-8<)

=
exp (V1-8:)∑�
<=0 exp (V1-8<)

.

I It is straight forward to generalize this model to
multiple-attribute cases:

Pr
[
.8 = : | -1

8 , -
2
8

]
=

exp
(
V1-

1
8:
+ V2-

2
8:

)∑�
<=0 exp

(
V1-

1
8<
+ V2-

2
8<

) ,
where -1

8
=

(
-1
80, ..., -

1
8�

)
and -2

8
=

(
-2
80, ..., -

2
8�

)
.

I The log-likelihood function is

ℓ (11, 12) =
=∑
8=1

�∑
:=0

1 [.8 = :]
exp

(
V1-

1
8:
+ V2-

2
8:

)∑�
<=0 exp

(
V1-

1
8<
+ V2-

2
8<

) .
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Independence from irrelevant alternatives
I Note that

Pr [.8 = 9 | -8]
Pr [.8 = : | -8]

=
exp

(
V1-8 9

)
exp (V1-8:)

,

where -8 = (-80, ..., -8� ). The relative odds between choosing 9
and : do not depend on attributes of other alternatives.

I Suppose one chooses between a red bus and a car for
transportation. Suppose that -8: is the cost of transportation and
for individual 8,

Pr [.8 = RedBus | -8]
Pr [.8 = Car | -8]

=
exp

(
V1-8,RedBus

)
exp

(
V1-8,Car

) = 1

and hence

Pr [.8 = RedBus | -8] = Pr [.8 = Car | -8] =
1
2
.
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I Now suppose that one more alternative appears: a blue bus. One
should have -8,RedBus = -8,BlueBus since either the red bus or the
blue bus is a perfect substitute of each other.

I We should have

Pr [.8 = BlueBus | -8]
Pr [.8 = Car | -8]

=
exp

(
V1-8,BlueBus

)
exp

(
V1-8,Car

) = 1,

Pr [.8 = RedBus | -8] =P [.8 = Car | -8] =Pr [.8 = BlueBus | -8] =
1
3
,

which implies

Pr [.8 = RedBusorBlueBus | -8] =
2
3

; Pr [.8 = Car | -8] =
1
3
.

I But this result is counter-intuitive, since it seems to be correct that

Pr [.8 = RedBusorBlueBus | -8] =
1
2

; Pr [.8 = Car | -8] =
1
2
.
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I Independence from irrelevant alternatives, i.e., the relative odds
between choosing 9 and : do not depend on attributes of other
alternatives, for all 9 and : is a consequence of the model
specification which is essentially the assumption that n8: follows
an extreme value distribution.

I This property could generate a quite counter-intuitive result.
I There exists modifications to the conditional logit model to

address this issue.
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“Mixed” logit

I In reality, we can often have both individual-specific and
alternative-specific explanatory variables, we specify:

Pr
[
. 9 = : | -8 ,,8

]
=

exp (V-8: +W:,8)∑�
<=1 exp (V-8< +W<,8)

for 9 = 0,1, ..., �, where -8 = (-80, ..., -8� ) are alternative-specific
and,8 is an individual-specific explanatory variable, e.g.,
income.

I One coefficient for the alternative-invariant regressor,8 is
normalized to zero (e.g., W0 = 0), which is considered to be the
base alternative.
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