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Multinomial dependent variables

I Ordered multinomial response: Magnitude of values attached to
outcomes matters.
e.g. health status, 1 = bad, 2 = average, 3 = good.

I Unordered multinomial response: Values attached to outcomes
contain no information.
e.g. Choice of occupation: 1 = self-employed, 2 = part-time,
3 = full-time.
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Parametric specification
I Suppose that the dependent variable 𝑌 takes value in {0,1, ..., 𝐽}.
I Like the case of binary choice model, our goal is to model the

response (conditional) probability mass function conditionally on
the explanatory variables. For each alternative 𝑗 ,

Pr [𝑌 = 𝑗 | 𝑋1, ..., 𝑋𝑘] = 𝑝 𝑗 (𝑋1, ..., 𝑋𝑘 ;𝜃)

where 𝑝 𝑗 is user-specified conditional probability mass
depending on some parameter 𝜃.

I Different models give different parametric forms for 𝑝 𝑗 .
I Our goal is to estimate the unknown parameter 𝜃 by maximum

likelihood and the marginal effect given by

𝜕𝑝 𝑗 (𝑥1, ..., 𝑥𝑘 ;𝜃)
𝜕𝑥𝑖

for the 𝑖-th explanatory variable.
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Maximum likelihood

I The likelihood function is

𝐿 (𝜃) =
𝑛∏
𝑖=1

𝐽∏
𝑗=0

𝑝 𝑗 (𝑋𝑖1, ..., 𝑋𝑖𝑘 ;𝜃)1[𝑌𝑖= 𝑗 ]

and the log-likelihood function is

log (𝐿 (𝜃)) =
𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=0

1 [𝑌𝑖 = 𝑗] log 𝑝 𝑗 (𝑋𝑖1, ..., 𝑋𝑖𝑘 ;𝜃) .

I For each 𝑖, only one of the indicator functions 1 [𝑌𝑖 = 𝑗],
𝑗 ∈ {0,1, ..., 𝐽} is equal to 1.

I Consistency and asymptotic normality follows from standard
arguments.
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Ordered multinomial choice model

I Suppose the explained variable corresponds to an ordered
response, taking values in {0,1, ..., 𝐽}.

I The ordered Probit model can be derived from the latent variable
model:

𝑌 ∗
𝑖 = 𝛼+ 𝛽1𝑋1𝑖 + · · · 𝛽𝑘𝑋𝑘𝑖 + 𝜖𝑖

where 𝑌 ∗
𝑖

is the latent variable, e.g. a latent index of “health”.
I The error term 𝜖𝑖 is assumed to be independent from 𝑋𝑖 and has a

standard normal distribution.
I Similarly, we can derive the ordered Logit model.
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I Assume that our observed choice variable 𝑌𝑖 is generated in the
following way: with

𝛾1 < 𝛾2 < · · · < 𝛾𝐽

to be unknown thresholds,

𝑌𝑖 = 0 if 𝑌 ∗
𝑖 ≤ 𝛾1

𝑌𝑖 = 𝑗 if 𝛾 𝑗 < 𝑌 ∗
𝑖 ≤ 𝛾 𝑗+1, 𝑗 = 1,2, ..., 𝐽 −1

𝑌𝑖 = 𝐽 if 𝑌 ∗
𝑖 > 𝛾𝐽 .

I There are 𝐽 thresholds in contrast to 𝐽 +1 categories.
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I Under the normality assumption, we can derive the 𝐽 +1
response probabilities

Pr [𝑌𝑖 = 0 | 𝑋1𝑖 , ..., 𝑋𝑘𝑖] = 𝑝0 (𝑋1𝑖 , ..., 𝑋𝑘𝑖 , 𝜃)
= Φ (𝛾1 −𝛼− 𝛽1𝑋1𝑖 − · · · − 𝛽𝑘𝑋𝑘𝑖)
· · ·

Pr [𝑌𝑖 = 𝑗 | 𝑋1𝑖 , ..., 𝑋𝑘𝑖] = 𝑝 𝑗 (𝑋1𝑖 , ..., 𝑋𝑘𝑖 , 𝜃)
= Φ

(
𝛾 𝑗+1 −𝛼− 𝛽1𝑋1𝑖 − · · · − 𝛽𝑘𝑋𝑘𝑖

)
−Φ

(
𝛾 𝑗 −𝛼− 𝛽1𝑋1𝑖 − · · · − 𝛽𝑘𝑋𝑘𝑖

)
· · ·

Pr [𝑌𝑖 = 𝐽 | 𝑋1𝑖 , ..., 𝑋𝑘𝑖] = 𝑝𝐽 (𝑋1𝑖 , ..., 𝑋𝑘𝑖 , 𝜃)
= 1−Φ (𝛾𝐽 −𝛼− 𝛽1𝑋1𝑖 − · · · − 𝛽𝑘𝑋𝑘𝑖) .

I If 𝐽 = 1, we return to binary Probit model.
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I The intercept 𝛼 and 𝛾1, ..., 𝛾𝐽 cannot be estimated separately. We
can estimate 𝜇 𝑗 = 𝛾 𝑗 −𝛼, 𝑗 = 1, ..., 𝐽.

I We maximize the log-likelihood function

log (𝐿 (𝑎1, ..., 𝑎𝐽 , 𝑏1, ..., 𝑏𝑘 )) =
𝑛∑︁
𝑖=1

𝐽−1∑︁
𝑗=1

1 (𝑌𝑖 = 𝑗)
(
Φ
(
𝑎 𝑗+1 − 𝑏1𝑋1𝑖 − · · · − 𝑏𝑘𝑋𝑘𝑖

)
−Φ

(
𝑎 𝑗 − 𝑏1𝑋1𝑖 − · · · − 𝑏𝑘𝑋𝑘𝑖

) )
+

𝑛∑︁
𝑖=1

1 (𝑌𝑖 = 0)Φ (𝑎1 − 𝑏1𝑋1𝑖 − · · · − 𝑏𝑘𝑋𝑘𝑖)

+
𝑛∑︁
𝑖=1

1 (𝑌𝑖 = 𝐽) (1−Φ (𝑎𝐽 − 𝑏1𝑋1𝑖 − · · · − 𝑏𝑘𝑋𝑘𝑖))

with respect to 𝑎1, ..., 𝑎𝐽 , 𝑏1, ..., 𝑏𝑘 subject to a constraint
𝑎1 < 𝑎2 < · · · < 𝑎𝐽 .
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Marginal effects in ordered probit model

I The marginal effects (change in response probability for small
change in 𝑋ℎ) are:

𝜕𝑝0 (𝑥1, ..., 𝑥𝑘 , 𝜃)
𝜕𝑥ℎ

= −𝛽ℎ𝜙 (𝜇1 − 𝛽1𝑥1 − · · · − 𝛽𝑘𝑥𝑘 )
· · ·

𝜕𝑝 𝑗 (𝑥1, ..., 𝑥𝑘 , 𝜃)
𝜕𝑥ℎ

= 𝛽ℎ
(
𝜙
(
𝜇 𝑗 − 𝛽1𝑥1 − · · · − 𝛽𝑘𝑥𝑘

)
−𝜙

(
𝜇 𝑗+1 − 𝛽1𝑥1 − · · · − 𝛽𝑘𝑥𝑘

) )
· · ·

𝜕𝑝𝐽 (𝑥1, ..., 𝑥𝑘 , 𝜃)
𝜕𝑥ℎ

= 𝛽ℎ𝜙 (𝜇𝐽 − 𝛽1𝑥1 − · · · − 𝛽𝑘𝑥𝑘 ) .

I In empirical applications, we are often interested in estimating
the marginal effects at the sample averages of the explanatory
variables.

9 / 20



Unordered multinomial response model

I The choice variable 𝑌 takes non-negative integer values, with
more than 2 alternatives, 𝑌 ∈ {0,1, ..., 𝐽}.

I The magnitude and ordering of outcomes is irrevelant.
I We first introduce the simplest model: the multinomial logit. We

assume the explanatory variables are individual-specific and do
not change across alternatives.

I The multinomial logit uses only variables that describe
characteristics of the individuals and not of the alternatives.

I E.g., when the explained variable is “employment status”:
employed, unemployed, out-of-labor-market.
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Multinomial logit
I When the choice depends on characteristics of individuals but

not on attributes of the alternatives, it is typical to use a
multinomial logit model.

I Assuming that we have only one explanatory variable, we
specify:

Pr [𝑌𝑖 = 𝑗 | 𝑋𝑖] = 𝑝 𝑗 (𝑋𝑖 , 𝛽1, ..., 𝛽𝐽 ) =
exp

(
𝛽 𝑗𝑋𝑖

)
1+∑𝐽

𝑚=1 exp (𝛽𝑚𝑋𝑖)

for 𝑗 = 1,2, ..., 𝐽.
I Since response probabilities should be summed up to 1, we have

the natural restriction:

Pr [𝑌𝑖 = 0 | 𝑋𝑖] = 𝑝0 (𝑋𝑖 , 𝛽1, ..., 𝛽𝐽 ) =
1

1+∑𝐽
𝑚=1 exp (𝛽𝑚𝑋𝑖)

.

I The log-likelihood function can be readily written down and the
maximum likelihood estimator can be computed.
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Odds ratio interpretation

I The odds-ratio between the “base” choice 𝑌 = 0 and the 𝑗-th
alternative is given by

𝑝 𝑗 (𝑋𝑖 , 𝛽1, ..., 𝛽𝐽 )
𝑝0 (𝑋𝑖 , 𝛽1, ..., 𝛽𝐽 )

= exp
(
𝛽 𝑗𝑋𝑖

)
for 𝑗 = 1,2, ..., 𝐽.

I 𝛽 𝑗 is the marginal effect of 𝑋 on the log-odds of choosing 𝑗 ≠ 0
relative to the “base” choice 0:

log
(
𝑝 𝑗 (𝑋𝑖 , 𝛽1, ..., 𝛽𝐽 )
𝑝0 (𝑋𝑖 , 𝛽1, ..., 𝛽𝐽 )

)
= 𝛽 𝑗𝑋𝑖

for 𝑗 = 1,2, ..., 𝐽.
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Linear discriminant analysis
I The linear discriminant analysis is an alternative method to

multinomial logit.
I Assume 𝑋 | 𝑌 = 𝑗 ∈ {0,1, ..., 𝐽} ∼ N

(
𝜇 𝑗 ,Σ

)
. Note that we assume

the variances are the same.
I Note that in applications, 𝑋 may have discrete variables like

student status. The normality assumption is clearly violated but
should be interpreted as a convenient model assumption.

I Then,

𝑝 𝑗 (𝑥) = Pr [𝑌 = 𝑗 | 𝑋 = 𝑥] =
𝜋 𝑗 𝑓 𝑗 (𝑥)∑𝐽
𝑗=0 𝜋 𝑗 𝑓 𝑗 (𝑥)

,

where 𝜋 𝑗 = Pr [𝑌 = 𝑗] and 𝑓 𝑗 is the conditional PDF of 𝑋 given
𝑌 = 𝑗 , 𝑗 ∈ {0,1, ..., 𝐽}.

I We easily estimate 𝑓 𝑗 and 𝜋 𝑗 and get

𝑝 𝑗 (𝑥) =
𝜋̂ 𝑗 𝑓̂ 𝑗 (𝑥)∑𝐽
𝑗=0 𝜋̂ 𝑗 𝑓̂ 𝑗 (𝑥)

.
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Conditional logit

I In many cases, the choice depends on the attributes of the
alternatives.

I Travellers choose among a set of travel modes: “bus”, “train”,
“car”, “plane”. There are variables that describe the traveller,
such as her income. There is no information on the travel modes.
In this example, there may be a variable “travel time” which is
alternative specific and a variable “travel costs” that depends on
the travel mode.
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I We begin with a random utility framework. Each individual has
(unobserved) random utility of choosing option 𝑘 as

𝑈𝑖𝑘 = 𝛽0 + 𝛽1𝑋𝑖𝑘 + 𝜖𝑖𝑘 ,

where for simplicity we assume that we have only one
explanatory variable, e.g., “travel cost”. The marginal effect of
𝑋𝑖𝑘 is assumed to be constant across 𝑘 = 0,1, ..., 𝐽.

I The observed choices are generated by

1 [𝑌 = 𝑘] = 1
[
𝑈𝑖𝑘 ≥ max

0≤𝑚≤𝐽
𝑈𝑖𝑚

]
.

I We assume that 𝜖𝑖𝑘’s are i.i.d. across 𝑖’s and 𝑘’s and have the
following CDF:

Pr [𝜖𝑖𝑘 ≤ 𝑡] = exp (−exp (−𝑡)) ,

so-called extreme value distribution.
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I We can show that the choice probability is

Pr [𝑌𝑖 = 𝑘 | 𝑋𝑖0, ..., 𝑋𝑖𝐽 ] =
exp (𝛽0 + 𝛽1𝑋𝑖𝑘)∑𝐽

𝑚=0 exp (𝛽0 + 𝛽1𝑋𝑖𝑚)

=
exp (𝛽1𝑋𝑖𝑘)∑𝐽

𝑚=0 exp (𝛽1𝑋𝑖𝑚)
.

I It is straight forward to generalize this model to
multiple-attribute cases:

Pr
[
𝑌𝑖 = 𝑘 | 𝑋1

𝑖 , 𝑋
2
𝑖

]
=

exp
(
𝛽1𝑋

1
𝑖𝑘
+ 𝛽2𝑋

2
𝑖𝑘

)∑𝐽
𝑚=0 exp

(
𝛽1𝑋

1
𝑖𝑚

+ 𝛽2𝑋
2
𝑖𝑚

) ,
where 𝑋1

𝑖
=
(
𝑋1
𝑖0, ..., 𝑋

1
𝑖𝐽

)
and 𝑋2

𝑖
=
(
𝑋2
𝑖0, ..., 𝑋

2
𝑖𝐽

)
.

I The log-likelihood function is

ℓ (𝑏1, 𝑏2) =
𝑛∑︁
𝑖=1

𝐽∑︁
𝑘=0

1 [𝑌𝑖 = 𝑘]
exp

(
𝛽1𝑋

1
𝑖𝑘
+ 𝛽2𝑋

2
𝑖𝑘

)∑𝐽
𝑚=0 exp

(
𝛽1𝑋

1
𝑖𝑚

+ 𝛽2𝑋
2
𝑖𝑚

) .
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Independence from irrelevant alternatives
I Note that

Pr [𝑌𝑖 = 𝑗 | 𝑋𝑖]
Pr [𝑌𝑖 = 𝑘 | 𝑋𝑖]

=
exp

(
𝛽1𝑋𝑖 𝑗

)
exp (𝛽1𝑋𝑖𝑘)

,

where 𝑋𝑖 = (𝑋𝑖0, ..., 𝑋𝑖𝐽 ). The relative odds between choosing 𝑗

and 𝑘 do not depend on attributes of other alternatives.
I Suppose one chooses between a red bus and a car for

transportation. Suppose that 𝑋𝑖𝑘 is the cost of transportation and
for individual 𝑖,

Pr [𝑌𝑖 = RedBus | 𝑋𝑖]
Pr [𝑌𝑖 = Car | 𝑋𝑖]

=
exp

(
𝛽1𝑋𝑖,RedBus

)
exp

(
𝛽1𝑋𝑖,Car

) = 1

and hence

Pr [𝑌𝑖 = RedBus | 𝑋𝑖] = Pr [𝑌𝑖 = Car | 𝑋𝑖] =
1
2
.
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I Now suppose that one more alternative appears: a blue bus. One
should have 𝑋𝑖,RedBus = 𝑋𝑖,BlueBus since either the red bus or the
blue bus is a perfect substitute of each other.

I We should have

Pr [𝑌𝑖 = BlueBus | 𝑋𝑖]
Pr [𝑌𝑖 = Car | 𝑋𝑖]

=
exp

(
𝛽1𝑋𝑖,BlueBus

)
exp

(
𝛽1𝑋𝑖,Car

) = 1,

Pr [𝑌𝑖 = RedBus | 𝑋𝑖] =P [𝑌𝑖 = Car | 𝑋𝑖] =Pr [𝑌𝑖 = BlueBus | 𝑋𝑖] =
1
3
,

which implies

Pr [𝑌𝑖 = RedBusorBlueBus | 𝑋𝑖] =
2
3

; Pr [𝑌𝑖 = Car | 𝑋𝑖] =
1
3
.

I But this result is counter-intuitive, since it seems to be correct that

Pr [𝑌𝑖 = RedBusorBlueBus | 𝑋𝑖] =
1
2

; Pr [𝑌𝑖 = Car | 𝑋𝑖] =
1
2
.
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I Independence from irrelevant alternatives, i.e., the relative odds
between choosing 𝑗 and 𝑘 do not depend on attributes of other
alternatives, for all 𝑗 and 𝑘 is a consequence of the model
specification which is essentially the assumption that 𝜖𝑖𝑘 follows
an extreme value distribution.

I This property could generate a quite counter-intuitive result.
I There exists modifications to the conditional logit model to

address this issue.
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“Mixed” logit

I In reality, we can often have both individual-specific and
alternative-specific explanatory variables, we specify:

Pr
[
𝑌 𝑗 = 𝑘 | 𝑋𝑖 ,𝑊𝑖

]
=

exp (𝛽𝑋𝑖𝑘 +𝛾𝑘𝑊𝑖)∑𝐽
𝑚=1 exp (𝛽𝑋𝑖𝑚 +𝛾𝑚𝑊𝑖)

for 𝑗 = 0,1, ..., 𝐽, where 𝑋𝑖 = (𝑋𝑖0, ..., 𝑋𝑖𝐽 ) are alternative-specific
and 𝑊𝑖 is an individual-specific explanatory variable, e.g.,
income.

I One coefficient for the alternative-invariant regressor 𝑊𝑖 is
normalized to zero (e.g., 𝛾0 = 0), which is considered to be the
base alternative.

20 / 20


