Introductory Econometrics Lecture 24: Multinomial choice models

Instructor: Ma, Jun

Renmin University of China

June 7, 2023

Multinomial dependent variables

• Ordered multinomial response: Magnitude of values attached to outcomes matters.

e.g. health status, $1 = bad$, $2 = average$, $3 = good$.

▶ Unordered multinomial response: Values attached to outcomes contain no information. e.g. Choice of occupation: $1 = \text{self-employed}, 2 = \text{part-time},$ $3 = \text{full-time}$.

Parametric specification

- Suppose that the dependent variable Y takes value in $\{0, 1, ..., J\}$.
- \blacktriangleright Like the case of binary choice model, our goal is to model the response (conditional) probability mass function conditionally on the explanatory variables. For each alternative i ,

$$
Pr[Y = j | X_1, ..., X_k] = p_j(X_1, ..., X_k; \theta)
$$

where p_j is user-specified conditional probability mass depending on some parameter θ .

- \blacktriangleright Different models give different parametric forms for p_j .
- \triangleright Our goal is to estimate the unknown parameter θ by maximum likelihood and the marginal effect given by

$$
\frac{\partial p_j(x_1,...,x_k;\theta)}{\partial x_i}
$$

for the i -th explanatory variable.

Maximum likelihood

 \blacktriangleright The likelihood function is

$$
L(\theta) = \prod_{i=1}^{n} \prod_{j=0}^{J} p_j(X_{i1}, ..., X_{ik}; \theta)^{1[Y_i=j]}
$$

and the log-likelihood function is

$$
\log(L(\theta)) = \sum_{i=1}^{n} \sum_{j=0}^{J} 1 [Y_i = j] \log p_j(X_{i1}, ..., X_{ik}; \theta).
$$

- \triangleright For each *i*, only one of the indicator functions $1 [Y_i = j]$, $j \in \{0, 1, ..., J\}$ is equal to 1.
- \triangleright Consistency and asymptotic normality follows from standard arguments.

Ordered multinomial choice model

- \triangleright Suppose the explained variable corresponds to an ordered response, taking values in $\{0, 1, ..., J\}$.
- \triangleright The ordered Probit model can be derived from the latent variable model:

$$
Y_i^* = \alpha + \beta_1 X_{1i} + \cdots + \beta_k X_{ki} + \epsilon_i
$$

where Y_i^* is the latent variable, e.g. a latent index of "health".

- The error term ϵ_i is assumed to be independent from X_i and has a standard normal distribution.
- \triangleright Similarly, we can derive the ordered Logit model.

Solution Assume that our observed choice variable Y_i is generated in the following way: with

$$
\gamma_1 < \gamma_2 < \cdots < \gamma_J
$$

to be unknown thresholds,

$$
Y_i = 0 \text{ if } Y_i^* \le \gamma_1
$$

\n
$$
Y_i = j \text{ if } \gamma_j < Y_i^* \le \gamma_{j+1}, \ j = 1, 2, \dots, J - 1
$$

\n
$$
Y_i = J \text{ if } Y_i^* > \gamma_J.
$$

 \blacktriangleright Under the normality assumption, we can derive the $J+1$ response probabilities

· · ·

$$
Pr[Y_i = 0 | X_{1i}, ..., X_{ki}] = p_0(X_{1i}, ..., X_{ki}, \theta)
$$

= $\Phi(\gamma_1 - \alpha - \beta_1 X_{1i} - \cdots - \beta_k X_{ki})$

$$
Pr[Y_i = j | X_{1i}, ..., X_{ki}] = p_j(X_{1i}, ..., X_{ki}, \theta)
$$

= $\Phi(\gamma_{j+1} - \alpha - \beta_1 X_{1i} - \cdots - \beta_k X_{ki})$
- $\Phi(\gamma_j - \alpha - \beta_1 X_{1i} - \cdots - \beta_k X_{ki})$
...

$$
\Pr[Y_i = J \mid X_{1i}, ..., X_{ki}] = p_J(X_{1i}, ..., X_{ki}, \theta) \n= 1 - \Phi(\gamma_J - \alpha - \beta_1 X_{1i} - \cdots - \beta_k X_{ki}).
$$

If $J = 1$, we return to binary Probit model.

- \blacktriangleright The intercept α and $\gamma_1, ..., \gamma_J$ cannot be estimated separately. We can estimate $\mu_i = \gamma_i - \alpha$, $j = 1, ..., J$.
- \triangleright We maximize the log-likelihood function

$$
\log(L(a_1,...,a_J,b_1,...,b_k)) =
$$
\n
$$
\sum_{i=1}^n \sum_{j=1}^{J-1} 1(Y_i = j) (\Phi(a_{j+1} - b_1X_{1i} - \cdots - b_kX_{ki})
$$
\n
$$
- \Phi(a_j - b_1X_{1i} - \cdots - b_kX_{ki}))
$$
\n
$$
+ \sum_{i=1}^n 1(Y_i = 0) \Phi(a_1 - b_1X_{1i} - \cdots - b_kX_{ki})
$$
\n
$$
+ \sum_{i=1}^n 1(Y_i = J) (1 - \Phi(a_J - b_1X_{1i} - \cdots - b_kX_{ki}))
$$

with respect to $a_1, ..., a_J, b_1, ..., b_k$ subject to a constraint $a_1 < a_2 < \cdots < a_J$.

Marginal effects in ordered probit model

 \blacktriangleright The marginal effects (change in response probability for small change in X_h) are:

$$
\frac{\partial p_0(x_1,...,x_k,\theta)}{\partial x_h} = -\beta_h \phi(\mu_1 - \beta_1 x_1 - \cdots - \beta_k x_k)
$$
\n...\n
$$
\frac{\partial p_j(x_1,...,x_k,\theta)}{\partial x_h} = \beta_h (\phi(\mu_j - \beta_1 x_1 - \cdots - \beta_k x_k))
$$
\n
$$
-\phi(\mu_{j+1} - \beta_1 x_1 - \cdots - \beta_k x_k))
$$
\n...\n
$$
\frac{\partial p_j(x_1,...,x_k,\theta)}{\partial x_h} = \beta_h \phi(\mu_j - \beta_1 x_1 - \cdots - \beta_k x_k).
$$

 \blacktriangleright In empirical applications, we are often interested in estimating the marginal effects at the sample averages of the explanatory variables.

Unordered multinomial response model

- \blacktriangleright The choice variable Y takes non-negative integer values, with more than 2 alternatives, $Y \in \{0, 1, ..., J\}$.
- \blacktriangleright The magnitude and ordering of outcomes is irrevelant.
- \triangleright We first introduce the simplest model: the multinomial logit. We assume the explanatory variables are individual-specific and do not change across alternatives.
- \blacktriangleright The multinomial logit uses only variables that describe characteristics of the individuals and not of the alternatives.
- \blacktriangleright E.g., when the explained variable is "employment status": employed, unemployed, out-of-labor-market.

Multinomial logit

- \triangleright When the choice depends on characteristics of individuals but not on attributes of the alternatives, it is typical to use a multinomial logit model.
- \blacktriangleright Assuming that we have only one explanatory variable, we specify:

$$
\Pr[Y_i = j \mid X_i] = p_j(X_i, \beta_1, ..., \beta_J) = \frac{\exp(\beta_j X_i)}{1 + \sum_{m=1}^{J} \exp(\beta_m X_i)}
$$

for $i = 1, 2, ..., J$.

 \triangleright Since response probabilities should be summed up to 1, we have the natural restriction:

$$
\Pr[Y_i = 0 \mid X_i] = p_0(X_i, \beta_1, ..., \beta_J) = \frac{1}{1 + \sum_{m=1}^{J} \exp(\beta_m X_i)}.
$$

 \triangleright The log-likelihood function can be readily written down and the maximum likelihood estimator can be computed.

Odds ratio interpretation

 \blacktriangleright The odds-ratio between the "base" choice $Y = 0$ and the *j*-th alternative is given by

$$
\frac{p_j(X_i, \beta_1, ..., \beta_J)}{p_0(X_i, \beta_1, ..., \beta_J)} = \exp(\beta_j X_i)
$$

for $i = 1, 2, ..., J$.

 \blacktriangleright β_j is the marginal effect of X on the log-odds of choosing $j \neq 0$ relative to the "base" choice 0:

$$
\log \left(\frac{p_j(X_i, \beta_1, ..., \beta_J)}{p_0(X_i, \beta_1, ..., \beta_J)} \right) = \beta_j X_i
$$

for $j = 1, 2, ..., J$.

Linear discriminant analysis

- \blacktriangleright The linear discriminant analysis is an alternative method to multinomial logit.
- Assume $X | Y = j \in \{0, 1, ..., J\} \sim N(\mu_j, \Sigma)$. Note that we assume the variances are the same.
- \blacktriangleright Note that in applications, X may have discrete variables like student status. The normality assumption is clearly violated but should be interpreted as a convenient model assumption.
- \blacktriangleright Then,

$$
p_j(x) = Pr[Y = j | X = x] = \frac{\pi_j f_j(x)}{\sum_{j=0}^{J} \pi_j f_j(x)},
$$

where π_j = Pr [Y = j] and f_j is the conditional PDF of X given $Y = j, j \in \{0, 1, ..., J\}.$

 \blacktriangleright We easily estimate f_i and π_i and get

$$
\widehat{p}_j(x) = \frac{\widehat{\pi}_j \widehat{f}_j(x)}{\sum_{j=0}^J \widehat{\pi}_j \widehat{f}_j(x)}
$$

.

Conditional logit

- \blacktriangleright In many cases, the choice depends on the attributes of the alternatives.
- \blacktriangleright Travellers choose among a set of travel modes: "bus", "train", "car", "plane". There are variables that describe the traveller, such as her income. There is no information on the travel modes. In this example, there may be a variable "travel time" which is alternative specific and a variable "travel costs" that depends on the travel mode.

 \triangleright We begin with a random utility framework. Each individual has (unobserved) random utility of choosing option k as

$$
U_{ik} = \beta_0 + \beta_1 X_{ik} + \epsilon_{ik},
$$

where for simplicity we assume that we have only one explanatory variable, e.g., "travel cost". The marginal effect of X_{ik} is assumed to be constant across $k = 0, 1, ..., J$.

 \blacktriangleright The observed choices are generated by

$$
1 [Y = k] = 1 \left[U_{ik} \ge \max_{0 \le m \le J} U_{im} \right].
$$

 \blacktriangleright We assume that ϵ_{ik} 's are i.i.d. across *i*'s and *k*'s and have the following CDF:

$$
Pr\left[\epsilon_{ik} \leq t\right] = \exp\left(-\exp\left(-t\right)\right),\,
$$

so-called extreme value distribution.

 \triangleright We can show that the choice probability is

$$
\Pr[Y_i = k \mid X_{i0}, ..., X_{iJ}] = \frac{\exp(\beta_0 + \beta_1 X_{ik})}{\sum_{m=0}^{J} \exp(\beta_0 + \beta_1 X_{im})}
$$

=
$$
\frac{\exp(\beta_1 X_{ik})}{\sum_{m=0}^{J} \exp(\beta_1 X_{im})}.
$$

 \blacktriangleright It is straight forward to generalize this model to multiple-attribute cases:

$$
\Pr\left[Y_i = k \mid X_i^1, X_i^2\right] = \frac{\exp\left(\beta_1 X_{ik}^1 + \beta_2 X_{ik}^2\right)}{\sum_{m=0}^J \exp\left(\beta_1 X_{im}^1 + \beta_2 X_{im}^2\right)},
$$

where
$$
X_i^1 = (X_{i0}^1, ..., X_{iJ}^1)
$$
 and $X_i^2 = (X_{i0}^2, ..., X_{iJ}^2)$.

 \blacktriangleright The log-likelihood function is

$$
\ell(b_1, b_2) = \sum_{i=1}^{n} \sum_{k=0}^{J} 1 \left[Y_i = k \right] \frac{\exp \left(\beta_1 X_{ik}^1 + \beta_2 X_{ik}^2 \right)}{\sum_{m=0}^{J} \exp \left(\beta_1 X_{im}^1 + \beta_2 X_{im}^2 \right)}.
$$

Independence from irrelevant alternatives

 \triangleright Note that

$$
\frac{\Pr[Y_i = j \mid X_i]}{\Pr[Y_i = k \mid X_i]} = \frac{\exp(\beta_1 X_{ij})}{\exp(\beta_1 X_{ik})},
$$

where $X_i = (X_{i0}, ..., X_{iJ})$. The relative odds between choosing j and k do not depend on attributes of other alternatives.

 \triangleright Suppose one chooses between a red bus and a car for transportation. Suppose that X_{ik} is the cost of transportation and for individual i ,

$$
\frac{\Pr[Y_i = \text{RedBus} \mid X_i]}{\Pr[Y_i = \text{Car} \mid X_i]} = \frac{\exp(\beta_1 X_{i, \text{RedBus}})}{\exp(\beta_1 X_{i, \text{Car}})} = 1
$$

and hence

$$
Pr[Y_i = RedBus | X_i] = Pr[Y_i = Car | X_i] = \frac{1}{2}.
$$

- \triangleright Now suppose that one more alternative appears: a blue bus. One should have $X_{i,\text{RedBus}} = X_{i,\text{BlueBus}}$ since either the red bus or the blue bus is a perfect substitute of each other.
- \blacktriangleright We should have

$$
\frac{\Pr[Y_i = \text{Blue Bus} \mid X_i]}{\Pr[Y_i = \text{Car} \mid X_i]} = \frac{\exp(\beta_1 X_{i, \text{Blue Bus}})}{\exp(\beta_1 X_{i, \text{Car}})} = 1,
$$

$$
\Pr[Y_i = \text{Red Bus} \mid X_i] = P[Y_i = \text{Car} \mid X_i] = \Pr[Y_i = \text{Blue Bus} \mid X_i] = \frac{1}{3},
$$
\nwhich implies

$$
Pr[Y_i = RedBus or Blue Bus | X_i] = \frac{2}{3}; Pr[Y_i = Car | X_i] = \frac{1}{3}.
$$

 \triangleright But this result is counter-intuitive, since it seems to be correct that

$$
\Pr[Y_i = \text{Red Bus or Blue Bus} \mid X_i] = \frac{1}{2}; \Pr[Y_i = \text{Car} \mid X_i] = \frac{1}{2}.
$$

1

- \blacktriangleright Independence from irrelevant alternatives, i.e., the relative odds between choosing \dot{j} and \dot{k} do not depend on attributes of other alternatives, for all j and k is a consequence of the model specification which is essentially the assumption that ϵ_{ik} follows an extreme value distribution.
- \triangleright This property could generate a quite counter-intuitive result.
- \blacktriangleright There exists modifications to the conditional logit model to address this issue.

"Mixed" logit

 \blacktriangleright In reality, we can often have both individual-specific and alternative-specific explanatory variables, we specify:

$$
Pr[Y_j = k | X_i, W_i] = \frac{exp(\beta X_{ik} + \gamma_k W_i)}{\sum_{m=1}^{J} exp(\beta X_{im} + \gamma_m W_i)}
$$

for $i = 0, 1, \ldots, J$, where $X_i = (X_{i0}, \ldots, X_{iJ})$ are alternative-specific and W_i is an individual-specific explanatory variable, e.g., income.

 \triangleright One coefficient for the alternative-invariant regressor W_i is normalized to zero (e.g., $\gamma_0 = 0$), which is considered to be the base alternative.