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Data censoring

I The explained variable of interest may not be perfectly observed.
I The explained variable can be censored. e.g. Income data are

often top-coded in survey data. The annual incomes above
200000 may be loaded as 200000. Households with higher
incomes than 200000 are part of the sample and their
characteristics are reported.
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The Tobit model
I Consider a linear latent random variable 𝑌 ∗ (e.g. the real income)

can be explained by a linear model in 𝑋 (assuming there is a
single explanatory variable for simplicity):

𝑌 ∗
𝑖 = 𝛼+ 𝛽𝑋𝑖 + 𝜖𝑖

where 𝜖 is independent from 𝑋 and distributed as N
(
0,𝜎2) .

I The distribution of 𝑌 ∗ conditionally on 𝑋 is therefore normal:
𝑌 ∗ | 𝑋 ∼ N

(
𝛼+ 𝛽𝑋,𝜎2) .

I The latent model is assumed to be homoskedastic, since
E
[
𝜖2 | 𝑋

]
is an unknown constant 𝜎2.

I The observed explained variable 𝑌𝑖 is censored below 0:

𝑌𝑖 =

{
𝑌 ∗
𝑖

if 𝑌 ∗
𝑖
> 0

0 if 𝑌 ∗
𝑖
≤ 0,

in other words, 𝑌𝑖 = max
{
𝑌 ∗
𝑖
,0
}
. This is called censoring from

below at 0.
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Uncensored data
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Censored data
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The conditional expectation of 𝑌

I The conditional expectation of 𝑌 given 𝑋 is

E [𝑌 | 𝑋] = Pr [𝑌 = 0 | 𝑋] ×0+Pr [𝑌 > 0 | 𝑋]E [𝑌 | 𝑌 > 0, 𝑋] .

I By independence of 𝜖 ,

P [𝑌 > 0 | 𝑋] = Pr [𝑌 > 0 | 𝑋]
= Pr [𝜖 > − (𝛼+ 𝛽𝑋) | 𝑋]

= Φ

(
𝛼+ 𝛽𝑋

𝜎

)
.
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I Let 𝑍 ∼ N
(
𝜇,𝜎2) , then we have

E [𝑍 | 𝑍 > 𝑑] = 𝜇+𝜎
𝜙

(
𝑑−𝜇
𝜎

)
1−Φ

(
𝑑−𝜇
𝜎

) .
I This is a special property of normal distributions.
I Using this result, we can obtain

E [𝑌 | 𝑌 > 0, 𝑋] = E [𝛼+ 𝛽𝑋 + 𝜖 | 𝜖 > − (𝛼+ 𝛽𝑋) , 𝑋]
= 𝛼+ 𝛽𝑋 +E [𝜖 | 𝜖 > − (𝛼+ 𝛽𝑋) , 𝑋]

= 𝛼+ 𝛽𝑋 +𝜎
𝜙

(
𝛼+𝛽𝑋
𝜎

)
1−Φ

(
𝛼+𝛽𝑋
𝜎

) .
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I Therefore we have

E [𝑌 | 𝑋] = Φ

(
𝛼+ 𝛽𝑋

𝜎

) ©«𝛼+ 𝛽𝑋 +𝜎
𝜙

(
𝛼+𝛽𝑋
𝜎

)
Φ

(
𝛼+𝛽𝑋
𝜎

) ª®®¬
which is nonlinear in the parameters.

I A linear regression of 𝑌 on 𝑋’s yields an inconsistent estimator
for 𝛽.

I 𝑌 = E [𝑌 | 𝑋] +𝑈 and by definition, E [𝑈 | 𝑋] = 0. In the fitted
model

𝑌 = 𝛼+ 𝛽𝑋 +𝑉

where 𝑉 = E [𝑌 | 𝑋] − (𝛼+ 𝛽𝑋) +𝑈 is in general correlated with
𝑋 .
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Maximum likelihood estimation
I The conditional distribution of 𝑌 given 𝑋 is like the distribution

of a mixture of a discrete random variable and a continuous
random variable.

I The conditional density of 𝑌 given 𝑋 is

𝑓𝑌 |𝑋 (𝑦 | 𝑥,𝛼, 𝛽,𝜎) =
[
1−Φ

(
𝛼+ 𝛽𝑥

𝜎

)]1[𝑦=0] [ 1
𝜎
𝜙

(
𝑦−𝛼− 𝛽𝑥

𝜎

)]1[𝑦>0]

for 𝑦 ≥ 0 .
I The log-likelihood function is given by

log𝐿 (𝑎, 𝑏, 𝑐) =

𝑛∑︁
𝑖=1

1 [𝑌𝑖 = 0] log
(
1−Φ

(
𝑎 + 𝑏𝑋𝑖

𝑐

))
+

𝑛∑︁
𝑖=1

1 [𝑌𝑖 > 0] log
(
1
𝑐
𝜙

(
𝑌𝑖 − 𝑎− 𝑏𝑋𝑖

𝑐

))
.

I The maximizer of the log-likelihood function with respect to
(𝑎, 𝑏, 𝑐) is the maximum likelihood estimator for

(
𝛼, 𝛽,𝜎2) .
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Marginal effect

I It can be shown that the marginal effect of the explanatory
variable 𝑋 on the censored explained variable 𝑌 is

dE [𝑌 | 𝑋 = 𝑥]
d𝑥

= 𝛽Φ

(
𝛼+ 𝛽𝑥

𝜎

)
.

I The estimated average marginal effect is

1
𝑛

𝑛∑︁
𝑖=1

𝛽Φ

(
�̂�+ 𝛽𝑋𝑖

�̂�

)
by plugging in the maximum likelihood estimates 𝛽, �̂�.
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Stata implementation

In stata we can estimate more general models with censoring from
above (option: ul(#)) and below (option: ll(#)).
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Truncated samples

I Data on dependent and independent variables sampled from a
sub-population, based on value of dependent variable.

I For truncated samples, data is simply not available to the
researcher.
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The truncated regression model

I Consider a linear latent random variable 𝑌 ∗ can be explained by a
linear model in 𝑋 (assuming there is a single explanatory
variable for simplicity):

𝑌 ∗
𝑖 = 𝛼+ 𝛽𝑋𝑖 + 𝜖𝑖

where 𝜖 is independent from 𝑋 and distributed as N
(
0,𝜎2) .

I The distribution of 𝑌 ∗ conditionally on 𝑋 is therefore normal:
𝑌 ∗ | 𝑋 ∼ N

(
𝛼+ 𝛽𝑋,𝜎2) .

I The observed explained variable 𝑌𝑖 is truncated below 0:

𝑌𝑖 =

{
𝑌 ∗
𝑖

if 𝑌 ∗
𝑖
> 0

not available if 𝑌 ∗
𝑖
≤ 0.
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Conditional density

I The conditional density for a random variable 𝑈 (given 𝑋 , we
need only to consider the distribution of the error term) with
unconditional density 𝑓 , cumulative distribution function 𝐹, and
truncation below at 𝑐 is

𝑓𝑈 (𝑢 | 𝑈 > 𝑐) =
{

𝑓 (𝑢)
P[𝑈>𝑐 ] =

𝑓 (𝑢)
1−𝐹 (𝑐) if 𝑢 > 𝑐

0 otherwise
.

I This is still a density. It is clearly positive and integration gives∫ ∞

−∞
𝑓𝑈 (𝑢 | 𝑈 > 𝑐) d𝑢 =

∫ ∞

𝑐

𝑓 (𝑢)
1−𝐹 (𝑐) d𝑢 =

1−𝐹 (𝑐)
1−𝐹 (𝑐) = 1.
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Maximum likelihood estimation

I The conditional distribution of the observed truncated variable 𝑌
given 𝑋 is like the distribution of a mixture of a discrete random
variable and a continuous random variable.

I The conditional density of 𝑌 given 𝑋 is

𝑓𝑌 |𝑋 (𝑦 | 𝑥,𝛼, 𝛽,𝜎) =
𝑓𝑌 ∗|𝑋 (𝑦 | 𝑥)

P [𝑌 ∗ > 0 | 𝑋 = 𝑥] =
𝜎−1𝜙

(
𝑦−𝛼−𝛽𝑥

𝜎

)
1−Φ

(
−𝛼−𝛽𝑥

𝜎

) , 𝑦 ≥ 0.

I The log-likelihood function is given by

log𝐿 (𝑎, 𝑏, 𝑐) =
𝑛∑︁
𝑖=1

log
(
1
𝑐
𝜙

(
𝑌𝑖 − 𝑎− 𝑏𝑋𝑖

𝑐

))
−

𝑛∑︁
𝑖=1

log
(
1−Φ

(
−𝑎− 𝑏𝑋𝑖

𝑐

))
.

I The maximizer of the log-likelihood function with respect to
(𝑎, 𝑏, 𝑐) is the maximum likelihood estimator for (𝛼, 𝛽,𝜎).
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Sample selection

I Sample selection problem occurs when the observed sample is
not a random sample but systematically chosen from the
population.

I The classical example: we want to explain the market wage of
married women, but a large fraction of the respondents decided
to stay at home.
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The selection model
I Consider a model with two latent variables 𝑌 ∗

𝑖
and 𝐷∗

𝑖

(𝑖 = 1, ..., 𝑛) which linearly depend on observable explanatory
variables 𝑋𝑖 , 𝑍𝑖:

𝐷∗
𝑖 = 𝛾𝑍𝑖 +𝑉𝑖 (participation equation)

𝑌 ∗
𝑖 = 𝛽𝑋𝑖 +𝑈𝑖 (outcome equation)

with
(𝑉𝑖 ,𝑈𝑖) ∼ N

(
0,
[

1 𝜎𝑢𝑣

𝜎𝑢𝑣 𝜎2
𝑢

] )
.

The error terms 𝑈𝑖 and 𝑉𝑖 are independently and jointly normally
distributed with covariance 𝜎𝑢𝑣 .

I The two latent variables cannot be observed by the researcher.
I We only observe an indicator when the latent variable 𝐷∗

𝑖
is

positive:

𝐷𝑖 =

{
1 if 𝐷∗

𝑖
> 0

0 otherwise
.
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I The value of the variable 𝑌𝑖 is only observed if the indicator is 1:

𝑌𝑖 =

{
𝑌 ∗
𝑖

if 𝐷𝑖 = 1
not available otherwise

.

I The first equation explains whether an observation is in the
sample or not.

I The second equation determines the value of 𝑌𝑖 .
I For explaining the market wage of married women, 𝑌 ∗

𝑖
is the

market wage of individual 𝑖, i.e. the wage she would have if
participating work.

I 𝐷∗
𝑖

could be a latent index that can be thought of as representing
the difference between the observed wage and the reservation
wage, the lowest wage at which the individual is willing to
participate work.

I In real applications, 𝑍𝑖 and 𝑋𝑖 could be vectors of different
dimensions and contain different explanatory variables.
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The conditional expectation
I The expected value of the observed variable 𝑌𝑖 conditional on it

being observed is

E [𝑌𝑖 | 𝐷𝑖 = 1, 𝑋𝑖 , 𝑍𝑖] = 𝛽𝑋𝑖 +𝜎𝑢𝑣

𝜙 (𝛾𝑍𝑖)
Φ (𝛾𝑍𝑖)

= 𝛽𝑋𝑖 +𝜎𝑢𝑣𝜆 (𝛾𝑍𝑖)

where 𝜆 (·) = 𝜙 (·) /Φ (·) is called the inverse Mills ratio.
I A linear regression of observed 𝑌𝑖’s on 𝑋𝑖 is an inconsistent

estimator for 𝛽.
I If the errors are uncorrelated (i.e. 𝜎𝑢𝑣 = 0), then a simple linear

regression gives a consistent estimator.
I If 𝛾 is known, then we can construct a regressor 𝜆 (𝛾𝑍𝑖) and

regress observed 𝑌𝑖 on 𝑋𝑖 and 𝜆 (𝛾𝑍𝑖). This procedure gives a
consistent estimator for 𝛽.

I Two methods to consistently estimate 𝛽 (the parameter of
interest) is (1). Maximum Likelihood (2). Heckman two-step
procedure.
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Heckman two-step procedure

I In practice, 𝛾 is unknown. Since we observe 𝐷𝑖 and 𝑍𝑖 , we can
consistently estimate 𝛾 using a Probit estimator.

I This leads to a two-step procedure.
I In step 1, we estimate a Probit model and obtain the Probit

estimator �̂� for 𝛾.
I In step 2, we construct 𝜆 (�̂�𝑍𝑖) and linearly regress 𝑌𝑖 on 𝑋𝑖 and

𝜆 (�̂�𝑍𝑖). The estimate of the slope corresponding to 𝑋𝑖 is a
consistent estimator for 𝛽.

I The Heckman estimator for 𝛽 is asymptotically normal. However,
if using STATA to explicitly compute the two-step estimator, the
standard errors in the second-step output use the wrong formula.

I Standard errors must be corrected because in the second step, the
regressor 𝜆 (�̂�𝑍𝑖) is generated from the first-step Probit model.
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