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Introduction

I In this class, we consider the problem of estimating the causal
effect of a binary explanatory variable, which is referred as the
treatment effect in the literature. The treatment effect model is
different from the linear regression model.

I In econometrics, the treatment effect model is very often used for
evaluating social program/experiment.

I Example 1: Suppose that a selected set of individuals receive
training or education initiated by the government with a view to
enhancing their employment prospects. Suppose that the
government has collected the earnings data for the individuals
who received the training and for the individuals who did not.
The main purpose of methods of program evaluations is to
quantify and estimate the effect of the training program.
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I Example 2: Suppose that an education program required high
schools to agree to assign teachers and students to small (13 to 17
students) or large (22 to 26 students) classes. The government is
interested in the effect of class size on student achievement.

I Such a question can arise in various other situations. A medical
experiment studies on the effects of new treatment ask similar
questions. One group of patients has received new treatment, and
the other group has not.
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Potential outcome variables
I Yi: outcome variable; Di ∈ {0,1}: the binary explanatory

variable; Xi1, ...,Xik : other observed explanatory variables; εi:
unobserved explanatory factors.

I The variable Di is a binary variable taking 1 if the individual has
gone through the treatment and 0 otherwise. The treatment here
represents the actual treatment. The econometrician usually
observes the treatment status for each individual Di.

I (Xi1, ...,Xik) represents a vector of various demographic
characteristics for individual i. E.g., the variables can be annual
income, age, gender, status of marriage, the number of children,
education, etc. These represent all the observable characteristics
of individual i.

I Suppose that Yi is generated by Yi = g (Di,Xi1, ...,Xik,εi).
I g is unknown and in the treatment effect model, we do not

assume g is linear.
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I The outcome variable Yi1 = g (1,Xi1, ...,Xik,εi) represents a
potential outcome of an individual i in the treatment state (e.g.
training is received or studying in a reduced-size class). The
variable Yi0 = g (0,Xi1, ...,Xik,εi) represents a potential outcome
of the same individual i in the control state (e.g. training is
received or studying in a normal-size class).

I Thus, each individual has a random vector (Yi1,Yi0) that
represents potential outcomes depending on the state (treatment
or control). Certainly, (Yi1,Yi0) are correlated.

I The econometrician cannot observe the random vector (Yi1,Yi0)
jointly, because for each individual, only one potential outcome
(Yi1 or Yi0) is realized, depending on whether the individual i has
gone through the treatment or not.
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The relationship between Di and (Yi1,Yi0)

I In a medical experiment, the individual is chosen to be in the
treatment group through some randomization device or a lottery.
In these cases, Di ⊥⊥ (Yi1,Yi0) (i.e., Di is independent of (Yi1,Yi0)).

I For evaluating social experiment/program with observational
data, it may not be convincing to assume Di ⊥⊥ (Yi1,Yi0).
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Treatment effects
I The individual treatment effect (ITE) for each individual i is

defined as:
Yi1−Yi0.

I The ITE is the difference between the potential outcomes in two
different states for the same person.

I The ITE is a counterfactual quantity, in the sense that in the
actual world, we cannot observe the vector (Yi1,Yi0).

I There are mainly two quantities of interest: ATE (average
treatment effect)

ATE = E [Yi1−Yi0],

and ATT (average treatment effect on the treated)

ATT = E [Yi1−Yi0 | Di = 1] .

I The average treatment effect on the treated is the treatment effect
of the people who have gone through the treatment.
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I Note that the expectation in the definition of ATE involves the
joint distribution of (Yi1,Yi0), and the expectation in the definition
of ATT involves the joint distribution of (Yi1,Yi0,Di), which are
both unobserved.

I ATE or ATT can not be estimated accurately merely by
collecting a large size of samples.
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The observed information

I The econometrician observes the treatment status Di and
covariates Xi. She also observes the outcome variable:

Yi = DiYi1+ (1−Di)Yi0.

I The observed outcome variable Yi is not the same as the potential
outcomes Yi1 or Yi0. It is a realized outcome for an individual i
depending on whether she has received treatment (Yi is realized
to be Yi1) or not (Yi is realized to be Yi0).

I Identification of these parameters is concerned with the
following question: can we uniquely determine the value of these
parameters once we know the joint distribution of the observable
random variables?
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Randomized experiments
I In medical experiments, the treatment is performed using a

randomization device. More specifically, for patient i, a lottery is
run, and the patient is selected into the treated group with the
design probability p, and stays in the control group with the
design probability 1− p.

I In these cases, we have Di ⊥⊥ (Yi1,Yi0,Xi). Randomized
experiment assumption requires that knowing whether patient i is
treated or not gives one no informational advantage in predicting
the potential outcomes of i over another who does not know
whether patient i is treated or not.

I This assumption is still possibly violated in medical studies if
only those patients who have higher potential treatment effect are
selected into treatment among all the patients in the study on
purpose.

I In this case, observing Di will give information about the
treatment effect (Yi1−Yi0) for individual i.
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I We use the following result from probability theory: if V ⊥⊥W ,
then for any function f ,

E [ f (V,W) |W = w] = E [ f (V,w)] . (1)

I By (1) and the randomized experiment assumption,
Di ⊥⊥ (Yi1,Yi0), we have

ATE = E [Yi1−Yi0]

E [Yi1]−E [Yi0]
= E [DiYi1+ (1−Di)Yi0 | Di = 1]
−E [DiYi1+ (1−Di)Yi0 | Di = 0]

= E [Yi | Di = 1]−E [Yi | Di = 0] .
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I By LIE,

E [YiDi] = E [E [YiDi | Di]]

= Pr [Di = 1]E [YiDi | Di = 1]
+Pr [Di = 0]E [YiDi | Di = 0]

= E [Di]E [Yi | Di = 1],

where

E [YiDi | Di = 0] = E [(DiYi1+ (1−Di)Yi0)Di | Di = 0]
= 0

follows from (1).
I Similarly, we have

E [Yi | Di = 0] =
E [Yi (1−Di)]

E [1−Di]
.
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I We can write

ATE =
E [YiDi]

E [Di]
−

E [Yi (1−Di)]

E [1−Di]
,

where the right hand side depends on the joint distribution of the
observed random variables.

I For estimation, we replace the population mean by the sample
mean (this is sometimes called the analogue principle):

ÂTE =
1
n

∑n
i=1YiDi

1
n

∑n
i=1 Di

−

1
n

∑n
i=1Yi (1−Di)

1
n

∑n
i=1 (1−Di)

.

I We can check its consistency by using LLN and Slutsky’s lemma.
I This randomization assumption is not convincing when the

individuals in the social experiments are people who may select
into the treatment or not.
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