Introductory Econometrics
Lecture 27: Resampling Methods

Instructor: Ma, Jun
Renmin University of China

December 16, 2021

1/20



Asymptotic normality

» In previous lectures, we have so many estimators with the
property
Vit (B, —8) =4 N (0, 0'2)

and equivalently we can write §,, < N (6,02/n).
> We use N (6, a?/ n) as approximation to the unknown true (often
called finite-sample) distribution of 8,,.

» To estimate o> based on the analogue principle (i.e., replace
population moments/unknown quantities by their sample
moments/estimates), we need knowledge of the
expression(formula) of 2. Very often the expression is very
complicated.

» There are two computation-intensive approaches that do the
estimation without requiring knowledge of the expression of 2.
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Jackknife standard errors

>

Consider a sample with i = 1, ..., n independent observations of
an explained variable Y and k explanatory variables X1, ..., Xj.
Suppose our data is (Y7, X;1, ..., Xjx) fori = 1,...,n. Denote

Zi = (Y, Xit, ., Xik)-

Suppose the estimator § can be written as 0, = ¢, (Z1, ..., Zn),
e.g., ¢n (21,0 2n) = n! er'lzl Zi-

Now denote 8_; = ¢u—1 (Z1,...Zj-1,Zj415 s Zn), i.€., O_; is an
estimator obtained by removing the j-th observation from the
entire sample. The variation in {9__, j=1, ...,n} should be
informative about the population variance of 6,,.

Denote 6 = n~! 21}:1 6 j- The Jackknife standard error is

I’l—l 1t A _2
sejx = - Z(e_j—e) .

A 95% confidence interval is [8, —1.96- 5k, 0, +1.96 5 ]
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» Indeed one can show
n . — 2
(n— I)Z (Q_j —9) - o’
j=1

» Consider the following simple example: for i.i.d. random
variables X1, ..., X;;, we use the sample average X as an estimator

of u =E[X;]. Itis known that v/n (Y—y) —4 N (0,0?), where
o = Var (X)) in this case.

» For this case,
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» For this simple case,

A

0_;—6=

> We have

w3307 =5 3
j=1

J=1

which is the sample variance that is a consistent and unbiased

estimator for o-2.

5/20



Bootstrap

» The bootstrap takes the sample (the values of the realized
explanatory and explained variables) as the population.

» The bootstrap is an alternative way to produce approximations
for the true distribution of 8,,.

» Note that both asymptotic theory and the bootstrap only provide
approximations for finite-sample properties.

» A bootstrap sample is obtained by independently drawing n pairs
(Y;, X14, ..., Xz ) from the observed sample with replacement.

» The bootstrap sample has the same number of observations as the
original sample, however some observations appear several times
and others never.
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Bootstrap Standard Errors

» Step 1: Draw B independent bootstrap samples. B can be as large
as possible. We can take B = 1000.

» Step 2: Estimate € with each of the bootstrap samples, éz for
b=1,..,B.
> Step 3: Estimate the standard deviation of 6 by

where §* =B~ 35 0;.

» Step 4: The bootstrap standard errors can be used to construct
approximate confidence intervals and to perform asymptotic tests
based on the normal distribution, e.g. if the coverage probability

is 95%, a 95% confidence interval is
[0, —1.96- 5eps, 0, +1.96 - Seps .
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Bootstrap percentile confidence intervals

>

Step 1: Draw B independent bootstrap samples. B can be as large
as possible. We can take B = 1000.

Step 2: Estimate 6 with each of the bootstrap samples, é;’; for
b=1,..,B
Step 3: Order the bootstrap replications such that

;< <05

Step 4: The lower and upper confidence bounds are B (a/2)-th
and B (1 —a/2)-th ordered elements. For B = 1000 and & = 5%,
these are the 25th and 975th ordered elements. The estimated

1 — a confidence interval is HB( /2),02(1 )2)

Bootstrap percentile confidence intervals often have more
accurate coverage probabilities (i.e. closer to the nominal
coverage probability 1 — @) than the usual confidence intervals
based on standard normal quantiles and estimated variance.
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Bootstrap-7 test

» We consider testing Hg : 8 = 6.
» We can conduct a bootstrap-based hypothesis testing based on
the bootstrap percentile confidence interval: we simply reject Hy

if 8y fails to be an element of the bootstrap percentile confidence
interval.

> We can show that T =/ (6 —6g) /& —4 N (0, 1) under Hy. We
use the standard normal distribution as approximation to the true

distribution of 7 and define critical values based on standard
normal quantile.

» For each bootstrap sample b =1, ..., B, we can calculate 6" using
the bootstrap sample.
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>

|

Step 1: Draw B independent bootstrap samples. B can be as large
as possible. We can take B = 1000.

Step 2: Estimate 6 and o with each of the bootstrap samples, 92,
o, for b =1,..., B and the t-value for each bootstrap sample:

Vi (35~ 0)

t*:
b 5
b

Notice that @ is used instead of 6 in the construction.

Step 3: Order the bootstrap replications of ¢ such that

1] < --- < ty. The lower critical value and the upper critical value
are then the B (a/2)-th and B (1 — a/2)-th ordered elements. For
B =1000 and @ = 5%, these are the 25th and 975th ordered
elements. The bootstrap lower and upper critical values generally
differ in absolute values.
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» In finite samples (fixed n), for neither the bootstrap-¢ test nor the
usual 7-test that uses £1.96 as critical values , the true probability
of making type-I error is exactly equal to « (e.g., 0.05).

» In almost all cases, the true probability of making type-I error is
greater than «, i.e., we always “over-reject” the null hypothesis.

» One can show that for bootstrap-f test, in finite samples, the true
probability of making type-I error is closer to the nominal

significance level « than the standard 7-test that uses +1.96 as
critical values.
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Why does the bootstrap work?

» Suppose X1, ..., X, is our random sample and we have an
estimator § of some parameter 6. Notice that we can write
6=0(X,,...,X,) as a function of the data.

» The bootstrap sample X f, ..., X, can be viewed as a new (i.i.d.)
random sample such that the marginal distribution of X is the
discrete distribution with X = X; with probability 1/n, for
j=1,...,n.

» Notice that conditionally on Xj, ..., X,, being observed, we draw
X, i=1,...,n. Therefore, we can write

1
Pr(X;/=X;|X1,...X,| = — forj=1,...n.
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> Let F,, (1) =Pr [\/ﬁ (9 -0) < t] be the distribution function of
\n (6 -6). If we knew F,, we could easily construct a
confidence interval

A t—(Y A~ t(l’
[9_ 1 /2,0_ /2]’
Vn Vi

where ¢, is the a-quantile of F,,: t, = F,! ().

» In reality, we do not know F;, and we can often show that F}, can
be approximated by the distribution function of some centralized
normal random variable N (0, o2).

» The normal approximation with N (0, 0'2) requires that o> can be
estimated consistently.
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» Consider an alternative approximation, the conditional
distribution

Fy(t)=Pr[vn(0"-0) <t| X1,.... Xn],

where 6* is the “bootstrap analogue” of 4, i.e., §* =0 (X, X5h).
» Notice that £, is known to us since the distribution of the

bootstrap sample is known. £, can be approximated by computer
simulations.
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A simple example

» Suppose X; has mean y and variance o>. We want to construct a
confidence interval for u.

> Letg=n"'Y" X;and F, (1) =Pr [\/ﬁ(ﬁ —u) < t]. The central
limit theorem implies that F), is approximately @, the CDF of a
N (0,0?) random variable.

> We want to show that
Fo () =Pr [V (6"~ 1) 1] X100 X,

is close to F,.
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Berry-Esseen theorem

» Berry-Esseen Theorem: Let X, ..., X, be i.i.d. with mean u and
variance 2. Denote u3 =E [|X1 —,u|3]. Let Z, = \/ﬁ(fn —/,t).

Then 13
max [Pr(Z, < 1] - @ ()] < - a
te

4 o3yn’
» Berry-Esseen Theorem is a refinement of the CLT, which only
gives the conclusion that Pr[Z,, <¢] —-®, (1) > 0as n — oo.
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> Let5?=n"" 2 (X — )% It is true but somewhat hard to see
that 52 is the “population” conditional variance of X; given
X1y Xn. Let iz =n"' 30 | X; - 2.
» Now by the triangle inequality,
max |£,, (1) = Fy (1) < max |y (1) = @ (1)

+max| @ (1) = @i (1) +max| £, (1) = @i (1))

» The Berry-Esseen Theorem implies that

3 w3

max|F (r)— ¢>0-(t)|_ 3\/_
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» Since 6° —), o2, it can be shown

max |9 (1) = B (1)] = 0.

» The magic is that Berry-Esseen theorem can be applied to the last

term: .
33 3

4 53\

» Notice that fi3 —, pu3 > 0and & —, o > 0. So we have

rpg@ﬁn (1) - D5 (1)] <

gleaﬂéqﬁn ()= D4 (1) = 0.

This implies max; g !Fn (t)-F, (t)| —, 0. F,,, which is
unknown, can be well-approximated by £, which is known
given the data.
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STATA implementation

» In STATA, we can use the command
bootstrap, reps(###): stata command

The number ### specifies the number of bootstrap replications
(B). For example, “bootstrap, reps(100): regress y x”.

» This command can be applied to instrumental variable
estimation, binary choice models, multinomial choice models,
censored regression, the treatment effect estimator...

> We can use a post estimation command “estat bootstrap,
percentile” to ask STATA to report bootstrap percentile
confidence intervals for the parameters.
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