Introductory Econometrics

Lecture 27: Resampling Methods

Instructor: Ma, Jun

Renmin University of China

December 16, 2021

Asymptotic normality

► In previous lectures, we have so many estimators with the property

$$\sqrt{n} \left(\hat{\theta}_n - \theta \right) \to_d N \left(0, \sigma^2 \right)$$

and equivalently we can write $\hat{\theta}_n \stackrel{a}{\sim} N(\theta, \sigma^2/n)$.

- ▶ We use $N(\theta, \sigma^2/n)$ as approximation to the unknown true (often called finite-sample) distribution of $\hat{\theta}_n$.
- ▶ To estimate σ^2 based on the analogue principle (i.e., replace population moments/unknown quantities by their sample moments/estimates), we need knowledge of the expression(formula) of σ^2 . Very often the expression is very complicated.
- ► There are two computation-intensive approaches that do the estimation without requiring knowledge of the expression of σ^2 .

Jackknife standard errors

- Consider a sample with i = 1, ..., n independent observations of an explained variable Y and k explanatory variables $X_1, ..., X_k$. Suppose our data is $(Y_i, X_{i1}, ..., X_{ik})$ for i = 1, ..., n. Denote $Z_i = (Y_i, X_{i1}, ..., X_{ik})$.
- Suppose the estimator $\hat{\theta}$ can be written as $\hat{\theta}_n = \varphi_n(Z_1,...,Z_n)$, e.g., $\varphi_n(z_1,...,z_n) = n^{-1} \sum_{i=1}^n z_i$.
- Now denote $\hat{\theta}_{-j} = \varphi_{n-1} (Z_1, ... Z_{j-1}, Z_{j+1}, ..., Z_n)$, i.e., $\hat{\theta}_{-j}$ is an estimator obtained by removing the *j*-th observation from the entire sample. The variation in $\{\hat{\theta}_{-j}: j=1,...,n\}$ should be informative about the population variance of $\hat{\theta}_n$.
- ▶ Denote $\overline{\hat{\theta}} = n^{-1} \sum_{i=1}^{n} \hat{\theta}_{-i}$. The Jackknife standard error is

$$\widehat{se}_{jk} = \sqrt{\frac{n-1}{n} \sum_{j=1}^{n} \left(\hat{\theta}_{-j} - \overline{\hat{\theta}}\right)^2}.$$

► A 95% confidence interval is $[\hat{\theta}_n - 1.96 \cdot \widehat{se}_{jk}, \hat{\theta}_n + 1.96 \cdot \widehat{se}_{jk}]$.

► Indeed one can show

$$(n-1)\sum_{j=1}^{n} \left(\hat{\theta}_{-j} - \overline{\hat{\theta}}\right)^2 \to_p \sigma^2.$$

- ► Consider the following simple example: for i.i.d. random variables $X_1, ..., X_n$, we use the sample average \overline{X} as an estimator of $\mu = \mathbb{E}[X_1]$. It is known that $\sqrt{n}(\overline{X} \mu) \rightarrow_d \mathbb{N}(0, \sigma^2)$, where $\sigma^2 = \text{Var}(X_1)$ in this case.
- ► For this case,

$$\hat{\theta}_{-j} = \frac{1}{n-1} \left(n\overline{X} - X_j \right),\,$$

$$\frac{1}{n}\sum_{j=1}^{n}\hat{\theta}_{-j} = \frac{1}{n(n-1)}\sum_{j=1}^{n} \left(n\overline{X} - X_{j}\right)$$
$$= \overline{X}.$$

► For this simple case,

$$\hat{\theta}_{-j} - \overline{\hat{\theta}} = \frac{1}{n-1} \left(n \overline{X} - X_j \right) - \overline{X} = \frac{1}{n-1} \left(\overline{X} - X_j \right).$$

► We have

$$(n-1)\sum_{j=1}^{n} \left(\hat{\theta}_{-j} - \overline{\hat{\theta}}\right)^2 = \frac{1}{n-1}\sum_{j=1}^{n} \left(X_j - \overline{X}\right)^2,$$

which is the sample variance that is a consistent and unbiased estimator for σ^2 .

Bootstrap

- ► The bootstrap takes the sample (the values of the realized explanatory and explained variables) as the population.
- ► The bootstrap is an alternative way to produce approximations for the true distribution of $\hat{\theta}_n$.
- ► Note that both asymptotic theory and the bootstrap only provide approximations for finite-sample properties.
- ▶ A bootstrap sample is obtained by independently drawing n pairs $(Y_i, X_{1i}, ..., X_{ik})$ from the observed sample with replacement.
- ► The bootstrap sample has the same number of observations as the original sample, however some observations appear several times and others never.

Bootstrap Standard Errors

- ► Step 1: Draw *B* independent bootstrap samples. *B* can be as large as possible. We can take B = 1000.
- ► Step 2: Estimate θ with each of the bootstrap samples, $\hat{\theta}_b^*$ for b = 1, ..., B.
- ► Step 3: Estimate the standard deviation of $\hat{\theta}$ by

$$\widehat{se}_{bs} \equiv \sqrt{\frac{1}{B} \sum_{b=1}^{B} \left(\hat{\theta}_b^* - \hat{\theta}^* \right)^2}$$

where $\hat{\theta}^* = B^{-1} \sum_{b=1}^{B} \hat{\theta}_b^*$.

Step 4: The bootstrap standard errors can be used to construct approximate confidence intervals and to perform asymptotic tests based on the normal distribution, e.g. if the coverage probability is 95%, a 95% confidence interval is $[\hat{\theta}_n - 1.96 \cdot \widehat{se}_{bs}, \hat{\theta}_n + 1.96 \cdot \widehat{se}_{bs}]$.

Bootstrap percentile confidence intervals

- ► Step 1: Draw *B* independent bootstrap samples. *B* can be as large as possible. We can take B = 1000.
- ► Step 2: Estimate θ with each of the bootstrap samples, $\hat{\theta}_b^*$ for b = 1, ..., B.
- ► Step 3: Order the bootstrap replications such that

$$\hat{\theta}_1^* \leq \cdots \leq \hat{\theta}_B^*$$
.

- ► Step 4: The lower and upper confidence bounds are $B(\alpha/2)$ -th and $B(1-\alpha/2)$ -th ordered elements. For B=1000 and $\alpha=5\%$, these are the 25th and 975th ordered elements. The estimated $1-\alpha$ confidence interval is $\left[\hat{\theta}_{B(\alpha/2)}^*, \hat{\theta}_{B(1-\alpha/2)}^*\right]$.
- ▶ Bootstrap percentile confidence intervals often have more accurate coverage probabilities (i.e. closer to the nominal coverage probability $1-\alpha$) than the usual confidence intervals based on standard normal quantiles and estimated variance.

Bootstrap-t test

- We consider testing $H_0: \theta = \theta_0$.
- ▶ We can conduct a bootstrap-based hypothesis testing based on the bootstrap percentile confidence interval: we simply reject H_0 if θ_0 fails to be an element of the bootstrap percentile confidence interval.
- ▶ We can show that $T = \sqrt{n} \left(\hat{\theta} \theta_0 \right) / \hat{\sigma} \rightarrow_d N(0, 1)$ under H₀. We use the standard normal distribution as approximation to the true distribution of T and define critical values based on standard normal quantile.
- For each bootstrap sample b = 1, ..., B, we can calculate $\hat{\sigma}^*$ using the bootstrap sample.

- ► Step 1: Draw *B* independent bootstrap samples. *B* can be as large as possible. We can take B = 1000.
- Step 2: Estimate θ and σ with each of the bootstrap samples, $\hat{\theta}_b^*$, $\hat{\sigma}_b^*$ for b = 1, ..., B and the t-value for each bootstrap sample:

$$t_b^* = \frac{\sqrt{n} \left(\hat{\theta}_b^* - \hat{\theta} \right)}{\hat{\sigma}_b^*}$$

Notice that $\hat{\theta}$ is used instead of θ_0 in the construction.

► Step 3: Order the bootstrap replications of t such that $t_1^* \le \cdots \le t_B^*$. The lower critical value and the upper critical value are then the $B(\alpha/2)$ -th and $B(1-\alpha/2)$ -th ordered elements. For B = 1000 and $\alpha = 5\%$, these are the 25th and 975th ordered elements. The bootstrap lower and upper critical values generally differ in absolute values.

- ▶ In finite samples (fixed n), for neither the bootstrap-t test nor the usual t-test that uses ± 1.96 as critical values, the true probability of making type-I error is exactly equal to α (e.g., 0.05).
- ▶ In almost all cases, the true probability of making type-I error is greater than α , i.e., we always "over-reject" the null hypothesis.
- ▶ One can show that for bootstrap-t test, in finite samples, the true probability of making type-I error is closer to the nominal significance level α than the standard t-test that uses ± 1.96 as critical values.

- ▶ In finite samples (fixed n), for neither the bootstrap-t test nor the usual t-test that uses ± 1.96 as critical values, the true probability of making type-I error is exactly equal to α (e.g., 0.05).
- ▶ In almost all cases, the true probability of making type-I error is greater than α , i.e., we always "over-reject" the null hypothesis.
- ▶ One can show that for bootstrap-t test, in finite samples, the true probability of making type-I error is closer to the nominal significance level α than the standard t-test that uses ± 1.96 as critical values.

Why does the bootstrap work?

- Suppose $X_1, ..., X_n$ is our random sample and we have an estimator $\hat{\theta}$ of some parameter θ . Notice that we can write $\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$ as a function of the data.
- ▶ The bootstrap sample $X_1^*, ..., X_n^*$ can be viewed as a new (i.i.d.) random sample such that the marginal distribution of X_i^* is the discrete distribution with $X_i^* = X_j$ with probability 1/n, for j = 1, ..., n.
- Notice that conditionally on $X_1,...,X_n$ being observed, we draw X_i^* , i = 1,...,n. Therefore, we can write

$$\Pr\left[X_i^* = X_j \mid X_1, ..., X_n\right] = \frac{1}{n}, \text{ for } j = 1, ..., n.$$

Let $F_n(t) = \Pr \left[\sqrt{n} \left(\hat{\theta} - \theta \right) \le t \right]$ be the distribution function of $\sqrt{n} \left(\hat{\theta} - \theta \right)$. If we knew F_n , we could easily construct a confidence interval

$$\left[\hat{\theta} - \frac{t_{1-\alpha/2}}{\sqrt{n}}, \hat{\theta} - \frac{t_{\alpha/2}}{\sqrt{n}}\right],$$

where t_{α} is the α -quantile of F_n : $t_{\alpha} = F_n^{-1}(\alpha)$.

- ▶ In reality, we do not know F_n and we can often show that F_n can be approximated by the distribution function of some centralized normal random variable N $(0, \sigma^2)$.
- ► The normal approximation with $N(0, \sigma^2)$ requires that σ^2 can be estimated consistently.

 Consider an alternative approximation, the conditional distribution

$$\hat{F}_n(t) = \Pr\left[\sqrt{n}\left(\hat{\theta}^* - \hat{\theta}\right) \le t \mid X_1, ..., X_n\right],$$

where $\hat{\theta}^*$ is the "bootstrap analogue" of $\hat{\theta}$, i.e., $\hat{\theta}^* = \hat{\theta}(X_1^*, ..., X_n^*)$.

Notice that \hat{F}_n is known to us since the distribution of the bootstrap sample is known. \hat{F}_n can be approximated by computer simulations.

A simple example

- ▶ Suppose X_i has mean μ and variance σ^2 . We want to construct a confidence interval for μ .
- Let $\hat{\mu} = n^{-1} \sum_{i=1}^{n} X_i$ and $F_n(t) = \Pr\left[\sqrt{n} (\hat{\mu} \mu) \le t\right]$. The central limit theorem implies that F_n is approximately Φ_{σ} , the CDF of a N $(0, \sigma^2)$ random variable.
- ► We want to show that

$$\hat{F}_{n}\left(t\right) = \Pr\left[\sqrt{n}\left(\hat{\mu}^{*} - \hat{\mu}\right) \le t \mid X_{1}, ..., X_{n}\right]$$

is close to F_n .

Berry-Esseen theorem

▶ Berry-Esseen Theorem: Let $X_1, ..., X_n$ be i.i.d. with mean μ and variance σ^2 . Denote $\mu_3 = \mathbb{E}\left[|X_1 - \mu|^3\right]$. Let $Z_n = \sqrt{n}\left(\overline{X}_n - \mu\right)$. Then

$$\max_{t \in \mathbb{R}} \left| \Pr \left[Z_n \le t \right] - \Phi_{\sigma} \left(t \right) \right| \le \frac{33}{4} \frac{\mu_3}{\sigma^3 \sqrt{n}}.$$

▶ Berry-Esseen Theorem is a refinement of the CLT, which only gives the conclusion that $\Pr[Z_n \le t] - \Phi_{\sigma}(t) \to 0$ as $n \to \infty$.

- Let $\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n (X_i \hat{\mu})^2$. It is true but somewhat hard to see that $\hat{\sigma}^2$ is the "population" conditional variance of X_i^* given $X_1, ..., X_n$. Let $\hat{\mu}_3 = n^{-1} \sum_{i=1}^n |X_i \hat{\mu}|^3$.
- ► Now by the triangle inequality,

$$\begin{split} \max_{t \in \mathbb{R}} \left| \hat{F}_{n}\left(t\right) - F_{n}\left(t\right) \right| &\leq \max_{t \in \mathbb{R}} \left| F_{n}\left(t\right) - \Phi_{\sigma}\left(t\right) \right| \\ &+ \max_{t \in \mathbb{R}} \left| \Phi_{\sigma}\left(t\right) - \Phi_{\hat{\sigma}}\left(t\right) \right| + \max_{t \in \mathbb{R}} \left| \hat{F}_{n}\left(t\right) - \Phi_{\hat{\sigma}}\left(t\right) \right|. \end{split}$$

► The Berry-Esseen Theorem implies that

$$\max_{t \in \mathbb{R}} |F_n(t) - \Phi_{\sigma}(t)| \le \frac{33}{4} \frac{\mu_3}{\sigma^3 \sqrt{n}}.$$

► Since $\hat{\sigma}^2 \rightarrow_p \sigma^2$, it can be shown

$$\max_{t\in\mathbb{R}}\left|\Phi_{\sigma}\left(t\right)-\Phi_{\hat{\sigma}}\left(t\right)\right|\rightarrow_{p}0.$$

► The magic is that Berry-Esseen theorem can be applied to the last term:

$$\max_{t \in \mathbb{R}} \left| \hat{F}_n(t) - \Phi_{\hat{\sigma}}(t) \right| \le \frac{33}{4} \frac{\hat{\mu}_3}{\hat{\sigma}^3 \sqrt{n}}.$$

▶ Notice that $\hat{\mu}_3 \rightarrow_p \mu_3 > 0$ and $\hat{\sigma} \rightarrow_p \sigma > 0$. So we have

$$\max_{t \in \mathbb{R}} \left| \hat{F}_n(t) - \Phi_{\hat{\sigma}}(t) \right| \to_p 0.$$

This implies $\max_{t \in \mathbb{R}} \left| \hat{F}_n(t) - F_n(t) \right| \to_p 0$. F_n , which is unknown, can be well-approximated by \hat{F}_n , which is known given the data.

STATA implementation

► In STATA, we can use the command

bootstrap, reps(###): stata command

The number ### specifies the number of bootstrap replications (*B*). For example, "bootstrap, reps(100): regress y x".

- ► This command can be applied to instrumental variable estimation, binary choice models, multinomial choice models, censored regression, the treatment effect estimator...
- ► We can use a post estimation command "estat bootstrap, percentile" to ask STATA to report bootstrap percentile confidence intervals for the parameters.