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Asymptotic normality

I In previous lectures, we have so many estimators with the
property √

𝑛
(
𝜃𝑛 − 𝜃

)
→𝑑 N

(
0,𝜎2

)
and equivalently we can write 𝜃𝑛

𝑎∼ N
(
𝜃,𝜎2/𝑛

)
.

I We use N
(
𝜃,𝜎2/𝑛

)
as approximation to the unknown true (often

called finite-sample) distribution of 𝜃𝑛.
I To estimate 𝜎2 based on the analogue principle (i.e., replace

population moments/unknown quantities by their sample
moments/estimates), we need knowledge of the
expression(formula) of 𝜎2. Very often the expression is very
complicated.

I There are two computation-intensive approaches that do the
estimation without requiring knowledge of the expression of 𝜎2.
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Jackknife standard errors
I Consider a sample with 𝑖 = 1, ..., 𝑛 independent observations of

an explained variable 𝑌 and 𝑘 explanatory variables 𝑋1, ..., 𝑋𝑘 .
Suppose our data is (𝑌𝑖 , 𝑋𝑖1, ..., 𝑋𝑖𝑘) for 𝑖 = 1, ..., 𝑛. Denote
𝑍𝑖 = (𝑌𝑖 , 𝑋𝑖1, ..., 𝑋𝑖𝑘).

I Suppose the estimator 𝜃 can be written as 𝜃𝑛 = 𝜑𝑛 (𝑍1, ..., 𝑍𝑛),
e.g., 𝜑𝑛 (𝑧1, ..., 𝑧𝑛) = 𝑛−1∑𝑛

𝑖=1 𝑧𝑖 .
I Now denote 𝜃− 𝑗 = 𝜑𝑛−1

(
𝑍1, ...𝑍 𝑗−1, 𝑍 𝑗+1, ..., 𝑍𝑛

)
, i.e., 𝜃− 𝑗 is an

estimator obtained by removing the 𝑗-th observation from the
entire sample. The variation in

{
𝜃− 𝑗 : 𝑗 = 1, ..., 𝑛

}
should be

informative about the population variance of 𝜃𝑛.
I Denote 𝜃 = 𝑛−1∑𝑛

𝑗=1 𝜃− 𝑗 . The Jackknife standard error is

𝑠𝑒jk =

√√√
𝑛−1
𝑛

𝑛∑︁
𝑗=1

(
𝜃− 𝑗 − 𝜃

)2
.

I A 95% confidence interval is
[
𝜃𝑛 −1.96 · 𝑠𝑒jk, 𝜃𝑛 +1.96 · 𝑠𝑒jk

]
.
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I Indeed one can show

(𝑛−1)
𝑛∑︁
𝑗=1

(
𝜃− 𝑗 − 𝜃

)2
→𝑝 𝜎2.

I Consider the following simple example: for i.i.d. random
variables 𝑋1, ..., 𝑋𝑛, we use the sample average 𝑋 as an estimator
of 𝜇 = E [𝑋1]. It is known that

√
𝑛

(
𝑋 − 𝜇

)
→𝑑 N

(
0,𝜎2) , where

𝜎2 = Var [𝑋1] in this case.
I For this case,

𝜃− 𝑗 =
1

𝑛−1

(
𝑛𝑋 − 𝑋 𝑗

)
,

1
𝑛

𝑛∑︁
𝑗=1

𝜃− 𝑗 =
1

𝑛 (𝑛−1)

𝑛∑︁
𝑗=1

(
𝑛𝑋 − 𝑋 𝑗

)
=𝑋.
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I For this simple case,

𝜃− 𝑗 − 𝜃 =
1

𝑛−1

(
𝑛𝑋 − 𝑋 𝑗

)
− 𝑋 =

1
𝑛−1

(
𝑋 − 𝑋 𝑗

)
.

I We have

(𝑛−1)
𝑛∑︁
𝑗=1

(
𝜃− 𝑗 − 𝜃

)2
=

1
𝑛−1

𝑛∑︁
𝑗=1

(
𝑋 𝑗 − 𝑋

)2
,

which is the sample variance that is a consistent and unbiased
estimator for 𝜎2.
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Bootstrap

I The bootstrap takes the sample (the values of the realized
explanatory and explained variables) as the population.

I The bootstrap is an alternative way to produce approximations
for the true distribution of 𝜃𝑛.

I Note that both asymptotic theory and the bootstrap only provide
approximations for finite-sample properties.

I A bootstrap sample is obtained by independently drawing 𝑛 pairs
(𝑌𝑖 , 𝑋1𝑖 , ..., 𝑋𝑖𝑘) from the observed sample with replacement.

I The bootstrap sample has the same number of observations as the
original sample, however some observations appear several times
and others never.
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Bootstrap Standard Errors

I Step 1: Draw 𝐵 independent bootstrap samples. 𝐵 can be as large
as possible. We can take 𝐵 = 1000.

I Step 2: Estimate 𝜃 with each of the bootstrap samples, 𝜃∗
𝑏

for
𝑏 = 1, ..., 𝐵.

I Step 3: Estimate the standard deviation of 𝜃 by

𝑠𝑒bs =

√√√
1
𝐵

𝐵∑︁
𝑏=1

(
𝜃∗
𝑏
− 𝜃∗

)2

where 𝜃∗ = 𝐵−1∑𝐵
𝑏=1 𝜃

∗
𝑏
.

I Step 4: The bootstrap standard errors can be used to construct
approximate confidence intervals and to perform asymptotic tests
based on the normal distribution, e.g. if the coverage probability
is 95%, a 95% confidence interval is[
𝜃𝑛 −1.96 · 𝑠𝑒bs, 𝜃𝑛 +1.96 · 𝑠𝑒bs

]
.
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Bootstrap percentile confidence intervals
I Step 1: Draw 𝐵 independent bootstrap samples. 𝐵 can be as large

as possible. We can take 𝐵 = 1000.
I Step 2: Estimate 𝜃 with each of the bootstrap samples, 𝜃∗

𝑏
for

𝑏 = 1, ..., 𝐵.
I Step 3: Order the bootstrap replications such that

𝜃∗(1) ≤ 𝜃∗(2) ≤ · · · ≤ 𝜃∗(𝐵) .

I Step 4: The lower and upper confidence bounds are 𝐵× (𝛼/2)-th
and 𝐵× (1−𝛼/2)-th ordered elements. For 𝐵 = 1000 and
𝛼 = 5%, these are the 25th and 975th ordered elements. The
estimated 1−𝛼 confidence interval is

[
𝜃∗(𝐵×(𝛼/2)) , 𝜃

∗
(𝐵×(1−𝛼/2))

]
.

I Bootstrap percentile confidence intervals often have more
accurate coverage probabilities (i.e. closer to the nominal
coverage probability 1−𝛼) than the usual confidence intervals
based on standard normal quantiles and estimated variance.
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Bootstrap-𝑡 test

I We consider testing H0 : 𝜃 = 𝜃0.
I We can conduct a bootstrap-based hypothesis testing based on

the bootstrap percentile confidence interval: we simply reject H0
if 𝜃0 fails to be an element of the bootstrap percentile confidence
interval.

I We can show that 𝑇 =
√
𝑛
(
𝜃 − 𝜃0

)
/�̂� →𝑑 N (0,1) under H0. We

use the standard normal distribution as approximation to the true
distribution of 𝑇 and define critical values based on standard
normal quantile.

I For each bootstrap sample 𝑏 = 1, ..., 𝐵, we can calculate �̂�∗ using
the bootstrap sample.
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I Step 1: Draw 𝐵 independent bootstrap samples. 𝐵 can be as large
as possible. We can take 𝐵 = 1000.

I Step 2: Estimate 𝜃 and 𝜎 with each of the bootstrap samples, 𝜃∗
𝑏
,

�̂�∗
𝑏

for 𝑏 = 1, ..., 𝐵 and the 𝑡-value for each bootstrap sample:

𝑡∗𝑏 =

√
𝑛
(
𝜃∗
𝑏
− 𝜃

)
�̂�∗
𝑏

Notice that 𝜃 is used instead of 𝜃0 in the construction.
I Step 3: Order the bootstrap replications of 𝑡 such that

𝑡∗(1) ≤ 𝑡∗(2) ≤ · · · ≤ 𝑡∗(𝐵) . The lower critical value and the upper
critical value are then the 𝐵× (𝛼/2)-th and 𝐵× (1−𝛼/2)-th
ordered elements. For 𝐵 = 1000 and 𝛼 = 5%, these are the 25th
and 975th ordered elements. The bootstrap lower and upper
critical values generally differ in absolute values.
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I A common mistake is that in Step 2, one mistakenly computes
√
𝑛
(
𝜃∗
𝑏
− 𝜃0

)
�̂�∗
𝑏

.

The test will have no power if we made this mistake.
I The distribution of the 𝑡-statistic 𝑇 =

√
𝑛
(
𝜃 − 𝜃0

)
/�̂� under

H1 : 𝜃 ≠ 𝜃0 is different from that under H0. Under H1, 𝑇 is not
centered:

𝑇 =

√
𝑛
(
𝜃 − 𝜃0

)
�̂�

=

√
𝑛
(
𝜃 − 𝜃

)
�̂�

+
√
𝑛 (𝜃 − 𝜃0)

�̂�
.

I An important guideline is that we should always approximate the
distribution of 𝑇 under H0, i.e., the distribution of

√
𝑛
(
𝜃 − 𝜃

)
/�̂�.
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I In finite samples (fixed 𝑛), for neither the bootstrap-𝑡 test nor the
usual 𝑡-test that uses ±1.96 as critical values , the true probability
of making type-I error is exactly equal to 𝛼 (e.g., 0.05).

I In almost all cases, the true probability of making type-I error is
greater than 𝛼, i.e., we always “over-reject” the null hypothesis.

I One can show that for bootstrap-𝑡 test, in finite samples, the true
probability of making type-I error is closer to the nominal
significance level 𝛼 than the standard 𝑡-test that uses ±1.96 as
critical values.
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Why does the bootstrap work?

I Suppose 𝑋1, ..., 𝑋𝑛 is our random sample and we have an
estimator 𝜃 of some parameter 𝜃. Notice that we can write
𝜃 = 𝜃 (𝑋1, ..., 𝑋𝑛) as a function of the data.

I The bootstrap sample 𝑋∗
1 , ..., 𝑋

∗
𝑛 can be viewed as a new (i.i.d.)

random sample such that the marginal distribution of 𝑋∗
𝑖

is the
discrete distribution with 𝑋∗

𝑖
= 𝑋 𝑗 with probability 1/𝑛, for

𝑗 = 1, ..., 𝑛.
I Notice that conditionally on 𝑋1, ..., 𝑋𝑛 being observed, we draw

𝑋∗
𝑖
, 𝑖 = 1, ..., 𝑛. Therefore, we can write

Pr
[
𝑋∗
𝑖 = 𝑋 𝑗 | 𝑋1, ..., 𝑋𝑛

]
=

1
𝑛
, for 𝑗 = 1, ..., 𝑛.
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I Let 𝐹𝑛 (𝑡) = Pr
[√

𝑛
(
𝜃 − 𝜃

)
≤ 𝑡

]
be the distribution function of√

𝑛
(
𝜃 − 𝜃

)
. If we knew 𝐹𝑛, we could easily construct a

confidence interval [
𝜃 −

𝑡1−𝛼/2√
𝑛

, 𝜃 −
𝑡𝛼/2√
𝑛

]
,

where 𝑡𝛼 is the 𝛼-quantile of 𝐹𝑛: 𝑡𝛼 = 𝐹−1
𝑛 (𝛼).

I In reality, we do not know 𝐹𝑛 and we can often show that 𝐹𝑛 can
be approximated by the distribution function of some centralized
normal random variable N

(
0,𝜎2) .

I The normal approximation with N
(
0,𝜎2) requires that 𝜎2 can be

estimated consistently.

14 / 20



I Consider an alternative approximation, the conditional
distribution

�̂�𝑛 (𝑡) = Pr
[√

𝑛
(
𝜃∗− 𝜃

)
≤ 𝑡 | 𝑋1, ..., 𝑋𝑛

]
,

where 𝜃∗ is the “bootstrap analogue” of 𝜃, i.e., 𝜃∗ = 𝜃
(
𝑋∗

1 , ..., 𝑋
∗
𝑛

)
.

I Notice that �̂�𝑛 is known to us since the distribution of the
bootstrap sample is known. �̂�𝑛 can be approximated by computer
simulations.
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A simple example

I Suppose 𝑋𝑖 has mean 𝜇 and variance 𝜎2. We want to construct a
confidence interval for 𝜇.

I Let �̂� = 𝑛−1∑𝑛
𝑖=1 𝑋𝑖 and 𝐹𝑛 (𝑡) = Pr

[√
𝑛 ( �̂�− 𝜇) ≤ 𝑡

]
. The central

limit theorem implies that 𝐹𝑛 is approximately Φ𝜎 , the CDF of a
N
(
0,𝜎2) random variable.

I We want to show that

�̂�𝑛 (𝑡) = Pr
[√

𝑛 ( �̂�∗− �̂�) ≤ 𝑡 | 𝑋1, ..., 𝑋𝑛

]
is close to 𝐹𝑛.
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Berry-Esseen theorem

I Berry-Esseen Theorem: Let 𝑋1, ..., 𝑋𝑛 be i.i.d. with mean 𝜇 and
variance 𝜎2. Denote 𝜇3 = E

[
|𝑋1 − 𝜇 |3

]
. Let 𝑍𝑛 =

√
𝑛

(
𝑋𝑛 − 𝜇

)
.

Then
max
𝑡 ∈R

|Pr [𝑍𝑛 ≤ 𝑡] −Φ𝜎 (𝑡) | ≤ 33
4

𝜇3

𝜎3√𝑛
.

I Berry-Esseen Theorem is a refinement of the CLT, which only
gives the conclusion that Pr [𝑍𝑛 ≤ 𝑡] −Φ𝜎 (𝑡) → 0 as 𝑛→∞.
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I Let �̂�2 = 𝑛−1∑𝑛
𝑖=1 (𝑋𝑖 − �̂�)2. It is true but somewhat hard to see

that �̂�2 is the “population” conditional variance of 𝑋∗
𝑖

given
𝑋1, ..., 𝑋𝑛. Let �̂�3 = 𝑛−1∑𝑛

𝑖=1 |𝑋𝑖 − �̂� |3.
I Now by the triangle inequality,

max
𝑡 ∈R

���̂�𝑛 (𝑡) −𝐹𝑛 (𝑡)
�� ≤ max

𝑡 ∈R
|𝐹𝑛 (𝑡) −Φ𝜎 (𝑡) |

+max
𝑡 ∈R

|Φ𝜎 (𝑡) −Φ�̂� (𝑡) | +max
𝑡 ∈R

���̂�𝑛 (𝑡) −Φ�̂� (𝑡)
�� .

I The Berry-Esseen Theorem implies that

max
𝑡 ∈R

|𝐹𝑛 (𝑡) −Φ𝜎 (𝑡) | ≤ 33
4

𝜇3

𝜎3√𝑛
.
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I Since �̂�2 →𝑝 𝜎2, it can be shown

max
𝑡 ∈R

|Φ𝜎 (𝑡) −Φ�̂� (𝑡) | →𝑝 0.

I The magic is that Berry-Esseen theorem can be applied to the last
term:

max
𝑡 ∈R

���̂�𝑛 (𝑡) −Φ�̂� (𝑡)
�� ≤ 33

4
�̂�3

�̂�3√𝑛
.

I Notice that �̂�3 →𝑝 𝜇3 > 0 and �̂� →𝑝 𝜎 > 0. So we have

max
𝑡 ∈R

���̂�𝑛 (𝑡) −Φ�̂� (𝑡)
��→𝑝 0.

This implies max𝑡 ∈R
���̂�𝑛 (𝑡) −𝐹𝑛 (𝑡)

��→𝑝 0. 𝐹𝑛, which is
unknown, can be well-approximated by �̂�𝑛, which is known
given the data.
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STATA implementation

I In STATA, we can use the command

bootstrap, reps(###): stata command

The number ### specifies the number of bootstrap replications
(𝐵). For example, “bootstrap, reps(100): regress y x”.

I This command can be applied to instrumental variable
estimation, binary choice models, multinomial choice models,
censored regression, the treatment effect estimator...

I We can use a post estimation command “estat bootstrap,
percentile” to ask STATA to report bootstrap percentile
confidence intervals for the parameters.
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