Introductory Econometrics Lecture 27: Resampling methods

Instructor: Ma, Jun

Renmin University of China

June 7, 2023

Asymptotic normality

 \blacktriangleright In previous lectures, we have so many estimators with the property

$$
\sqrt{n} \left(\hat{\theta}_n - \theta \right) \longrightarrow_d \mathcal{N} \left(0, \sigma^2 \right)
$$

and equivalently we can write $\hat{\theta}_n \stackrel{a}{\sim} N(\theta, \sigma^2/n)$.

- \blacktriangleright We use N $(\theta, \sigma^2/n)$ as approximation to the unknown true (often called finite-sample) distribution of $\hat{\theta}_n$.
- \triangleright To estimate σ^2 based on the analogue principle (i.e., replace population moments/unknown quantities by their sample moments/estimates), we need knowledge of the expression(formula) of σ^2 . Very often the expression is very complicated.
- \blacktriangleright There are two computation-intensive approaches that do the estimation without requiring knowledge of the expression of σ^2 .

Jackknife standard errors

- \blacktriangleright Consider a sample with $i = 1, ..., n$ independent observations of an explained variable Y and k explanatory variables $X_1, ..., X_k$. Suppose our data is $(Y_i, X_{i1}, ..., X_{ik})$ for $i = 1, ..., n$. Denote $Z_i = (Y_i, X_{i1}, ..., X_{ik}).$
- Suppose the estimator $\hat{\theta}$ can be written as $\hat{\theta}_n = \varphi_n(Z_1, ..., Z_n)$, e.g., $\varphi_n(z_1, ..., z_n) = n^{-1} \sum_{i=1}^n z_i$.
- Now denote $\hat{\theta}_{-j} = \varphi_{n-1} (Z_1, \dots, Z_{j-1}, Z_{j+1}, \dots, Z_n)$, i.e., $\hat{\theta}_{-j}$ is an estimator obtained by removing the *-th observation from the* entire sample. The variation in $\{\hat{\theta}_{-j} : j = 1, ..., n\}$ should be informative about the population variance of $\hat{\theta}_n$.
- ► Denote $\hat{\theta} = n^{-1} \sum_{j=1}^{n} \hat{\theta}_{-j}$. The Jackknife standard error is

$$
\widehat{se}_{jk} = \sqrt{\frac{n-1}{n} \sum_{j=1}^{n} (\widehat{\theta}_{-j} - \overline{\widehat{\theta}})^2}.
$$

A 95% confidence interval is $\left[\hat{\theta}_n - 1.96 \cdot \hat{s} \hat{e}_{jk}, \hat{\theta}_n + 1.96 \cdot \hat{s} \hat{e}_{jk}\right]$.

 \blacktriangleright Indeed one can show

$$
(n-1)\sum_{j=1}^{n} \left(\hat{\theta}_{-j} - \overline{\hat{\theta}}\right)^2 \to_p \sigma^2.
$$

- \triangleright Consider the following simple example: for i.i.d. random variables $X_1, ..., X_n$, we use the sample average \overline{X} as an estimator of $\mu = E[X_1]$. It is known that $\sqrt{n} (\overline{X} - \mu) \rightarrow_d N(0, \sigma^2)$, where σ^2 = Var [X₁] in this case.
- \blacktriangleright For this case.

$$
\hat{\theta}_{-j} = \frac{1}{n-1} \left(n \overline{X} - X_j \right),
$$

$$
\frac{1}{n}\sum_{j=1}^{n}\hat{\theta}_{-j}=\frac{1}{n(n-1)}\sum_{j=1}^{n}\left(n\overline{X}-X_{j}\right)
$$

$$
=\overline{X}.
$$

 \blacktriangleright For this simple case,

$$
\hat{\theta}_{-j} - \overline{\hat{\theta}} = \frac{1}{n-1} \left(n \overline{X} - X_j \right) - \overline{X} = \frac{1}{n-1} \left(\overline{X} - X_j \right).
$$

 \blacktriangleright We have

$$
(n-1)\sum_{j=1}^n\left(\hat{\theta}_{-j}-\overline{\hat{\theta}}\right)^2=\frac{1}{n-1}\sum_{j=1}^n\left(X_j-\overline{X}\right)^2,
$$

which is the sample variance that is a consistent and unbiased estimator for σ^2 .

Bootstrap

- \blacktriangleright The bootstrap takes the sample (the values of the realized explanatory and explained variables) as the population.
- \blacktriangleright The bootstrap is an alternative way to produce approximations for the true distribution of $\hat{\theta}_n$.
- \triangleright Note that both asymptotic theory and the bootstrap only provide approximations for finite-sample properties.
- \blacktriangleright A bootstrap sample is obtained by independently drawing *n* pairs $(Y_i, X_{1i},..., X_{ik})$ from the observed sample with replacement.
- \triangleright The bootstrap sample has the same number of observations as the original sample, however some observations appear several times and others never.

Bootstrap Standard Errors

- \triangleright Step 1: Draw *B* independent bootstrap samples. *B* can be as large as possible. We can take $B = 1000$.
- Step 2: Estimate θ with each of the bootstrap samples, $\hat{\theta}_b^*$ for $b = 1, ..., B$.
- \triangleright Step 3: Estimate the standard deviation of $\hat{\theta}$ by

$$
\widehat{se}_{bs} = \sqrt{\frac{1}{B}\sum_{b=1}^{B}\left(\widehat{\theta}_b^* - \widehat{\theta}^*\right)^2}
$$

where $\hat{\theta}^* = B^{-1} \sum_{b=1}^B \hat{\theta}_b^*$.

 \triangleright Step 4: The bootstrap standard errors can be used to construct approximate confidence intervals and to perform asymptotic tests based on the normal distribution, e.g. if the coverage probability is 95%, a 95% confidence interval is $\left[\hat{\theta}_n - 1.96 \cdot \widehat{se}_{bs}, \hat{\theta}_n + 1.96 \cdot \widehat{se}_{bs}\right].$

Bootstrap percentile confidence intervals

- \triangleright Step 1: Draw *B* independent bootstrap samples. *B* can be as large as possible. We can take $B = 1000$.
- Step 2: Estimate θ with each of the bootstrap samples, $\hat{\theta}_b^*$ for $b = 1, ..., B$.
- \triangleright Step 3: Order the bootstrap replications such that

$$
\hat{\theta}_{(1)}^* \leq \hat{\theta}_{(2)}^* \leq \cdots \leq \hat{\theta}_{(B)}^*.
$$

- Step 4: The lower and upper confidence bounds are $B \times (\alpha/2)$ -th and $B \times (1-\alpha/2)$ -th ordered elements. For $B = 1000$ and α = 5%, these are the 25th and 975th ordered elements. The estimated 1 – α confidence interval is $\left[\hat{\theta}_{(B\times(\alpha/2))}^*, \hat{\theta}_{(B\times(1-\alpha/2))}^*\right]$.
- \triangleright Bootstrap percentile confidence intervals often have more accurate coverage probabilities (i.e. closer to the nominal coverage probability $1-\alpha$) than the usual confidence intervals based on standard normal quantiles and estimated variance.

Bootstrap-t test

- \blacktriangleright We consider testing H₀ : $\theta = \theta_0$.
- ► We can conduct a bootstrap-based hypothesis testing based on the bootstrap percentile confidence interval: we simply reject H_0 if θ_0 fails to be an element of the bootstrap percentile confidence interval.
- Note that $T = \sqrt{n} (\hat{\theta} \theta_0) / \hat{\sigma} \rightarrow_d N(0, 1)$ under H₀. We use the standard normal distribution as approximation to the true distribution of T and define critical values based on standard normal quantile.
- For each bootstrap sample $b = 1, ..., B$, we can calculate $\hat{\sigma}^*$ using the bootstrap sample.
- \triangleright Step 1: Draw *B* independent bootstrap samples. *B* can be as large as possible. We can take $B = 1000$.
- Step 2: Estimate θ and σ with each of the bootstrap samples, $\hat{\theta}_b^*$, $\hat{\sigma}_b^*$ for $b = 1, ..., B$ and the *t*-value for each bootstrap sample:

$$
t_b^* = \frac{\sqrt{n} \left(\hat{\theta}_b^* - \hat{\theta}\right)}{\hat{\sigma}_b^*}
$$

Notice that $\hat{\theta}$ is used instead of θ_0 in the construction.

 \triangleright Step 3: Order the bootstrap replications of t such that t* $^{*}_{(1)} \leq t^{*}_{(1)}$ $t_{(2)}^* \leq \cdots \leq t_{(B)}^*$. The lower critical value and the upper critical value are then the $B \times (\alpha/2)$ -th and $B \times (1-\alpha/2)$ -th ordered elements. For $B = 1000$ and $\alpha = 5\%$, these are the 25th and 975th ordered elements. The bootstrap lower and upper critical values generally differ in absolute values.

 \blacktriangleright A common mistake is that in Step 2, one mistakenly computes

$$
\frac{\sqrt{n} \left(\hat{\theta}_{b}^{*} - \theta_{0} \right)}{\hat{\sigma}_{b}^{*}}.
$$

The test will have no power if we made this mistake.

Find the f-statistic $T = \sqrt{n} (\hat{\theta} - \theta_0) / \hat{\sigma}$ under H_1 : $\theta \neq \theta_0$ is different from that under H_0 . Under H_1 , T is not centered:

$$
T = \frac{\sqrt{n}(\hat{\theta} - \theta_0)}{\hat{\sigma}} = \frac{\sqrt{n}(\hat{\theta} - \theta)}{\hat{\sigma}} + \frac{\sqrt{n}(\theta - \theta_0)}{\hat{\sigma}}.
$$

 \blacktriangleright An important guideline is that we should always approximate the An important guideline is that we should always approximate the distribution of T under H₀, i.e., the distribution of $\sqrt{n} (\hat{\theta} - \theta)/\hat{\sigma}$.

- In finite samples (fixed *n*), for neither the bootstrap-*t* test nor the usual *t*-test that uses ± 1.96 as critical values, the true probability of making type-I error is exactly equal to α (e.g., 0.05).
- \triangleright In almost all cases, the true probability of making type-I error is greater than α , i.e., we always "over-reject" the null hypothesis.
- \triangleright One can show that for bootstrap-*t* test, in finite samples, the true probability of making type-I error is closer to the nominal significance level α than the standard *t*-test that uses ± 1.96 as critical values.

Why does the bootstrap work?

- \blacktriangleright Suppose $X_1, ..., X_n$ is our random sample and we have an estimator $\hat{\theta}$ of some parameter θ . Notice that we can write $\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$ as a function of the data.
- The bootstrap sample X_1^* $i_1^*,...,X_n^*$ can be viewed as a new (i.i.d.) random sample such that the marginal distribution of X_i^* is the discrete distribution with $X_i^* = X_j$ with probability $1/n$, for $i = 1, ..., n$.
- \blacktriangleright Notice that conditionally on $X_1, ..., X_n$ being observed, we draw X_i^* , $i = 1, ..., n$. Therefore, we can write

$$
\Pr\left[X_i^* = X_j \mid X_1, \dots, X_n\right] = \frac{1}{n}, \text{ for } j = 1, \dots, n.
$$

Execution Execution Function of Let $F_n(t) = \Pr \left[\sqrt{n} (\hat{\theta} - \theta) \le t \right]$ be the distribution function of Let $\overline{r}_n(t) = 1 + \sqrt{n}(v-v) \le t$ be the distribution rank
 $\sqrt{n}(\hat{\theta} - \theta)$. If we knew F_n , we could easily construct a confidence interval

$$
\left[\hat{\theta}-\frac{t_{1-\alpha/2}}{\sqrt{n}},\hat{\theta}-\frac{t_{\alpha/2}}{\sqrt{n}}\right],
$$

where t_{α} is the α -quantile of F_n : $t_{\alpha} = F_n^{-1}(\alpha)$.

- In reality, we do not know F_n and we can often show that F_n can be approximated by the distribution function of some centralized normal random variable N $(0, \sigma^2)$.
- The normal approximation with N $(0, \sigma^2)$ requires that σ^2 can be estimated consistently.

 \triangleright Consider an alternative approximation, the conditional distribution

$$
\hat{F}_n(t) = \Pr\left[\sqrt{n} \left(\hat{\theta}^* - \hat{\theta}\right) \leq t \mid X_1, ..., X_n\right],
$$

where $\hat{\theta}^*$ is the "bootstrap analogue" of $\hat{\theta}$, i.e., $\hat{\theta}^* = \hat{\theta}(X_1^*)$ X_n^* , ..., X_n^*).

 \blacktriangleright Notice that \hat{F}_n is known to us since the distribution of the bootstrap sample is known. \hat{F}_n can be approximated by computer simulations.

A simple example

- Suppose X_i has mean μ and variance σ^2 . We want to construct a confidence interval for μ .
- Example 1 Let $\hat{\mu} = n^{-1} \sum_{i=1}^{n} X_i$ and $F_n(t) = \Pr \left[\sqrt{n} (\hat{\mu} \mu) \le t \right]$. The central limit theorem implies that F_n is approximately Φ_{σ} , the CDF of a $N(0, \sigma^2)$ random variable.
- \triangleright We want to show that

$$
\hat{F}_n(t) = \Pr\left[\sqrt{n} \left(\hat{\mu}^* - \hat{\mu}\right) \le t \mid X_1, ..., X_n\right]
$$

is close to F_n .

Berry-Esseen theorem

Berry-Esseen Theorem: Let $X_1, ..., X_n$ be i.i.d. with mean μ and variance σ^2 . Denote $\mu_3 = E\left[|X_1 - \mu|^3\right]$. Let $Z_n = \sqrt{n}\left(\overline{X}_n - \mu\right)$. Then

$$
\max_{t \in \mathbb{R}} |\Pr\left[Z_n \le t\right] - \Phi_{\sigma}(t)| \le \frac{33}{4} \frac{\mu_3}{\sigma^3 \sqrt{n}}.
$$

 \triangleright Berry-Esseen Theorem is a refinement of the CLT, which only gives the conclusion that $Pr[Z_n \le t] - \Phi_{\sigma}(t) \to 0$ as $n \to \infty$.

- Example 1 Let $\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n (X_i \hat{\mu})^2$. It is true but somewhat hard to see that $\hat{\sigma}^2$ is the "population" conditional variance of X_i^* given $X_1, ..., X_n$. Let $\hat{\mu}_3 = n^{-1} \sum_{i=1}^n |X_i - \hat{\mu}|^3$.
- \triangleright Now by the triangle inequality,

$$
\max_{t \in \mathbb{R}} \left| \hat{F}_n(t) - F_n(t) \right| \le \max_{t \in \mathbb{R}} |F_n(t) - \Phi_{\sigma}(t)| + \max_{t \in \mathbb{R}} |\Phi_{\sigma}(t) - \Phi_{\hat{\sigma}}(t)| + \max_{t \in \mathbb{R}} |\hat{F}_n(t) - \Phi_{\hat{\sigma}}(t)|.
$$

 \blacktriangleright The Berry-Esseen Theorem implies that

$$
\max_{t \in \mathbb{R}} |F_n(t) - \Phi_{\sigma}(t)| \le \frac{33}{4} \frac{\mu_3}{\sigma^3 \sqrt{n}}.
$$

$$
\blacktriangleright
$$
 Since $\hat{\sigma}^2 \rightarrow_p \sigma^2$, it can be shown

$$
\max_{t \in \mathbb{R}} |\Phi_{\sigma}(t) - \Phi_{\hat{\sigma}}(t)| \to_p 0.
$$

 \triangleright The magic is that Berry-Esseen theorem can be applied to the last term:

$$
\max_{t \in \mathbb{R}} \left| \hat{F}_n(t) - \Phi_{\hat{\sigma}}(t) \right| \le \frac{33}{4} \frac{\hat{\mu}_3}{\hat{\sigma}^3 \sqrt{n}}.
$$

 \blacktriangleright Notice that $\hat{\mu}_3 \rightarrow_p \mu_3 > 0$ and $\hat{\sigma} \rightarrow_p \sigma > 0$. So we have

$$
\max_{t \in \mathbb{R}} \left| \hat{F}_n(t) - \Phi_{\hat{\sigma}}(t) \right| \to_p 0.
$$

This implies $\max_{t \in \mathbb{R}} |\hat{F}_n(t) - F_n(t)| \rightarrow_{P} 0$. F_n , which is unknown, can be well-approximated by \hat{F}_n , which is known given the data.

STATA implementation

 \triangleright In STATA, we can use the command

bootstrap, reps(###): stata command

The number ### specifies the number of bootstrap replications (B) . For example, "bootstrap, reps (100) : regress y x".

- \blacktriangleright This command can be applied to instrumental variable estimation, binary choice models, multinomial choice models, censored regression, the treatment effect estimator...
- \triangleright We can use a post estimation command "estat bootstrap, percentile" to ask STATA to report bootstrap percentile confidence intervals for the parameters.