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Asymptotic normality

I In previous lectures, we have so many estimators with the
property

√
n
(
θ̂n − θ

)
→d N

(
0,σ2

)
and equivalently we can write θ̂n

a
∼ N

(
θ,σ2/n

)
.

I We use N
(
θ,σ2/n

)
as approximation to the unknown true (often

called finite-sample) distribution of θ̂n.
I To estimate σ2 based on the analogue principle (i.e., replace

population moments/unknown quantities by their sample
moments/estimates), we need knowledge of the
expression(formula) of σ2. Very often the expression is very
complicated.

I There are two computation-intensive approaches that do the
estimation without requiring knowledge of the expression of σ2.
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Jackknife standard errors
I Consider a sample with i = 1, ...,n independent observations of an

explained variable Y and k explanatory variables X1, ...,Xk .
Suppose our data is (Yi,Xi1, ...,Xik) for i = 1, ...,n. Denote
Zi = (Yi,Xi1, ...,Xik).

I Suppose the estimator θ̂ can be written as θ̂n = ϕn (Z1, ...,Zn),
e.g., ϕn (z1, ...,zn) = n−1 ∑n

i=1 zi.
I Now denote θ̂−j = ϕn−1

(
Z1, ...Z j−1,Z j+1, ...,Zn

)
, i.e., θ̂−j is an

estimator obtained by removing the j-th observation from the
entire sample. The variation in

{
θ̂−j : j = 1, ...,n

}
should be

informative about the population variance of θ̂n.
I Denote θ̂ = n−1 ∑n

j=1 θ̂−j . The Jackknife standard error is

ŝe jk =

√√√
n−1

n

n∑
j=1

(
θ̂−j − θ̂

)2
.

I A 95% confidence interval is
[
θ̂n −1.96 · ŝe jk, θ̂n +1.96 · ŝe jk

]
.
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I Indeed one can show

(n−1)
n∑
j=1

(
θ̂−j − θ̂

)2
→p σ

2.

I Consider the following simple example: for i.i.d. random
variables X1, ...,Xn, we use the sample average X as an estimator
of µ = E [X1]. It is known that

√
n
(
X − µ

)
→d N

(
0,σ2) , where

σ2 = Var (X1) in this case.
I For this case,

θ̂−j =
1

n−1

(
nX − Xj

)
,

1
n

n∑
j=1

θ̂−j =
1

n (n−1)

n∑
j=1

(
nX − Xj

)
=X .
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I For this simple case,

θ̂−j − θ̂ =
1

n−1

(
nX − Xj

)
− X =

1
n−1

(
X − Xj

)
.

I We have

(n−1)
n∑
j=1

(
θ̂−j − θ̂

)2
=

1
n−1

n∑
j=1

(
Xj − X

)2
,

which is the sample variance that is a consistent and unbiased
estimator for σ2.
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Bootstrap

I The bootstrap takes the sample (the values of the realized
explanatory and explained variables) as the population.

I The bootstrap is an alternative way to produce approximations
for the true distribution of θ̂n.

I Note that both asymptotic theory and the bootstrap only provide
approximations for finite-sample properties.

I A bootstrap sample is obtained by independently drawing n pairs
(Yi,X1i, ...,Xik) from the observed sample with replacement.

I The bootstrap sample has the same number of observations as the
original sample, however some observations appear several times
and others never.
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Bootstrap Standard Errors

I Step 1: Draw B independent bootstrap samples. B can be as large
as possible. We can take B = 1000.

I Step 2: Estimate θ with each of the bootstrap samples, θ̂∗
b
for

b = 1, ...,B.
I Step 3: Estimate the standard deviation of θ̂ by

ŝebs =

√√√
1
B

B∑
b=1

(
θ̂∗
b
− θ̂∗

)2

where θ̂∗ = B−1 ∑B
b=1 θ̂

∗
b
.

I Step 4: The bootstrap standard errors can be used to construct
approximate confidence intervals and to perform asymptotic tests
based on the normal distribution, e.g. if the coverage probability
is 95%, a 95% confidence interval is[
θ̂n −1.96 · ŝebs, θ̂n +1.96 · ŝebs

]
.
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Bootstrap percentile confidence intervals
I Step 1: Draw B independent bootstrap samples. B can be as large

as possible. We can take B = 1000.
I Step 2: Estimate θ with each of the bootstrap samples, θ̂∗

b
for

b = 1, ...,B.
I Step 3: Order the bootstrap replications such that

θ̂∗
(1) ≤ θ̂

∗
(2) ≤ · · · ≤ θ̂

∗
(B).

I Step 4: The lower and upper confidence bounds are B×(α/2)-th
and B×(1−α/2)-th ordered elements. For B = 1000 and
α = 5%, these are the 25th and 975th ordered elements. The
estimated 1−α confidence interval is

[
θ̂∗
(B×(α/2)), θ̂

∗
(B×(1−α/2))

]
.

I Bootstrap percentile confidence intervals often have more
accurate coverage probabilities (i.e. closer to the nominal
coverage probability 1−α) than the usual confidence intervals
based on standard normal quantiles and estimated variance.
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Bootstrap-t test

I We consider testing H0 : θ = θ0.
I We can conduct a bootstrap-based hypothesis testing based on

the bootstrap percentile confidence interval: we simply reject H0
if θ0 fails to be an element of the bootstrap percentile confidence
interval.

I We can show that T =
√

n
(
θ̂ − θ0

)
/σ̂→d N (0,1) under H0. We

use the standard normal distribution as approximation to the true
distribution of T and define critical values based on standard
normal quantile.

I For each bootstrap sample b = 1, ...,B, we can calculate σ̂∗ using
the bootstrap sample.
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I Step 1: Draw B independent bootstrap samples. B can be as large
as possible. We can take B = 1000.

I Step 2: Estimate θ and σ with each of the bootstrap samples, θ̂∗
b
,

σ̂∗
b
for b = 1, ...,B and the t-value for each bootstrap sample:

t∗b =

√
n
(
θ̂∗
b
− θ̂

)
σ̂∗
b

Notice that θ̂ is used instead of θ0 in the construction.
I Step 3: Order the bootstrap replications of t such that

t∗
(1) ≤ t∗

(2) ≤ · · · ≤ t∗
(B)
. The lower critical value and the upper

critical value are then the B×(α/2)-th and B×(1−α/2)-th
ordered elements. For B = 1000 and α = 5%, these are the 25th
and 975th ordered elements. The bootstrap lower and upper
critical values generally differ in absolute values.
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I A common mistake is that in Step 2, one mistakenly computes

√
n
(
θ̂∗
b
− θ0

)
σ̂∗
b

.

The test will have no power if we made this mistake.
I The distribution of the t-statistic T =

√
n
(
θ̂ − θ0

)
/σ̂ under

H1 : θ , θ0 is different from that under H0. Under H1, T is not
centered:

T =

√
n
(
θ̂ − θ0

)
σ̂

=

√
n
(
θ̂ − θ

)
σ̂

+

√
n (θ − θ0)

σ̂
.

I An important guideline is that we should always approximate the
distribution of T under H0, i.e., the distribution of

√
n
(
θ̂ − θ

)
/σ̂.

11 / 20



I In finite samples (fixed n), for neither the bootstrap-t test nor the
usual t-test that uses ±1.96 as critical values , the true probability
of making type-I error is exactly equal to α (e.g., 0.05).

I In almost all cases, the true probability of making type-I error is
greater than α, i.e., we always “over-reject” the null hypothesis.

I One can show that for bootstrap-t test, in finite samples, the true
probability of making type-I error is closer to the nominal
significance level α than the standard t-test that uses ±1.96 as
critical values.
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Why does the bootstrap work?

I Suppose X1, ...,Xn is our random sample and we have an
estimator θ̂ of some parameter θ. Notice that we can write
θ̂ = θ̂ (X1, ...,Xn) as a function of the data.

I The bootstrap sample X∗1 , ...,X
∗
n can be viewed as a new (i.i.d.)

random sample such that the marginal distribution of X∗i is the
discrete distribution with X∗i = Xj with probability 1/n, for
j = 1, ...,n.

I Notice that conditionally on X1, ...,Xn being observed, we draw
X∗i , i = 1, ...,n. Therefore, we can write

Pr
[
X∗i = Xj | X1, ...,Xn

]
=

1
n
, for j = 1, ...,n.
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I Let Fn (t) = Pr
[√

n
(
θ̂ − θ

)
≤ t

]
be the distribution function of

√
n
(
θ̂ − θ

)
. If we knew Fn, we could easily construct a

confidence interval [
θ̂ −

t1−α/2
√

n
, θ̂ −

tα/2
√

n

]
,

where tα is the α-quantile of Fn: tα = F−1
n (α).

I In reality, we do not know Fn and we can often show that Fn can
be approximated by the distribution function of some centralized
normal random variable N

(
0,σ2) .

I The normal approximation with N
(
0,σ2) requires that σ2 can be

estimated consistently.

14 / 20



I Consider an alternative approximation, the conditional
distribution

F̂n (t) = Pr
[√

n
(
θ̂∗− θ̂

)
≤ t | X1, ...,Xn

]
,

where θ̂∗ is the “bootstrap analogue” of θ̂, i.e., θ̂∗ = θ̂
(
X∗1 , ...,X

∗
n

)
.

I Notice that F̂n is known to us since the distribution of the
bootstrap sample is known. F̂n can be approximated by computer
simulations.
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A simple example

I Suppose Xi has mean µ and variance σ2. We want to construct a
confidence interval for µ.

I Let µ̂ = n−1 ∑n
i=1 Xi and Fn (t) = Pr

[√
n (µ̂− µ) ≤ t

]
. The central

limit theorem implies that Fn is approximately Φσ , the CDF of a
N

(
0,σ2) random variable.

I We want to show that

F̂n (t) = Pr
[√

n (µ̂∗− µ̂) ≤ t | X1, ...,Xn

]
is close to Fn.
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Berry-Esseen theorem

I Berry-Esseen Theorem: Let X1, ...,Xn be i.i.d. with mean µ and
variance σ2. Denote µ3 = E

[
|X1− µ|

3] . Let Zn =
√

n
(
Xn − µ

)
.

Then
max
t∈R
|Pr [Zn ≤ t]−Φσ (t)| ≤

33
4

µ3

σ3√n
.

I Berry-Esseen Theorem is a refinement of the CLT, which only
gives the conclusion that Pr [Zn ≤ t]−Φσ (t) → 0 as n→∞.
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I Let σ̂2 = n−1 ∑n
i=1 (Xi − µ̂)

2. It is true but somewhat hard to see
that σ̂2 is the “population” conditional variance of X∗i given
X1, ...,Xn. Let µ̂3 = n−1 ∑n

i=1 |Xi − µ̂|
3.

I Now by the triangle inequality,

max
t∈R

��F̂n (t)−Fn (t)
�� ≤ max

t∈R
|Fn (t)−Φσ (t)|

+max
t∈R
|Φσ (t)−Φσ̂ (t)|+max

t∈R

��F̂n (t)−Φσ̂ (t)
�� .

I The Berry-Esseen Theorem implies that

max
t∈R
|Fn (t)−Φσ (t)| ≤

33
4

µ3

σ3√n
.
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I Since σ̂2→p σ
2, it can be shown

max
t∈R
|Φσ (t)−Φσ̂ (t)| →p 0.

I The magic is that Berry-Esseen theorem can be applied to the last
term:

max
t∈R

��F̂n (t)−Φσ̂ (t)
�� ≤ 33

4
µ̂3

σ̂3√n
.

I Notice that µ̂3→p µ3 > 0 and σ̂→p σ > 0. So we have

max
t∈R

��F̂n (t)−Φσ̂ (t)
��→p 0.

This implies maxt∈R
��F̂n (t)−Fn (t)

��→p 0. Fn, which is unknown,
can be well-approximated by F̂n, which is known given the data.
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STATA implementation

I In STATA, we can use the command

bootstrap, reps(###): stata command

The number ### specifies the number of bootstrap replications
(B). For example, “bootstrap, reps(100): regress y x”.

I This command can be applied to instrumental variable
estimation, binary choice models, multinomial choice models,
censored regression, the treatment effect estimator...

I We can use a post estimation command “estat bootstrap,
percentile” to ask STATA to report bootstrap percentile
confidence intervals for the parameters.
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