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Asymptotic normality

» In previous lectures, we have so many estimators with the
property
Vi (én - 9) S, N (0,0'2)
and equivalently we can write 6, < N (6,0%/n).
> We use N (6, a?/ n) as approximationA to the unknown true (often
called finite-sample) distribution of 6,,.

» To estimate o> based on the analogue principle (i.e., replace
population moments/unknown quantities by their sample
moments/estimates), we need knowledge of the
expression(formula) of o2, Very often the expression is very
complicated.

» There are two computation-intensive approaches that do the
estimation without requiring knowledge of the expression of o2.
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Jackknife standard errors

>

Consider a sample with i = 1,...,n independent observations of an
explained variable Y and k explanatory variables Xi,..., X.
Suppose our data is (Y;, X;1,..., Xjx) for i = 1,...,n. Denote

Z; = (Y5, Xi1, ... Xik)-

Suppose the estimator § can be written as 8, = ¢, (Z1,...,Zn),
.8, On(215einzn) =071 2 %

Now denote 0_; = 9,1 (Z1,...Zj-1,Zj+15--Zn), i.€., O_; is an
estimator obtained by removing the j-th observation from the
entire sample. The variation in {9_ jij= 1,...,n} should be
informative about the population variance of 6,,.

Denote 6 = n~! Z;.lzl 6_ j- The Jackknife standard error is

n

- -1 ~ =\ 2
S€jk = I’ln 2(9_]'—9) .

A 95% confidence interval is [én -1.96- s’\ejk,én +1.96- fejk].
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» Indeed one can show
n R — 2
(n— I)Z (0_]- —0) —p o2
j=1

» Consider the following simple example: for i.i.d. random
variables Xi,...,X,, we use the sample average X as an estimator

of u=E[X;]. It is known that \/ﬁ(f— ,u) —4 N (0,0?), where
0% = Var (X)) in this case.

» For this case,
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» For this simple case,

A

g—j —5 =

> We have

DY BRSOV
j=1

J=1

which is the sample variance that is a consistent and unbiased

estimator for o-2.
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Bootstrap

» The bootstrap takes the sample (the values of the realized
explanatory and explained variables) as the population.

» The bootstrap is an alternative way to produce approximations
for the true distribution of 8.

» Note that both asymptotic theory and the bootstrap only provide
approximations for finite-sample properties.

» A bootstrap sample is obtained by independently drawing n pairs
(Y3, X145 ..., Xix ) from the observed sample with replacement.

» The bootstrap sample has the same number of observations as the
original sample, however some observations appear several times
and others never.
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Bootstrap Standard Errors

>

>

Step 1: Draw B independent bootstrap samples. B can be as large
as possible. We can take B = 1000.

Step 2: Estimate 6 with each of the bootstrap samples, 9;; for
b=1,..,B.

Step 3: Estimate the standard deviation of 6 by

= 2
Seps =4 5 Z (9;‘7 —9*)
b=1
A _ p-1 B Hx
where 6" =B~ },"_,0;.
Step 4: The bootstrap standard errors can be used to construct
approximate confidence intervals and to perform asymptotic tests
based on the normal distribution, e.g. if the coverage probability
is 95%, a 95% confidence interval is
[0 —1.96- Seps,0, +1.96 - 5eps].
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Bootstrap percentile confidence intervals

|

Step 1: Draw B independent bootstrap samples. B can be as large
as possible. We can take B = 1000.

Step 2: Estimate 6 with each of the bootstrap samples, éz for
b=1,..,B
Step 3: Order the bootstrap replications such that

O0) <0 << 0p)
Step 4: The lower and upper confidence bounds are B X (a/2)-th
and B X (1 —a/2)-th ordered elements. For B = 1000 and
a = 5%, these are the 25th and 975th ordered elements. The

estimated 1 — a confidence interval is H(BX(Q /2)),9§BX(1 —a/2)

Bootstrap percentile confidence intervals often have more
accurate coverage probabilities (i.e. closer to the nominal
coverage probability 1 — @) than the usual confidence intervals
based on standard normal quantiles and estimated variance.
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Bootstrap-7 test

» We consider testing Hg : 6 = 6.

» We can conduct a bootstrap-based hypothesis testing based on
the bootstrap percentile confidence interval: we simply reject Hy
if 8y fails to be an element of the bootstrap percentile confidence
interval.

» We can show that T = \/ﬁ(é— 90) /6~ —4 N(0,1) under Hy. We
use the standard normal distribution as approximation to the true
distribution of 7" and define critical values based on standard
normal quantile.

» For each bootstrap sample b = 1,...,B, we can calculate 5" using
the bootstrap sample.
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>

>

Step 1: Draw B independent bootstrap samples. B can be as large
as possible. We can take B = 1000.

Step 2: Estimate 6 and o with each of the bootstrap samples, @Z,
o, for b=1,...,B and the t-value for each bootstrap sample:

(5,9

*
b
tb - %
b

>

Notice that @ is used instead of 6o in the construction.

Step 3: Order the bootstrap replications of ¢ such that

t(*l) < t(*z) < -+ < t/p. The lower critical value and the upper
critical value are then the B X (a/2)-th and B X (1 — @/2)-th
ordered elements. For B = 1000 and « = 5%, these are the 25th
and 975th ordered elements. The bootstrap lower and upper
critical values generally differ in absolute values.
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» A common mistake is that in Step 2, one mistakenly computes

Vi (7,-)

9

The test will have no power if we made this mistake.

» The distribution of the z-statistic T = vn (é — 60) /0 under

H; : 6 # 6 is different from that under Hy. Under H;, T is not
centered:

- ‘/5(9:‘90) _ ‘/’3(?‘9) , YO -0)

o (o (o

» An important guideline is that we should always approximate the
distribution of T under Hy, i.e., the distribution of v/n (é - 0) /6.
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» In finite samples (fixed n), for neither the bootstrap-¢ test nor the
usual 7-test that uses £1.96 as critical values , the true probability
of making type-I error is exactly equal to a (e.g., 0.05).

» In almost all cases, the true probability of making type-I error is
greater than «, i.e., we always “over-reject” the null hypothesis.

» One can show that for bootstrap-f test, in finite samples, the true
probability of making type-I error is closer to the nominal

significance level « than the standard #-test that uses +1.96 as
critical values.
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Why does the bootstrap work?

» Suppose Xi,..., X, is our random sample and we have an
estimator § of some parameter 6. Notice that we can write
0= @(Xl,...,Xn) as a function of the data.

> The bootstrap sample X/, ..., X, can be viewed as a new (i.i.d.)
random sample such that the marginal distribution of X is the
discrete distribution with X = X; with probability 1/n, for
j=1,...n.

» Notice that conditionally on Xi,...,X,, being observed, we draw
Xl.*, i = 1,...,n. Therefore, we can write

1
Pr(X =X;|Xi,...Xn| ==, forj=1...n.
n
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> Let F,(t)=Pr [\/ﬁ (9 - 0) < t] be the distribution function of

\n (9 - 9). If we knew F;,, we could easily construct a
confidence interval

A~ t — A t(l/
[9_ 1 /Z,G—i],
Vn \Vn
where ¢, is the @-quantile of F,,: 1, = F,; ).

» In reality, we do not know F,, and we can often show that F,, can
be approximated by the distribution function of some centralized
normal random variable N (0, 0'2).

» The normal approximation with N (0,0'2) requires that o> can be
estimated consistently.

14/20



» Consider an alternative approximation, the conditional
distribution

£, () =Pr [vﬁ(é*—é) <t Xl,...,Xn],

where 8" is the “bootstrap analogue” of 8, i.e., §* = 4 (X7, X))

» Notice that £, is known to us since the distribution of the
bootstrap sample is known. F;, can be approximated by computer
simulations.
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A simple example

» Suppose X; has mean y and variance o->. We want to construct a
confidence interval for u.

> Letg=n"'Y" X;and F, (1) =Pr [\/ﬁ(,& —u) < t]. The central
limit theorem implies that F;, is approximately @, the CDF of a
N (0,0%) random variable.

> We want to show that
Fo(t) =Pr [Vn(i' = ) S 1] X.... X,

is close to F;,.
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Berry-Esseen theorem

» Berry-Esseen Theorem: Let Xi,...,X, bei.i.d. with mean u and
variance o2. Denote u3 = E [|X; —,u|3]. Let Z, = \/ﬁ(fn - /,t).

Then 1
max [Pr(Z, < 1]-® ()] < - it
te

4 o3yn’
» Berry-Esseen Theorem is a refinement of the CLT, which only
gives the conclusion that Pr[Z,, < ¢]-®, (1) — 0 as n — co.
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> Leto?=n"! 2 (X - 2)*. It is true but somewhat hard to see
that 52 is the “population” conditional variance of X[ given
Xipoon Xy Let 3 =n7' 30 |X; - 1.

» Now by the triangle inequality,

max |F;, () - F, (t)| < max |F, (t) - @ (1)
teR teR

+ max |®, (1) — Dy (7)| + max |Fn (1) —Ds (t)! .
teR teR

» The Berry-Esseen Theorem implies that

33 M3

maX|F t)—D, (1) < N
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» Since 62 — p o2, it can be shown

max [, (1) = @ (1)] = 0.

» The magic is that Berry-Esseen theorem can be applied to the last

term:
33 i

4 53

> Notice that i3 —, pu3 > 0and & —, o > 0. So we have

I}leaﬂglﬁn (t)- s (1)] <

l‘;lezllé( |Fn () —Ds (t)| -, 0.

This implies max, cg |ﬁn (t)-F, (t)| —, 0. F,,, which is unknown,
can be well-approximated by F;,, which is known given the data.
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STATA implementation

» In STATA, we can use the command
bootstrap, reps(###): stata command

The number ### specifies the number of bootstrap replications
(B). For example, “bootstrap, reps(100): regress y x”.

» This command can be applied to instrumental variable
estimation, binary choice models, multinomial choice models,
censored regression, the treatment effect estimator...

» We can use a post estimation command “estat bootstrap,
percentile” to ask STATA to report bootstrap percentile
confidence intervals for the parameters.
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