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Pooled cross section

I An independently pooled cross section is obtained by sampling
randomly from a large population at different points in time.
I in each year, draw a random sample on hourly wages, education,

experience etc. from the population of workers;
I in every other year, draw a random sample on the selling price,

square footage, number of bathrooms etc. of houses sold in a
particular metropolitan area.

I Statistically, these data points are independently sampled
observations.

I Sampling from the population at different points in time likely
leads to observations that are not identically distributed. This can
be dealt easily by allowing the intercept and slopes to change
over time.

I We can simply include dummy variables for all but one year,
where the earliest year is the base year.
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Change in return to education
I A wage equation pooled across 1978 (base year) and 1985 is

log (𝑤𝑎𝑔𝑒) = 𝛽0 + 𝛿0𝑦85+ 𝛽1𝑒𝑑𝑢𝑐+ 𝛿1 (𝑦85 · 𝑒𝑑𝑢𝑐) + 𝛽2𝑒𝑥𝑝𝑒𝑟

+ 𝛽3exper2 + 𝛽4𝑢𝑛𝑖𝑜𝑛+ 𝛽5 𝑓 𝑒𝑚𝑎𝑙𝑒 + 𝛿5 (𝑦85 · 𝑓 𝑒𝑚𝑎𝑙𝑒) +𝑢.

I The variable 𝑦85 is a dummy variable equal to one if the
observation comes from 1985 and zero if it comes from 1978.

I The return to education in 1978 is 𝛽1, and the return to education
in 1985 is 𝛽1 + 𝛿1.

I 𝛿1 measures how the return to another year of education has
changed over the seven-year period.

I Finally, in 1978, the log (𝑤𝑎𝑔𝑒) differential between women and
men is 𝛽5; the differential in 1985 is 𝛽5 + 𝛿5.

I We can test the null hypothesis that nothing has happened to the
gender differential over this seven-year period by testing
H0 : 𝛿5 = 0.
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Policy evaluation
I Pooled cross sections can be very useful for evaluating the

impact of a certain policy.
I Very often we get access to two cross-sectional data sets,

collected before and after the occurrence of an event.
I The data can be used to determine the effect on economic

outcomes.
I A control group is not affected by the policy change. A treatment

group is thought to be affected by the policy change.
I To control for systematic differences between the control and

treatment groups, we need two years of data, one before the
policy change and one after the change.

I Thus, our sample is usefully broken down into four groups: the
control group before the change, the control group after the
change, the treatment group before the change, and the treatment
group after the change.
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Effect of a garbage incinerator’s location on housing prices
I Kiel and McClain (1995) studied the effect that a new garbage

incinerator had on housing values in North Andover,
Massachusetts.

I The rumor that a new incinerator would be built in North
Andover began after 1978, and construction began in 1981. We
will use data on prices of houses that sold in 1978 and another
sample on those that sold in 1981.

I The hypothesis is that the price of houses located near the
incinerator would fall relative to the price of more distant houses.
We define a house to be near the incinerator if it is within three
miles.

I Let 𝑟 𝑝𝑟𝑖𝑐𝑒 denote the house price. A naive analyst would use
only the 1981 data and estimate a very simple model:�𝑟 𝑝𝑖𝑐𝑒 = 101307.5−30688.27 · 𝑛𝑒𝑎𝑟𝑖𝑛𝑐

(3093.0) (5827.71)
𝑛 = 142, 𝑅2 = 0.165.
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I The coefficient on 𝑛𝑒𝑎𝑟𝑖𝑛𝑐 is the difference in the average selling
price between homes near the incinerator and those that are not.
The estimate shows that the average selling price for the former
group was $30688.27 less than for the latter group.

I This regression result only captures correlation. It does not imply
that siting of the incinerator is causing the lower housing values.
If we run the same regression for 1978 before the incinerator was
not eve rumored, we get�𝑟 𝑝𝑖𝑐𝑒 = 82517.23−18824.37 · 𝑛𝑒𝑎𝑟𝑖𝑛𝑐

(2653.79) (4744.59)
𝑛 = 179, 𝑅2 = 0.082.

I Therefore, the average value of a home near the site was
$18824.37 less than the average value of a home not near the site.
This is consistent with the view that the incinerator was built in
an area with lower housing values.
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The simple difference-in-differences (DID) model
I 𝑔 ∈ {0,1}: control group (𝑔 = 0), treatment group (𝑔 = 1).
I 𝑡 ∈ {0,1}: pre-intervention (policy) period (𝑡 = 0),

post-intervention (policy) period (𝑡 = 1).
I For 𝑖 = 1,2, ..., 𝑛𝑔𝑡 , the outcome for the 𝑖-th individual in the (𝑔, 𝑡)

group is generated by

𝑌
gt
𝑖
= 𝛾𝑡 +𝜆𝑔 + 𝛿 · 𝑑gt +𝑈gt

𝑖
,

where 𝑛gt is the sample size of the (𝑔, 𝑡) group, 𝛾𝑡 is the time
effect, 𝜆𝑔 is the group effect, 𝑑 is the policy effect and 𝑈

gt
𝑖

is the
effect from the unobserved factors.

I 𝑑gt is the treatment status pattern: 𝑑00 = 𝑑10 = 𝑑01 = 0 and 𝑑11 = 1.
I We assume that{

𝑈
gt
𝑖

: 𝑖 = 1,2, ..., 𝑛gt, 𝑔 ∈ {0,1} , 𝑡 ∈ {0,1}
}

are i.i.d.
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I We pool the data and use dummy variables to control for the time
effect and group effect. Let 𝑛 =

∑
𝑔∈{0,1}

∑
𝑡 ∈{0,1} 𝑛gt. Then for

𝑖 = 1,2, ..., 𝑛,

𝑌𝑖 = 𝛼+𝛾𝑇𝑖 +𝜆𝐺𝑖 + 𝛿𝐷𝑖 +𝑈𝑖

𝐷𝑖 = 𝑇𝑖 ×𝐺𝑖 ,

where 𝐷𝑖 is the treatment status, 𝑇𝑖 ∈ {0,1} indicates the period
when the 𝑖-th individual is surveyed and 𝐺𝑖 ∈ {0,1} indicates the
group the 𝑖-th individual belongs to.

I We run OLS of 𝑌𝑖 against an intercept, 𝑇𝑖 , 𝐺𝑖 and 𝐷𝑖 . If 𝑈𝑖 is
uncorrelated with 𝑇𝑖 and 𝐺𝑖 , OLS consistently estimates the
policy effect 𝛿.

I The OLS coefficient �̂� (the DID estimator) can be written as

�̂� =

{ ∑
𝑖:𝐺𝑖=1,𝑇𝑖=1𝑌𝑖

|𝑖 : 𝐺𝑖 = 1,𝑇𝑖 = 1| −
∑

𝑖:𝐺𝑖=0,𝑇𝑖=1𝑌𝑖

|𝑖 : 𝐺𝑖 = 0,𝑇𝑖 = 1|

}
−

{ ∑
𝑖:𝐺𝑖=1,𝑇𝑖=0𝑌𝑖

|𝑖 : 𝐺𝑖 = 1,𝑇𝑖 = 0| −
∑

𝑖:𝐺𝑖=0,𝑇𝑖=0𝑌𝑖

|𝑖 : 𝐺𝑖 = 0,𝑇𝑖 = 0|

}
,

where |𝑖 : 𝐺𝑖 = 𝑔,𝑇𝑖 = 𝑡 | denotes number of observations in the
(𝑔, 𝑡) group. 8 / 19



I Simple rearrangement:

�̂� =

{ ∑
𝑖:𝐺𝑖=1,𝑇𝑖=1𝑌𝑖

|𝑖 : 𝐺𝑖 = 1,𝑇𝑖 = 1| −
∑

𝑖:𝐺𝑖=1,𝑇𝑖=0𝑌𝑖

|𝑖 : 𝐺𝑖 = 1,𝑇𝑖 = 0|

}
−

{ ∑
𝑖:𝐺𝑖=0,𝑇𝑖=1𝑌𝑖

|𝑖 : 𝐺𝑖 = 0,𝑇𝑖 = 1| −
∑

𝑖:𝐺𝑖=0,𝑇𝑖=0𝑌𝑖

|𝑖 : 𝐺𝑖 = 0,𝑇𝑖 = 0|

}
.

I The first term is the difference in means over time for the treated
group. We compute the same trend in averages for the control
group. By subtracting the second term from the first term, we
hope to get a good estimator of the causal impact of the program
or intervention.

I We can also augment the regression by incorporating covariates
(𝑋𝑖1, ..., 𝑋𝑖𝑘) to avoid omitted variable bias:

𝑌𝑖 = 𝛼+𝛾𝑇𝑖 +𝜆𝐺𝑖 + 𝛿𝐷𝑖 +
𝑘∑︁
𝑗=1

𝛽 𝑗𝑋𝑖 𝑗 +𝑈𝑖 .
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Effect of a garbage incinerator’s location on housing prices

I The DID model formalizes the idea that we look at how the
regression coefficient changes.

I For 𝑇𝑖 = 1,
𝑌𝑖 = 𝛼+𝛾 + (𝜆+ 𝛿)𝐺𝑖 +𝑈𝑖 .

We are not able to distinguish the effect of the policy (𝛿) from the
effect of the location (𝜆), if we use only the post-intervention
data.

I The DID estimator is the difference in the two OLS coefficients
−30688.27− (−18824.37) = −11863.9, which can be expressed
as (

𝑟 𝑝𝑟𝑖𝑐𝑒81,𝑛𝑟 − 𝑟 𝑝𝑟𝑖𝑐𝑒81, 𝑓 𝑟

)
−

(
𝑟 𝑝𝑟𝑖𝑐𝑒78,𝑛𝑟 − 𝑟 𝑝𝑟𝑖𝑐𝑒78, 𝑓 𝑟

)
,

where 𝑛𝑟 stands for “near the incinerator site” and 𝑓 𝑟 stands for
“farther away from the site”.
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I We use the two-year pooled data and find the standard error by
running the regression

𝑟 𝑝𝑟𝑖𝑐𝑒 = 𝛽0 + 𝛿0𝑦81+ 𝛽1𝑛𝑒𝑎𝑟𝑖𝑛𝑐+ 𝛿1𝑦81 · 𝑛𝑒𝑎𝑟𝑖𝑛𝑐+𝑢.

I We also include various housing characteristics to avoid omitted
variable bias. The kinds of homes selling near the incinerator in
1981 might have been systematically different than those selling
near the incinerator in 1978.
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A general framework for policy analysis
I Another way to expand the basic DD methodology is to obtain

multiple control and treatment groups as well as more than two
time periods. We can create a very general framework for policy
analysis by allowing a general pattern of interventions, where
some units are never “treated” and others may be treated in
different time periods. It is even possible that early in the study
some units are subject to a policy but then later on the policy is
dropped.

I In the general setting, we are interested in a policy intervention
that applies at the group level. The model is

𝑌
gt
𝑖
= 𝛾𝑡 +𝜆𝑔 + 𝛿 · 𝑑gt +

𝑘∑︁
𝑗=1

𝛽 𝑗𝑋
gt
𝑖 𝑗
+𝑈gt

𝑖
, 𝑖 = 1,2, ..., 𝑛𝑔𝑡

𝑔 = 1, ...,𝐺; 𝑡 = 1, ...,𝑇,

where 𝑑gt is the treatment pattern: which is one if group 𝑔 in year
𝑡 is subject to the policy intervention, and zero otherwise. The
group/time cell (𝑔, 𝑡) has 𝑛gt observations.
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I When there are multiple periods, a full set of time-periods
dummies is added to the regression. Similarly, when there are
multiple groups, a full set of group dummies can be added.

I A policy dummy (which equals to one for observations in a
specific group and period subject to the policy) replaces the
interaction term.

I In practice, one includes an intercept and excludes one group and
one time period. Then we estimate the model using pooled OLS,
where the pooling is across all individuals across all (𝑔, 𝑡) pairs.

I
(
𝑋

gt
𝑖1 , ..., 𝑋

gt
𝑖𝑘

)
can include measured variables that change only at

the (𝑔, 𝑡) level but also individual-specific covariates.
I The model can be applied to important problems such as

studying the labor market impacts of minimum wages. Minimum
wages can vary at the city level. The individual outcomes 𝑦gt

𝑖
can

be hourly wage. It could be very important to account for both
time and city effects. In addition, we might have information on
education, workforce experience, and background variables for
individuals.
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The DID model in the potential outcome framework
I We embed the DID model in the potential outcome framework.

We do not impose the linear model assumption and study under
what conditions a treatment effect parameter is identified.

I (𝑌 𝑡 (0) ,𝑌 𝑡 (1)): potential outcomes for an arbitrary individual in
the population at time period 𝑡.

I 𝑌 𝑡 (1) −𝑌 𝑡 (0): individual treatment effect at 𝑡.
I 𝑡 = 0: pre-intervention period; 𝑡 = 1: post-intervention period;

𝑑 = 0: no intervention; 𝑑 = 1: intervention.
I 𝐷𝑡 ∈ {0,1}: a dummy variable, e.g., influenced (𝐷𝑡 = 1) or not

influenced (𝐷𝑡 = 0) by the policy intervention.
I 𝐺𝑡 ∈ {0,1}: a dummy variable, e.g., treated group (𝐺𝑡 = 1) or

non-treated group (𝐺𝑡 = 0).
I In the pre-intervention period, 𝐷0 = 0. In the post-intervention

period, some get influenced by the intervention. 𝐷0 = 0 and
𝐷1 = 𝐺1.
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I We observe: 𝑌 𝑡 = 𝐷𝑡𝑌 𝑡 (1) + (1−𝐷𝑡 )𝑌 𝑡 (0). We have two
populations:

(
𝑌0,𝐺0, 𝐷0) and

(
𝑌1,𝐺1, 𝐷1) . Since 𝐷0 = 0,

𝑌0 = 𝑌0 (0).
I Common trend assumption (CTA):

E
[
𝑌1 (0) | 𝐺1 = 1

]
−E

[
𝑌0 (0) | 𝐺0 = 1

]
= E

[
𝑌1 (0) | 𝐺1 = 0

]
−E

[
𝑌0 (0) | 𝐺0 = 0

]
.

I The CTA assumes that in the absence of the treatment, the
average outcome for the treated group and the average outcome
for the non-treated group would have experienced the same
variation over time.

I E
[
𝑌1 (0) | 𝐺1 = 1

]
is a counterfactual quantity: when 𝐺1 = 1,

𝑌1 = 𝑌1 (1) and 𝑌1 (0) is unobserved.
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Identification of the average treatment effect
I Under the CTA, the average treatment effect on the treated (ATT)

at the post-intervention period is identified:

ATT=E
[
𝑌1 (1) −𝑌1 (0) | 𝐷1 = 1

]
=E

[
𝑌1 (1) −𝑌1 (0) | 𝐺1 = 1

]
= E

[
𝑌1 (1) | 𝐺1 = 1

]
−E

[
𝑌0 (0) | 𝐺0 = 1

]
−

(
E

[
𝑌1 (0) | 𝐺1 = 0

]
−E

[
𝑌0 (0) | 𝐺0 = 0

] )
=

(
E

[
𝑌1 (1) | 𝐺1 = 1

]
−E

[
𝑌1 (0) | 𝐺1 = 0

] )
−

(
E

[
𝑌0 (0) | 𝐺0 = 1

]
−E

[
𝑌0 (0) | 𝐺0 = 0

] )
=

(
E

[
𝑌1 | 𝐺1 = 1

]
−E

[
𝑌1 | 𝐺1 = 0

] )
−

(
E

[
𝑌0 | 𝐺0 = 1

]
−E

[
𝑌0 | 𝐺0 = 0

] )
,

where we applied 𝐺1 = 𝐷1 and 𝑌0 = 𝑌0 (0).
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I The quantity(
E

[
𝑌1 | 𝐺1 = 1

]
−E

[
𝑌1 | 𝐺1 = 0

] )
−

(
E

[
𝑌0 | 𝐺0 = 1

]
−E

[
𝑌0 | 𝐺0 = 0

] )
=

(
E

[
𝑌1𝐺1]

E
[
𝐺1

] −
E

[
𝑌1 (

1−𝐺1) ]
1−E

[
𝐺1

] )
−

(
E

[
𝑌0𝐺0]

E
[
𝐺0

] −
E

[
𝑌0 (

1−𝐺0) ]
1−E

[
𝐺0

] )
is a feature of the observed population. The equality follows
from LIE.

I Suppose that we have repeated cross section data:{(
𝑌1
𝑖
,𝐺1

𝑖

)
: 𝑖 = 1,2, ..., 𝑛1

}
and

{(
𝑌0
𝑖
,𝐺0

𝑖

)
: 𝑖 = 1,2, ..., 𝑛0

}
. Then,

the estimated ATT is a DID estimator:

ÂTT =

(∑𝑛1
𝑖=1𝑌

1
𝑖
𝐺1

𝑖∑𝑛1
𝑖=1𝐺

1
𝑖

−
∑𝑛1

𝑖=1𝑌
1
𝑖

(
1−𝐺1

𝑖

)∑𝑛1
𝑖=1

(
1−𝐺1

𝑖

) )
−

(∑𝑛0
𝑖=1𝑌

0
𝑖
𝐺0

𝑖∑𝑛0
𝑖=1𝐺

0
𝑖

−
∑𝑛0

𝑖=1𝑌
0
𝑖

(
1−𝐺0

𝑖

)∑𝑛0
𝑖=1

(
1−𝐺0

𝑖

) )
.
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A linear model
I Suppose that

𝑌1
𝑖 = 𝛾1 +𝜆𝐺1

𝑖 + 𝛿𝐷1
𝑖 +𝑈1

𝑖 , 𝑖 = 1,2, ..., 𝑛1

𝑌0
𝑖 = 𝛾0 +𝜆𝐺0

𝑖 +𝑈0
𝑖 , 𝑖 = 1,2, ..., 𝑛0.

Then, 𝑌1
𝑖
(1) = 𝛾1 +𝜆𝐺1

𝑖
+ 𝛿+𝑈1

𝑖
and 𝑌1

𝑖
(0) = 𝛾1 +𝜆𝐺1

𝑖
+𝑈1

𝑖
.(

𝛾1, 𝛾0) are the time effects.
I Assume that 𝑈1

𝑖
is uncorrelated with 𝐺1

𝑖
and 𝑈0

𝑖
is uncorrelated

with 𝐺0
𝑖
.

I Then, we can verify that the CTA is satisfied:

E
[
𝑌1
𝑖 (0) | 𝐺1

𝑖 = 1
]
−E

[
𝑌0
𝑖 (0) | 𝐺0

𝑖 = 1
]

=

(
𝛾1 +E

[
𝑈1
𝑖 | 𝐺1

𝑖 = 1
] )

−
(
𝛾0 +E

[
𝑈0
𝑖 | 𝐺0

𝑖 = 1
] )

and

E
[
𝑌1
𝑖 (0) | 𝐺1

𝑖 = 0
]
−E

[
𝑌0
𝑖 (0) | 𝐺0

𝑖 = 0
]

=

(
𝛾1 +E

[
𝑈1
𝑖 | 𝐺1

𝑖 = 0
] )

−
(
𝛾0 +E

[
𝑈0
𝑖 | 𝐺0

𝑖 = 0
] )

.
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