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Panel data

I In panel data, individuals (households, firms, cities, ... ) are
observed at several points in time (days, years, ...).

I We assume that our data has the feature that there are many
individuals (i.e. large cross section dimension) and we observe
their information/characteristics in relative fewer number of
periods (i.e. small time series dimension).

I Panel data are most useful when we suspect that the outcome
variable depends on explanatory variables which are not
observable but correlated with the observed explanatory
variables.

I If such omitted variables are constant over time, panel data
estimators allow to consistently estimate the effect of the
observed explanatory variables.
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I Balanced panel: each individual is observed for the same time
periods.

I Unbalanced panel: individuals are observed for different time
periods.

I Static panel models: lagged dependent variables are assumed not
to have direct causal effects and they are not among the
right-hand side explanatory variables.

I Dynamic panel models: lagged dependent variables have causal
effects and are included as explanatory variables.
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Linear panel model
I Consider the linear model for individual 𝑖 = 1,2, ..., 𝑁 who is

observed at several time periods 𝑡 = 1, ...,𝑇 . We assume 𝑁 is
large and 𝑇 is small.

I Our explained variable 𝑌𝑖𝑡 is generated by

𝑌𝑖𝑡 = 𝛼𝑡 + 𝛽1𝑋1,𝑖𝑡 + · · · + 𝛽𝑘𝑋𝑘,𝑖𝑡 +𝛾1𝑍1,𝑖 + · · · +𝛾𝑚𝑍𝑚,𝑖 + 𝑐𝑖 +𝑈𝑖𝑡 .

I 𝑋1,𝑖𝑡 , ..., 𝑋𝑘,𝑖𝑡 : time-varying explanatory variables;
I 𝑍1,𝑖 , ..., 𝑍𝑚,𝑖: time-invariant explanatory variables;
I 𝛼𝑡 : time-specific effect;
I 𝑐𝑖: an individual-specific effect;
I 𝑈𝑖𝑡 : an idiosyncratic error term.

I For example, 𝑌𝑖𝑡 is the output of firm 𝑖 at time 𝑡; 𝑋1,𝑖𝑡 , ..., 𝑋𝑘,𝑖𝑡

are inputs; 𝑍1,𝑖 , ..., 𝑍𝑚,𝑖 are time-invariant characteristics such as
geographic location; 𝛼𝑡 is the time effect of the macroeconomic
environment; 𝑐𝑖 is unobserved management quality; 𝑈𝑖𝑡 is the
random shock.
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Baseline fixed effect model
We assume that there is only one time-varying explanatory variable
𝑋𝑖𝑡

𝑌𝑖𝑡 = 𝛼+ 𝛽𝑋𝑖𝑡 + 𝑐𝑖 +𝑈𝑖𝑡

and no time effect. Both 𝑐𝑖 and 𝑈𝑖𝑡 are unobserved random variables.
1. Our data

{𝑌𝑖1, ...,𝑌𝑖𝑇 , 𝑋𝑖1, ..., 𝑋𝑖𝑇 }𝑁𝑖=1

are independently and identically distributed. Observations are
independent across individuals but not necessarily across time.

2. The idiosyncratic error term is assumed to be exogenous:

E [𝑈𝑖𝑡 ] = E [𝑈𝑖𝑡𝑋𝑖1] = · · · = E [𝑈𝑖𝑡𝑋𝑖𝑇 ] = 0,∀𝑡 = 1, ...,𝑇,

3. No serial correlation along the time dimension within the
individual 𝑖: E [𝑈𝑖𝑡𝑈𝑖𝑠 | 𝑋𝑖1, ..., 𝑋𝑖𝑇 ] = 0 ∀𝑡 ≠ 𝑠.

4. Homoskedasticity: E
[
𝑈2
𝑖𝑡
| 𝑋𝑖1, ..., 𝑋𝑖𝑇

]
= 𝜎2

𝑈
for some constant

𝜎2
𝑈
> 0, ∀𝑡 = 1, ...,𝑇 .

5. 𝑐𝑖 and 𝑈𝑖𝑡 are uncorrelated: E [𝑐𝑖] = E [𝑈𝑖𝑡𝑐𝑖] = 0, ∀𝑡 = 1, ...,𝑇 .
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Pooled OLS

I The pooled OLS estimator ignores the panel structure of the data:

𝛽POLS =

∑𝑁
𝑖=1

∑𝑇
𝑡=1

(
𝑋𝑖𝑡 − 𝑋

) (
𝑌𝑖𝑡 −𝑌

)
∑𝑁

𝑖=1
∑𝑇

𝑡=1

(
𝑋𝑖𝑡 − 𝑋

)2

is inconsistent if the unobserved individual effect 𝑐𝑖 is correlated
with 𝑋𝑖𝑡 .

I If 𝑐𝑖 is uncorrelated with 𝑋𝑖𝑡 , the pooled OLS is consistent but
the standard error has to be adjusted, since the error terms
𝑉𝑖𝑡 = 𝑐𝑖 +𝑈𝑖𝑡 are serially correlated (E [𝑉𝑖𝑠𝑉𝑖𝑡 ] = E

[
𝑐2
𝑖

]
, if 𝑠 ≠ 𝑡).

I In most applications, the assumption that 𝑐𝑖 is uncorrelated with
𝑋𝑖𝑡 is not reasonable. For example, the management quality
should be negatively correlated with inputs.
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One-way fixed effect estimator
I Average the equation

𝑌𝑖𝑡 = 𝛼+ 𝛽𝑋𝑖𝑡 + 𝑐𝑖 +𝑈𝑖𝑡

over 𝑡 = 1, ...,𝑇 to get

𝑌 𝑖 = 𝛼+ 𝛽𝑋 𝑖 + 𝑐𝑖 +𝑈𝑖

where 𝑌 𝑖 = 𝑇−1 ∑𝑇
𝑡=1𝑌𝑖𝑡 , 𝑋 𝑖 = 𝑇−1 ∑𝑇

𝑡=1 𝑋𝑖𝑡 and 𝑈𝑖 = 𝑇−1 ∑𝑇
𝑡=1𝑈𝑖𝑡

are averages in the time dimension.
I Subtract the “average” equation from the original equation to

obtain:
¤𝑌𝑖𝑡 = 𝛽 ¤𝑋𝑖𝑡 + ¤𝑈𝑖𝑡 ,

where ¤𝑌𝑖𝑡 = 𝑌𝑖𝑡 −𝑌 𝑖 , ¤𝑋𝑖𝑡 = 𝑋𝑖𝑡 − 𝑋 𝑖 and ¤𝑈𝑖𝑡 =𝑈𝑖𝑡 −𝑈𝑖 . This step
is called one-way within transformation.

I We regress the “within-transformed” variables ¤𝑌𝑖𝑡 on ¤𝑋𝑖𝑡 (with
the panel structure ignored) without an intercept to obtain

𝛽FE =

∑𝑁
𝑖=1

∑𝑇
𝑡=1

¤𝑋𝑖𝑡
¤𝑌𝑖𝑡∑𝑁

𝑖=1
∑𝑇

𝑡=1
¤𝑋2
𝑖𝑡

.
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I Under the weak exogeneity assumption, ¤𝑈𝑖𝑡 is uncorrelated with
¤𝑋𝑖𝑡 for all 𝑖 = 1, ..., 𝑁 for all 𝑡 = 1, ...,𝑇 , the fixed effect estimator

(or within estimator) is consistent and asymptotically normal (as
𝑁 →∞ and 𝑇 remains to be fixed) since in the regression model

¤𝑌𝑖𝑡 = 𝛽 ¤𝑋𝑖𝑡 + ¤𝑈𝑖𝑡 ,

the error term is uncorrelated with ¤𝑋𝑖𝑡 .
I The within transformation approach estimates the effects of

time-varying variables only. The within transformation
eliminates all the time-invariant variables.

I The fixed effect estimator is consistent even when the
idiosyncratic error terms in different time periods (𝑠 ≠ 𝑡) 𝑈𝑖𝑡 and
𝑈𝑖𝑠 are correlated, for the same individual.
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Standard errors
I The covariance between ¤𝑈𝑖𝑡 and ¤𝑈𝑖𝑠 for 𝑡 ≠ 𝑠 is

E
[ ¤𝑈𝑖𝑡

¤𝑈𝑖𝑠

]
= −

𝜎2
𝑈

𝑇
.

I Similarly the variance of ¤𝑈𝑖𝑡 is found to be

E
[ ¤𝑈2

𝑖𝑡

]
=𝜎2

𝑈

(
1− 1

𝑇

)
.

I Under the assumptions of no serial correlation and
homoskedasticity, the asymptotic variance of 𝛽FE can be
estimated by

�̂�2
𝑈

(
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

¤𝑋2
𝑖𝑡

)−1

,

where �̂�2
𝑈

is a consistent estimator of 𝜎2
𝑈

.
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I This estimator is called “fixed” effect due to a historical reason.
During the years when econometricians look at only
finite-sample properties, the individual-specific effects 𝑐𝑖’s are
considered to be fixed constants that shift the intercept.

I The least squares dummy variables (LSDV) estimator is a pooled
OLS estimator including a set of 𝑁 −1 individual-specific
dummy variables which identify the individuals and hence an
additional 𝑁 −1 parameters.

I Time-invariant explanatory variables are dropped because of the
multicollinearity problem.

I The LSDV estimator for 𝛽 (i.e., the coefficients for those
time-varying explanatory variables) is numerically identical to
the fixed effect estimator.
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I It is possible that compared with usual pooled OLS regression,
after adding individual-specific dummy variables, the 𝑅2, as a
measure of goodness-of-fit, becomes larger. This is possibly due
to the reason that individual-specific (fixed) effects largely
explain the variation in the explained variable.

I Occasionally, the estimated individual effects are of interest and
in this case, the LSDV has the advantage that it produces
estimates of (𝑐1, 𝑐2, ..., 𝑐𝑁 ), which are the OLS coefficients of
the individual-specific dummy variables.

I For example, we may be interested in evaluating the management
quality of a particular firm and comparing it with the mean.
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I By using STATA to run a linear regression using the transformed
data, the standard error we get is

�̃�2
𝑈

(
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

¤𝑋2
𝑖𝑡

)−1

where �̃�2
𝑈
=

∑𝑁
𝑖=1

∑𝑇
𝑡=1 �̂�

2
𝑖𝑡
/(𝑁𝑇 −1) and �̂�𝑖𝑡 = ¤𝑌𝑖𝑡 − 𝛽𝐹𝐸 ¤𝑋𝑖𝑡 .

I We can show that �̃�2
𝑈
→𝑝 𝜎2

𝑈

(
1−𝑇−1) . Therefore the standard

error is not valid and has to be corrected.
I In the presence of serial correlation and heteroskedasticity, the

asymptotic variance can not be estimated by

�̂�2
𝑈

(∑𝑁
𝑖=1

∑𝑇
𝑡=1

¤𝑋2
𝑖𝑡

)−1
. A more complicated estimator that is

robust to serial correlation and heteroskedasticity has been
proposed in the literature.
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Time effects and two-way fixed effect estimator
I We extend the baseline model by adding the time effect:

𝑌𝑖𝑡 = 𝛼𝑡 + 𝛽𝑋𝑖𝑡 + 𝑐𝑖 +𝑈𝑖𝑡 .

I Two different views:
I {𝛼𝑡 : 𝑡 = 1, ...,𝑇} is viewed as intercepts for different periods. The

model allows different time periods to have different intercepts.
As regression with pooled cross section, we use time-periods
dummies:

𝑌𝑖𝑡 = 𝛼1 +𝛼2𝐷
𝑇
𝑡 + · · · +𝛼𝑇 𝐷𝑇

𝑡 + 𝛽𝑋𝑖𝑡 + 𝑐𝑖 +𝑈𝑖𝑡 ,

where 𝐷𝑠
𝑡 = 1 if 𝑡 = 𝑠 and 0 otherwise. Then we apply the one-way

within transformation or use individual-specific dummy variables.
I The model has two-way error component 𝛼𝑡 + 𝑐𝑖 +𝑈𝑖𝑡 . In this

case, 𝛼𝑡 is the unobserved time-specific effect. We use two-way
within transformation to eliminate 𝛼𝑡 from the model, as we did
for 𝑐𝑖 . The resulting estimator is usually called two-way fixed
effect estimator.

I These two approaches produce numerically identical estimates.
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Two-way within transformation
I Average the equation

𝑌𝑖𝑡 = 𝛼𝑡 + 𝛽𝑋𝑖𝑡 + 𝑐𝑖 +𝑈𝑖𝑡 (1)

over 𝑡 = 1, ...,𝑇 to get

𝑌 𝑖 = 𝛼+ 𝛽𝑋 𝑖 + 𝑐𝑖 +𝑈𝑖 ,

where 𝑌 𝑖 = 𝑇−1 ∑𝑇
𝑡=1𝑌𝑖𝑡 , 𝑋 𝑖 = 𝑇−1 ∑𝑇

𝑡=1 𝑋𝑖𝑡 , 𝑈𝑖 = 𝑇−1 ∑𝑇
𝑡=1𝑈𝑖𝑡 and

𝛼 = 𝑇−1 ∑𝑇
𝑡=1𝛼𝑡 .

I Average (1) over 𝑖 = 1, ..., 𝑁 to get

𝑌𝑡 = 𝛼𝑡 + 𝛽𝑋𝑡 + �̃�+𝑈𝑡 ,

where 𝑌𝑡 = 𝑁−1 ∑𝑁
𝑖=1𝑌𝑖𝑡 , �̃� = 𝑁−1 ∑𝑁

𝑖=1 𝑐𝑖 and 𝑈𝑡 = 𝑁−1 ∑𝑁
𝑖=1𝑈𝑖𝑡 .

I Average 1 over both 𝑡 = 1, ...,𝑇 and 𝑖 = 1, ..., 𝑁 to get

𝑌 = 𝛼+ 𝛽𝑋 + �̃�+𝑈,

where 𝑌 = (𝑁𝑇)−1 ∑𝑇
𝑡=1

∑𝑁
𝑖=1𝑌𝑖𝑡 , 𝑋 = (𝑁𝑇)−1 ∑𝑇

𝑡=1
∑𝑁

𝑖=1 𝑋𝑖𝑡 and
𝑈 = (𝑁𝑇)−1 ∑𝑇

𝑡=1
∑𝑁

𝑖=1𝑈𝑖𝑡 .
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I Then,

𝑌𝑖𝑡 −𝑌 𝑖 −𝑌𝑡 +𝑌 = (𝛼𝑡 + 𝛽𝑋𝑖𝑡 + 𝑐𝑖 +𝑈𝑖𝑡 ) −
(
𝛼+ 𝛽𝑋 𝑖 + 𝑐𝑖 +𝑈𝑖

)
−

(
𝛼𝑡 + 𝛽𝑋𝑡 + �̃�+𝑈𝑡

)
+

(
𝛼+ 𝛽𝑋 + �̃�+𝑈

)
= 𝛽

(
𝑋𝑖𝑡 − 𝑋 𝑖 − 𝑋𝑡 + 𝑋

)
+

(
𝑈𝑖𝑡 −𝑈𝑖 −𝑈𝑡 +𝑈

)
=⇒ ¥𝑌𝑖𝑡 = 𝛽 ¥𝑋𝑖𝑡 + ¥𝑈𝑖𝑡 ,

where ¥𝑌𝑖𝑡 = 𝑌𝑖𝑡 −𝑌 𝑖 −𝑌𝑡 +𝑌 , ¥𝑋𝑖𝑡 = 𝑋𝑖𝑡 − 𝑋 𝑖 − 𝑋𝑡 + 𝑋 and
¥𝑈𝑖𝑡 =𝑈𝑖𝑡 −𝑈𝑖 −𝑈𝑡 +𝑈.

I We regress the “two-way within-transformed” variables ¥𝑌𝑖𝑡 on
¥𝑋𝑖𝑡 (with the panel structure ignored) without an intercept to
obtain the two-way fixed effect estimator

𝛽TWFE =

∑𝑁
𝑖=1

∑𝑇
𝑡=1

¥𝑋𝑖𝑡
¥𝑌𝑖𝑡∑𝑁

𝑖=1
∑𝑇

𝑡=1
¥𝑋2
𝑖𝑡

.
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First differencing when 𝑇 = 2

I When 𝑇 = 2, for individual 𝑖, write the two periods as

𝑌𝑖1 = 𝛼1 + 𝛽𝑋𝑖1 + 𝑐𝑖 +𝑈𝑖1

𝑌𝑖2 = 𝛼2 + 𝛽𝑋𝑖2 + 𝑐𝑖 +𝑈𝑖2.

I Denote 𝛿 = 𝛼2 −𝛼1, Δ𝑌𝑖 = 𝑌𝑖2 −𝑌𝑖1, Δ𝑋𝑖 = 𝑋𝑖2 − 𝑋𝑖1 and
Δ𝑈𝑖 =𝑈𝑖2 −𝑈𝑖1. Subtract the second equation from the first,

Δ𝑌𝑖 = 𝛿+ 𝛽Δ𝑋𝑖 +Δ𝑈𝑖 .

I The unobserved individual effect 𝑐𝑖 is differenced away. It is
easy to see that E [Δ𝑈𝑖] = E [Δ𝑈𝑖 ·Δ𝑋𝑖] = 0 and therefore
regression of Δ𝑌𝑖 against Δ𝑋𝑖 consistently estimates 𝛽.

I It can be shown that this estimator is numerically identical to the
two-way fixed effect estimator.
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Baseline random effect model
I Assume the baseline model with only one time-varying

explanatory variable 𝑋𝑖𝑡

𝑌𝑖𝑡 = 𝛼+ 𝛽𝑋𝑖𝑡 + 𝑐𝑖 +𝑈𝑖𝑡

and no time effect.
I 𝑐𝑖 and 𝑈𝑖𝑡 are unobserved random variables. The set of model

assumptions is the same as the fixed effect model. In addition, we
assume E [𝑋𝑖𝑡𝑐𝑖] = 0.

I We can ignore the panel structure. Denote 𝑉𝑖𝑡 = 𝑐𝑖 +𝑈𝑖𝑡 . Since
𝑉𝑖𝑡 is uncorrelated with 𝑋𝑖𝑡 , the pooled OLS is consistent.

I However, the pooled OLS is inefficient. It is easy to check that
the error terms are serially correlated:

Corr [𝑉𝑖𝑡 ,𝑉𝑖𝑠] =
𝜎2
𝑐

𝜎2
𝑐 +𝜎2

𝑈

, ∀𝑠 ≠ 𝑡,

where 𝜎2
𝑐 = E

[
𝑐2
𝑖

]
and 𝜎2

𝑈
= E

[
𝑈2
𝑖𝑡

]
.
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I The random effect estimator uses the information about the
special form of serial correlation and is more efficient. It
effectively uses transformed data.

I Denote 𝜃2 = 𝜎2
𝑈
/
(
𝜎2
𝑈
+𝑇𝜎2

𝑐

)
. Transform the model:

𝑌 ∗
𝑖𝑡 = 𝛼∗ + 𝛽𝑋∗

𝑖𝑡 +𝑉∗
𝑖𝑡 ,

where 𝑌 ∗
𝑖𝑡
= 𝑌𝑖𝑡 − (1− 𝜃)𝑌 𝑖 , 𝑋∗

𝑖𝑡
= 𝑋𝑖𝑡 − (1− 𝜃) 𝑋 𝑖 , 𝑐∗𝑖 = 𝜃𝑐𝑖 ,

𝛼∗ = 𝜃𝛼, 𝑈∗
𝑖𝑡
=𝑈𝑖𝑡 − (1− 𝜃)𝑈𝑖 and 𝑉∗

𝑖𝑡
= 𝑐∗

𝑖
+𝑈∗

𝑖𝑡
.

I Note that this transformation does not eliminate the individual
effect. And the error terms are uncorrelated: Corr

[
𝑉∗
𝑖𝑡
,𝑉∗

𝑖𝑠

]
= 0,

∀𝑠 ≠ 𝑡.
I The random effect estimation replaces 𝜎2

𝑈
and 𝜎2

𝑐 (and thus, 𝜃)
by their consistent estimators. The random effect estimator 𝛽RE

is the pooled OLS estimator with estimated
(
𝑌 ∗
𝑖𝑡
, 𝑋∗

𝑖𝑡

)
(𝑖 = 1, ..., 𝑛,

𝑡 = 1, ...,𝑇).
I In applications, we add time-periods dummies and time-invariant

explanatory variables. One advantage of the random effect model
is that effects of time-invariant explanatory variables can be
estimated.
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Fixed effect versus random effect and Hausman test
I The random effect estimator is efficient, if E [𝑋𝑖𝑡𝑐𝑖] = 0 is

satisfied. The fixed effect estimator is consistent, whether
E [𝑋𝑖𝑡𝑐𝑖] = 0 is satisfied or not.

I Hausman test compares these two estimators and tests
H0 : E [𝑋𝑖𝑡𝑐𝑖] = 0 versus H1 : E [𝑋𝑖𝑡𝑐𝑖] ≠ 0 .

I We can show that under H0,
√
𝑛
(
𝛽FE − 𝛽

)
→𝑑 N

(
0,𝜎2

FE
)

and√
𝑛
(
𝛽RE − 𝛽

)
→𝑑 N

(
0,𝜎2

RE
)

with 𝜎2
RE < 𝜎2

FE. Under H0, both of
𝛽FE and 𝛽RE are consistent and asymptotically normal.

I It can be shown that under H0,
√
𝑛

(
𝛽FE − 𝛽RE

)
→𝑑 N

(
0,𝜎2

FE −𝜎2
RE

)
.

I The Hausman test rejects H0 at 5% significance level if������� 𝛽FE − 𝛽RE√︃(
�̂�2

FE − �̂�2
RE

)
/𝑛

������� > 1.96,

where
(
�̂�2

FE, �̂�
2
RE

)
are consistent estimators of

(
𝜎2

FE,𝜎
2
RE

)
.
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Correlated random effect model
I The fixed effect model is more robust than the random effect

model since it allows nonzero correlation between the
unobserved individual effect and explanatory variables. But we
cannot use this model to estimate the effects of time-invariant
variables.

I Rather than using the within transformation to eliminate 𝑐𝑖 , the
correlated random effect model (Mundlak (1978)) explicitly
specifies the dependence of 𝑐𝑖 on 𝑋𝑖1, ..., 𝑋𝑖𝑇 :

𝑐𝑖 = 𝜆1𝑋𝑖1 + · · · +𝜆𝑇 𝑋𝑖𝑇 +𝜂𝑖 ,
where E [𝑋𝑖𝑡𝜂𝑖] = 0, ∀𝑡 and (𝜆1, ...,𝜆𝑇 ) are linear projection
coefficients.

I Correlated random effect model assumes that the projection
coefficients are all the same: 𝜆1 = · · · = 𝜆𝑇 = 𝜆. Then,
𝑐𝑖 = 𝜆

(
𝑇𝑋 𝑖

)
+𝜂𝑖 and

𝑌𝑖𝑡 = 𝛼+ 𝛽𝑋𝑖𝑡 +𝜆
(
𝑇𝑋 𝑖

)
+𝜂𝑖 +𝑈𝑖𝑡 .
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I The model satisfies the random effect assumption:
E [𝜂𝑖𝑋𝑖𝑡 ] = E

[
𝜂𝑖𝑋 𝑖

]
= 0. The correlated random effect estimator

is a random effect estimator with a new time-invariant variable
𝑇𝑋 𝑖 .

I Chamberlain (1984)’s approach is more flexible: (𝜆1, ...,𝜆𝑇 ) can
be different but its estimation is more sophisticated.

I One advantage of the correlated random effect model is that it
produces estimates of the effects of the time-invariant variables
and allows nonzero correlation between the individual effect and
time-varying explanatory variables.

I However, this model rules out nonzero correlation between the
individual effect and time-invariant variables. If some of the
time-invariant variables are endogenous, then these estimators
are inconsistent.
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Hausman-Taylor’s method

I Hausman-Taylor’s method addresses this issue under alternative
model assumptions.

I The model has 𝑘 time varying variables and 𝑚 time invariant
variables:

𝑌𝑖𝑡 = 𝛼+ 𝑋>
𝑖𝑡 𝛽+ 𝑍>

𝑖 𝛾 + 𝑐𝑖 +𝑈𝑖𝑡 .

I Divide: 𝑋𝑖𝑡 =

(
𝑋1,𝑖𝑡
𝑋2,𝑖𝑡

)
and 𝑍𝑖 =

(
𝑍1,𝑖
𝑍2,𝑖

)
. 𝑋1,𝑖𝑡 is a vector of 𝑘1

variables and 𝑋2,𝑖𝑡 is a vector of 𝑘2 variables, 𝑘 = 𝑘1 + 𝑘2. 𝑍1,𝑖 is
a vector of 𝑚1 variables and 𝑍2,𝑖 is a vector of 𝑚2 variables,
𝑚 = 𝑚1 +𝑚2.

I 𝑋1,𝑖𝑡 and 𝑍1,𝑖 are uncorrelated with 𝑐𝑖 but 𝑋2,𝑖𝑡 and 𝑍2,𝑖 are
correlated with 𝑐𝑖 .
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I Take averages in the time dimension:

𝑌 𝑖 − 𝑋
>
𝑖 𝛽 = 𝛼+ 𝑍>

𝑖 𝛾 + 𝑐𝑖 +𝑈𝑖 .

In this group-level model, 𝑍2,𝑖 is correlated with the error term
𝑉𝑖 = 𝑐𝑖 +𝑈𝑖 .

I 𝛽 can be consistently estimated by the fixed effect estimator 𝛽𝐹𝐸 .
I Hausman-Taylor’s method estimates the dependent variable by

𝑌 𝑖 − 𝑋
>
𝑖 𝛽

𝐹𝐸 and uses 𝑋1,𝑖 as instruments for 𝑍2,𝑖 .
I For identification, we require 𝑘1 ≥ 𝑚2 and 𝑋1,𝑖𝑡 are correlated

with 𝑍2,𝑖 .
I Then we can apply 2SLS or GMM estimation.
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Baseline dynamic panel model
I Consider the following model with 𝑋𝑖𝑡 = 𝑌𝑖 (𝑡−1) :

𝑌𝑖𝑡 = 𝛽𝑌𝑖 (𝑡−1) + 𝑐𝑖 +𝑈𝑖𝑡 ,

where the initial outcome 𝑌𝑖0 is observed. We assume that the
idiosyncratic errors have no serial correlation: E [𝑈𝑖𝑡𝑈𝑖𝑠] = 0,
∀𝑠 ≠ 𝑡.

I In this model, 𝑋𝑖𝑡 = 𝑌𝑖 (𝑡−1) must be correlated with 𝑐𝑖 since

𝑌𝑖 (𝑡−1) = 𝛽𝑌𝑖 (𝑡−2) + 𝑐𝑖 +𝑈𝑖 (𝑡−1)

I The assumption used by the fixed effect approach

E [𝑈𝑖𝑡 ] = E [𝑈𝑖𝑡𝑋𝑖1] = · · · = E [𝑈𝑖𝑡𝑋𝑖𝑇 ] = 0,∀𝑡 = 1, ...,𝑇,

does not hold, since 𝑈𝑖𝑡 is correlated with 𝑋𝑖 (𝑡+1) = 𝑌𝑖𝑡 .
I The within-transformed 𝑋𝑖𝑡 is correlated with the

within-transformed 𝑈𝑖𝑡 . So the standard one-way fixed effect
estimation is inconsistent.
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Anderson-Hsiao estimator

I Anderson-Hsiao’s approach considers the first difference:

Δ𝑌𝑖𝑡 = 𝛽Δ𝑌𝑖 (𝑡−1) +Δ𝑈𝑖𝑡 , 𝑡 = 1, ...,𝑇, 𝑖 = 1, ..., 𝑁,

where Δ𝑌𝑖𝑡 = 𝑌𝑖𝑡 −𝑌𝑖 (𝑡−1) , Δ𝑌𝑖 (𝑡−1) = 𝑌𝑖 (𝑡−1) −𝑌𝑖 (𝑡−2) and
Δ𝑈𝑖𝑡 =𝑈𝑖𝑡 −𝑈𝑖 (𝑡−1) .

I If the error 𝑈𝑖𝑡 is uncorrelated with past 𝑌𝑖𝑡 ’s: E
[
𝑈𝑖𝑡𝑌𝑖 (𝑡−1)

]
= 0,

then it can be observed that 𝑌𝑖 (𝑡−2) is a valid instrument for
Δ𝑌𝑖 (𝑡−1) : E

[
𝑌𝑖 (𝑡−2)Δ𝑈𝑖𝑡

]
= 0 and E

[
𝑌𝑖 (𝑡−2)Δ𝑌𝑖 (𝑡−1)

]
≠ 0. This

requires that we observe data from at least three periods.
I The Anderson-Hsiao estimator is an IV estimator for the

first-differenced model using 𝑌𝑖 (𝑡−2) as the instrument.
I Δ𝑌𝑖 (𝑡−2) = 𝑌𝑖 (𝑡−2) −𝑌𝑖 (𝑡−3) is also a valid instrument, if one more

time period is observed.
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Arrellano-Bond estimator
I Arrellano-Bond’s GMM estimator is more efficient than

Anderson-Hsiao’s IV estimator. It exploits all valid moment
conditions the model generates.

I Suppose that 𝑇 = 4. We know that the following moment
conditions hold.
I For 𝑡 = 2,

E [(Δ𝑌𝑖2 − 𝛽Δ𝑌𝑖1)𝑌𝑖0] = 0;
I For 𝑡 = 3,

E [(Δ𝑌𝑖3 − 𝛽Δ𝑌𝑖2)𝑌𝑖0] = 0
E [(Δ𝑌𝑖3 − 𝛽Δ𝑌𝑖2)𝑌𝑖1] = 0;

I For 𝑡 = 4,

E [(Δ𝑌𝑖4 − 𝛽Δ𝑌𝑖3)𝑌𝑖0] = 0
E [(Δ𝑌𝑖4 − 𝛽Δ𝑌𝑖3)𝑌𝑖1] = 0
E [(Δ𝑌𝑖4 − 𝛽Δ𝑌𝑖3)𝑌𝑖2] = 0.
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I Arrellano-Bond’s efficient GMM estimator is argmin𝑏𝑄 (𝑏),
where

𝑄 (𝑏) =

©«

𝑁−1 ∑𝑁
𝑖=1 (Δ𝑌𝑖2 − 𝑏Δ𝑌𝑖1)𝑌𝑖0

𝑁−1 ∑𝑁
𝑖=1 (Δ𝑌𝑖3 − 𝑏Δ𝑌𝑖2)𝑌𝑖0

𝑁−1 ∑𝑁
𝑖=1 (Δ𝑌𝑖3 − 𝑏Δ𝑌𝑖2)𝑌𝑖1

𝑁−1 ∑𝑁
𝑖=1 (Δ𝑌𝑖4 − 𝑏Δ𝑌𝑖3)𝑌𝑖0

𝑁−1 ∑𝑁
𝑖=1 (Δ𝑌𝑖4 − 𝑏Δ𝑌𝑖3)𝑌𝑖1

𝑁−1 ∑𝑁
𝑖=1 (Δ𝑌𝑖4 − 𝑏Δ𝑌𝑖3)𝑌𝑖2

ª®®®®®®®®¬

>

𝑊∗

©«

𝑁−1 ∑𝑁
𝑖=1 (Δ𝑌𝑖2 − 𝑏Δ𝑌𝑖1)𝑌𝑖0

𝑁−1 ∑𝑁
𝑖=1 (Δ𝑌𝑖3 − 𝑏Δ𝑌𝑖2)𝑌𝑖0

𝑁−1 ∑𝑁
𝑖=1 (Δ𝑌𝑖3 − 𝑏Δ𝑌𝑖2)𝑌𝑖1

𝑁−1 ∑𝑁
𝑖=1 (Δ𝑌𝑖4 − 𝑏Δ𝑌𝑖3)𝑌𝑖0

𝑁−1 ∑𝑁
𝑖=1 (Δ𝑌𝑖4 − 𝑏Δ𝑌𝑖3)𝑌𝑖1

𝑁−1 ∑𝑁
𝑖=1 (Δ𝑌𝑖4 − 𝑏Δ𝑌𝑖3)𝑌𝑖2

ª®®®®®®®®¬
and 𝑊∗ is the estimated efficient GMM weighting matrix.
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