Introductory Econometrics

Lecture 9: Hypothesis testing for linear regression models

Instructor: Ma, Jun

Renmin University of China

October 1, 2021

Null and alternative hypotheses

- Usually, we have two competing hypotheses, and we want to draw a conclusion, based on the data, as to which of the hypotheses is true.
- ► Null hypothesis , denoted as *H*₀: A hypothesis that is held to be true, unless the data provides a sufficient evidence against it.
- ► Alternative hypothesis, denoted as *H*₁: A hypothesis against which the null is tested. It is held to be true if the null is found false.
- ► The two hypotheses are not treated symmetrically. *H*₀ is favored in the sense that it is only rejected if there is strong evidence against it.
- ► H₀ summarizes our prior belief about the state of the world.
- ▶ H_1 corresponds to our belief about how H_0 could be wrong.
- ▶ The two hypotheses must be disjoint: it should be the case that either H_0 is true or H_1 but never together simultaneously.

Heads or Tails?

- ► We believe that a coin is fair, unless we see enough evidence against it.
- ▶ In the coin tossing example, let p be the probability of "Heads". Our null hypothesis could be $H_0: p = \frac{1}{2}$ and our alternative hypothesis could be $H_1: p \neq \frac{1}{2}$.
- ▶ We may believe that the coin is fair, but suspect that it is biased towards heads if it is biased. In this case, we may pick $H_0: p = \frac{1}{2}$ and $H_1: p > \frac{1}{2}$.

Hypothesis testing as stochastic proof by contradiction

- ▶ Usually, the econometrician has to carry the "burden of proof" and the case that he is interested in is stated as H_1 .
- ▶ The econometrician has to prove that his assertion (H_1) is true by showing that the data rejects H_0 .
- ► As we perform proof by contradiction, we assume "something" we want to prove that it contradicts to itself.
- ▶ In the hypothesis testing, we assume the "null hypothesis" being true and we want to prove that our data contradicts to the hypothesis.

Hypothesis testing procedure

- ▶ Suppose we are concerned with a parameter $\theta \in \mathbb{R}$ (e.g. the population mean of some random variable for which we have repeated observations).
- ▶ We consider hypotheses like $H_0: \theta \in I_0$ and $H_1: \theta \in I_1$ with $I_0 \cap I_1 = \emptyset$. $I_0 \cup I_1$ is the maintained hypothesis.
- ▶ The econometrician has to choose between H_0 and H_1 .
- ▶ We consider a test statistic T, which is a function of the data. T should be informative about the value of θ . T typically has a known distribution under H_0 .
- ► Then we choose a significance level α , with $0 < \alpha < 1$. It is also called the size of the test. By convention, α is chosen to be a small number.
- α can be interpreted as the probability of a "very small-probability" event: How small a chance should be considered small?

Hypothesis testing procedure

- Then one rejects H_0 if the test statistic falls into a critical region Γ_α . A critical region is constructed by taking into account the probability of making a wrong decision, i.e. it typically depends on α . This is usually a set of possible values of the test statistic that contains the test statistic with probability α , under H_0 , i.e. $\Pr\left[T \in \Gamma_\alpha\right] = \alpha$ under H_0 . Notice that this requires knowledge about the distribution of T under H_0 .
- ▶ If the test statistic assumes a value in the critical region, $T \in \Gamma_{\alpha}$, this is considered to be strong evidence against H_0 . In this case, we reject H_0 in favor of H_1 . Otherwise, we fail to reject H_0 .
- ▶ If α is small and $T \in \Gamma_{\alpha}$, it means that the sample is unlikely if H_0 is true and so we have evidence against it, there are two possibilities: we observed a very small-probability event or our assumption (H_0) is wrong.

Hypothesis testing as stochastic proof by contradiction

- ▶ If we accept the principle that a very small-probability event cannot happen in the current state of the world, we accept the second reasoning: our assumption (H_0) is wrong.
- ▶ If $T \notin \Gamma_{\alpha}$, there is no "significant" contradiction between data and the null hypothesis. On the other hand, if $T \in \Gamma_{\alpha}$, there is a "significant" contradiction and we reject H_0 like what we conclude in proof by contradiction.
- Notice that "reject H₀" and "fail to reject H₀" are used for conclusions drawn from tests. Such terminology reflects the asymmetry of H₀ and H₁.
- ▶ We do not say "accept H_0 " instead of "fail to reject H_0 " since if we find $T \notin \Gamma_{\alpha}$, we did not "prove" anything and our test result is non-conclusive, since we did not find a contradiction.
- ► The decision depends on the significance level α : larger values of α correspond to bigger critical regions Γ_{α} . It is easier to reject the null for larger values of α .

A simple example

- ► Consider a normal population with mean μ and variance σ^2 and a random sample from the population. Suppose we know σ^2 for now.
- ▶ Consider a one-sided test: $H_0: \mu = 0$ against $H_1: \mu > 0$.
- ► Consider

$$T=\frac{\bar{X}}{\sigma/\sqrt{n}},$$

which is a N(0,1) random variable under H_0 . H_1 is more likely to be true if T is large.

- ► Consider $\Gamma_{\alpha} = [z_{1-\alpha}, \infty)$, where $z_{1-\alpha}$ is the $(1-\alpha)$ -th quantile of N(0,1).
- ▶ Under H_0 , $\Pr[T \in \Gamma_{\alpha}] = \alpha$. And notice that Γ_{α} is a sub-interval of $\Gamma_{\alpha'}$ if $\alpha < \alpha'$.

Summary of the steps

- ► The following are the steps of the hypothesis testing:
 - 1. Specify H_0 and H_1 .
 - 2. Choose the significance level α .
 - 3. Define a decision rule (critical region).
 - 4. Perform the test using the data: given the data compute the test statistic and see if it falls into the critical region.

p-Value

▶ Given a realization t of the test statistic T, we can compute the lowest significance level consistent with rejecting H_0 . This is called the p-value:

p-value=min
$$\{0 < \alpha < 1 : t \in \Gamma_{\alpha}\}$$
.

- ► The p-value could be viewed as a measure of contradiction. The smaller the p-value is, the larger the contradiction is. In a probabilistic model, we use the way of reasoning in proof by contradiction with a "measure" of contradiction based on data to carry out the similar reasoning.
- ▶ Now if the *p*-value is smaller than our tolerance(significance level), then we reject null hypothesis like what we conclude in proof by contradiction.

- ▶ In the simple example, the critical region is $\Gamma_{\alpha} = [z_{1-\alpha}, \infty)$. Suppose we have a realization t of T.
- ▶ Suppose we find that $z_{1-p} = t$. We would reject H_0 for all significance levels $\alpha \ge p$. p is the realized p-value.

Errors

► There are two types of errors that the econometrician can make:

	Truth				
		H_0	H_1		
Decision	H_0	✓	Type II error		
	$\overline{H_1}$	Type I error	√		

▶ Type I error is the error of rejecting H_0 when H_0 is true.

$$Pr(Type | Terror) = Pr(reject | H_0 | H_0 | strue) = \alpha.$$

▶ Type II error is the error of not rejecting H_0 when H_1 is true.

Errors

- ► The real line is split into two regions: acceptance region and rejection region (critical region).
 - ▶ When $T \notin \Gamma_{\alpha}$, we accept H_0 (and risk making a Type II error).
 - ▶ When $T \in \Gamma_{\alpha}$, we reject H_0 (and risk making a Type I error).
 - Unfortunately, the probabilities of Type I and II errors are inversely related.
 - By decreasing the probability of Type I error α, one makes the critical region smaller, which increases the probability of the Type II error. Thus it is impossible to make both errors arbitrary small.
- ▶ We require that the test we carry out has to be valid: the probability of type-I error $(\Pr[T \in \Gamma_{\alpha}] \text{ under } H_0)$ must be α .
- ► We want the probability of a type-II error to be as small as possible for a given probability of a type-I error.

Power of tests

► Power of a test:

$$1 - Pr (\mathsf{Type} \; \mathsf{II} \; \mathsf{error}) = 1 - Pr (\mathsf{Accept} \; \mathit{H}_0 \; | \; \mathit{H}_0 \; \mathsf{is} \; \mathsf{false}) \,.$$

- ► We want the power of a test to be as large as possible, for a given significance level.
- We may not know the distribution of the test statistic under H₁. The distribution typically depends on θ.
- ▶ The power function $\pi(\theta)$ of the test is the probability that H_0 is rejected as a function of the true parameter value θ .

▶ For any given value of μ , define

$$T_{\mu}=T-rac{\mu}{\sigma/\sqrt{n}}=rac{ar{X}-\mu}{\sigma/\sqrt{n}},$$

which is always N(0,1) if the true mean is μ .

▶ We reject the test when $T \ge z_{1-\alpha}$, which holds if and only if

$$T_{\mu} = T - \frac{\mu}{\sigma/\sqrt{n}} \ge z_{1-\alpha} - \frac{\mu}{\sigma/\sqrt{n}}.$$

It follows for this simple example, that the power function is

$$\pi\left(\mu\right) = 1 - \Phi\left(z_{1-\alpha} - \frac{\sqrt{n\mu}}{\sigma}\right).$$

Notice that $\pi(0) = 1 - \Phi(z_{1-\alpha}) = \alpha$, which is simply the significance level.

- ▶ We notice that $\pi(\mu)$ is smaller for all μ if the significance level α is smaller (and hence $z_{1-\alpha}$ is larger). This reflects the trade-off between type-I error and type-II error probabilities: we cannot reduce both simultaneously.
- \blacktriangleright $\pi(\mu)$ is increasing in μ . For μ 's that are farther away from 0, the test can detect such deviation at a higher probability.
- ▶ As $\mu \to \infty$, the power converges to 1. The test is very likely to reject H_0 if the true mean is very large.
- \blacktriangleright π (μ) increases with the sample size n. The test can detect falseness of H_0 at a higher probability if our sample contains more information.

- We consider an alternative critical region: $\tilde{\Gamma}_{\alpha} = (-\infty, -z_{1-\alpha}]$. Notice that under H_0 , $\Pr\left[T \in \tilde{\Gamma}_{\alpha}\right] = \alpha$, so this is a valid test.
- ▶ We reject the test when $T \le -z_{1-\alpha}$, which holds if and only if

$$T_{\mu} = T - \frac{\mu}{\sigma/\sqrt{n}} \le -z_{1-\alpha} - \frac{\mu}{\sigma/\sqrt{n}}.$$

► So the power function is

$$\tilde{\pi}\left(\mu\right) = \Phi\left(-z_{1-\alpha} - \frac{\sqrt{n\mu}}{\sigma}\right).$$

- $\tilde{\pi}(\mu)$ is decreasing in both μ and n, which is undesirable.
- ► For all $\mu > 0$ (remember μ is the true mean), the power is smaller than α . At the same significance level, the power of the alternative critical region is much lower.

Linear model assumptions

- $\blacktriangleright \beta_1$ is unknown, and we have to rely on its OLS estimator $\hat{\beta}_1$.
- ▶ We need to know the distribution of $\hat{\beta}_1$ or of its certain functions.
- ► We will assume that the assumptions of the Normal Classical Linear Regression model are satisfied:
 - 1. $Y_i = \beta_0 + \beta_1 X_i + U_i$, i = 1, ..., n.
 - 2. $E[U_i \mid X_1, ..., X_n] = 0$ for all *i*'s.
 - 3. $E\left[U_i^2 \mid X_1, \dots, X_n\right] = \sigma^2$ for all *i*'s.
 - 4. $E[U_i U_i \mid X_1, ..., X_n] = 0$ for all $i \neq j$.
 - 5. U's are jointly normally distributed conditional on X's.
- ► Recall that, in this case, conditionally on X's:

$$\hat{eta}_1 \sim \mathrm{N}\left(eta_1, \mathrm{Var}\left[\hat{eta}_1
ight]
ight)$$
 , where $\mathrm{Var}\left[\hat{eta}_1
ight] = rac{\sigma^2}{\sum_{i=1}^n \left(X_i - ar{X}
ight)^2}$.

Two-sided tests

▶ For $Y_i = \beta_0 + \beta_1 X_i + U_i$, consider testing

$$H_0: \beta_1 = \beta_{1,0},$$

against

$$H_1: \beta_1 \neq \beta_{1,0}.$$

- \blacktriangleright β_1 is the true unknown value of the slope parameter.
- ▶ $\beta_{1,0}$ is a known number specified by the econometrician. (For example $\beta_{1,0}$ is zero if you want to test $\beta_1 = 0$).
- ▶ Such a test is called two-sided because the alternative hypothesis H_1 does not specify in which direction β_1 can deviate from the asserted value $\beta_{1,0}$.

Two-sided tests when σ^2 is known (infeasible test)

- ▶ Suppose for a moment that σ^2 is known.
- ► Consider the following test statistic:

$$T = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\operatorname{Var}\left[\hat{\beta}_1\right]}}, \text{ where } \operatorname{Var}\left[\hat{\beta}_1\right] = \frac{\sigma^2}{\sum_{i=1}^n \left(X_i - \bar{X}\right)^2}.$$

► Consider the following decision rule (test):

Reject
$$H_0: eta_1 = eta_{1,0}$$
 when $|T| > z_{1-lpha/2}$,

where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ quantile of the standard normal distribution (critical value).

Test validity and power

- ▶ We need to establish that:
 - 1. The test is valid, where the validity of a test means that it has correct size or $\Pr\left(\mathsf{Type}\;\mathsf{I}\;\mathsf{error}\right) = \alpha$: if $\beta_1 = \beta_{1,0}$

$$\Pr\left[|T| > z_{1-\alpha/2}\right] = \alpha.$$

2. The test has power: when $\beta_1 \neq \beta_{1,0}$ (H_0 is false), the test rejects H_0 with probability that exceeds α : if $\beta_1 \neq \beta_{1,0}$

$$\Pr[|T| > z_{1-\alpha/2}] > \alpha.$$

- ▶ We want $\Pr[|T| > z_{1-\alpha/2}]$ when $\beta_1 \neq \beta_{1,0}$ to be as large as possible.
- ▶ Note that $\Pr[|T| > z_{1-\alpha/2}]$ when $\beta_1 \neq \beta_{1,0}$ depends on the true value β_1 .

The distribution of T when σ^2 is known (infeasible test)

► Write

$$T = \frac{\hat{\beta}_{1} - \beta_{1,0}}{\sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]}} = \frac{\hat{\beta}_{1} - \beta_{1} + \beta_{1} - \beta_{1,0}}{\sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]}}$$
$$= \frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]}} + \frac{\beta_{1} - \beta_{1,0}}{\sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]}}.$$

► Under our assumptions and conditionally on X's:

$$\hat{\beta}_{1} \sim N\left(\beta_{1}, \text{Var}\left[\hat{\beta}_{1}\right]\right), \text{ or } \frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{\text{Var}\left[\hat{\beta}_{1}\right]}} \sim N\left(\textbf{0}, \textbf{1}\right).$$

▶ We have that conditionally on X's: $T \sim N\left(\frac{\beta_1 - \beta_{1,0}}{\sqrt{\text{Var}[\hat{\beta}_1]}}, 1\right)$.

Validity when σ^2 is known (infeasible test)

▶ We have that

$$T \sim N \left(rac{eta_1 - eta_{1,0}}{\sqrt{Var\left[\hat{eta}_1
ight]}}, 1
ight).$$

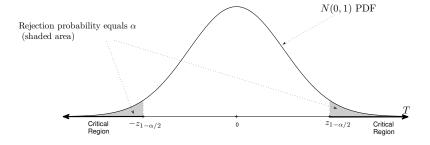
- ▶ When $H_0: \beta_1 = \beta_{1,0}$ is true, $T \stackrel{H_0}{\sim} N(0,1)$.
- \blacktriangleright We reject H_0 when

$$|T| > z_{1-\alpha/2} \Leftrightarrow T > z_{1-\alpha/2} \text{ or } T < -z_{1-\alpha/2}.$$

▶ Let $Z \sim N(0, 1)$.

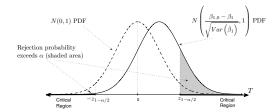
Pr (Reject
$$H_0 \mid H_0$$
 is true) = Pr $[Z > z_{1-\alpha/2}]$ + Pr $[Z < -z_{1-\alpha/2}]$
= $\alpha/2 + \alpha/2 = \alpha$

The distribution of T when σ^2 is known (infeasible test)



Power of the test when σ^2 is known (infeasible test)

- ▶ Under H_1 , $\beta_1 \beta_{1,0} \neq 0$ and the distribution of T is not centered zero: $T \sim N\left(\frac{\beta_1 \beta_{1,0}}{\sqrt{\operatorname{Var}[\hat{\beta}_1]}}, 1\right)$.
- ▶ When $\beta_1 \beta_{1,0} > 0$:



► Rejection probability exceeds α under H_1 : power increases with the distance from H_0 ($|\beta_{1,0} - \beta_1|$) and decreases with $\operatorname{Var}\left[\hat{\beta}_1\right]$.

The two-sided *t*-test

- ▶ We are testing $H_0: \beta_1 = \beta_{1,0}$ against $H_1: \beta_1 \neq \beta_{1,0}$.
- ▶ When σ^2 is unknown, we replace it with $s^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{U}_i^2$.
- ► The *t*-statistic:

$$T = \frac{\hat{\beta}_{1} - \beta_{1,0}}{\sqrt{\widehat{\text{Var}}\left[\hat{\beta}_{1}\right]}} = \frac{\hat{\beta}_{1} - \beta_{1,0}}{\sqrt{\frac{s^{2}}{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}}}}.$$

- ▶ We also replace the standard normal critical values $z_{1-\alpha/2}$ with the t_{n-2} critical values $t_{n-2,1-\alpha/2}$. However, for large n, $t_{n-2,1-\alpha/2} \approx z_{1-\alpha/2}$.
- ► The two-sided *t*-test:

Reject
$$H_0$$
 when $|T| > t_{n-2,1-\alpha/2}$.

The two-sided *p*-value

- ► The decision to accept or reject H_0 depends on the critical value $t_{n-2,1-\alpha/2}$.
- ▶ If $\alpha_1 > \alpha_2$ then $t_{1-\alpha_1/2} < t_{1-\alpha_2/2}$.
- ► Thus, it is easier to reject H_0 with the significance level α_1 since it corresponds to a smaller acceptance region.
- ▶ p-value is the smallest significance level α for which we can reject H_0 .

The two-sided *p*-value

- ► In order to find *p*-value:
 - 1. Compute *T*.
 - 2. Find τ such that $|T| = t_{n-2,1-\tau}$.
 - 3. The *p*-value= $\tau \times 2$.
- ▶ Note that for all $\alpha > p$ -value,

$$|T| = t_{n-2,1-(p\text{-value})/2} > t_{n-2,1-\alpha/2}$$

and we will reject H_0 .

▶ For all $\alpha < p$ -value,

$$|T| = t_{n-2,1-(p\text{-value})/2} \le t_{n-2,1-\alpha/2}$$

and we will accept H_0 .

Example of p-value calculation

Suppose a regression with 19 observations produced the following output:

у	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
x	6725304	.5804943	-1.16	0.263	-1.897266	.5522055
_cons	10.18197	. 2509365	40.58	0.000	9.652542	10.7114

- ► Here, $\hat{\beta}_1 = -0.6725$, $\beta_{1,0} = 0$, and in the 4th column t = -0.6725/0.5804 = -1.16.
 - ▶ Thus, |T| = 1.16 and df=17.
 - From the t-table, the closest critical value is $t_{17,1-0.15}=1.069$. (The probability that a random variable with t_{17} -distribution lies on the right of 1.16 is ≈ 0.15 .)
 - ► The *p*-value is then $\approx 0.15 \times 2 = 0.300$.

Stata

- ► We can compute critical values and *p*-values using Stata instead of using the tables.
- ► To compute standard normal critical values use:

display invnormal(
$$\tau$$
),

were τ is a number between 0 and 1.

- ► For example: display invnormal(1-0.05/2) produces 1.959964.
- ► For t critical values use

display invttail(
$$df$$
, τ),

where df is the number of degrees of freedom and τ is a number between 0 and 1.

Note that here τ is the right-tail probability!

► For example, display invttail(62,0.05/2) produces 1.9989715.

Stata

► To compute two-sided normal *p*-values use:

display
$$2 * (1-normal(T))$$
.

- ► For example, display 2*(1-normal(1.96)) produces 0.04999579.
- ► To compute two-sided *t*-distribution *p*-values, use

display
$$2*(ttail(df, T))$$
,

Note that ttail gives the right tail probabilities!

► For example, display 2*(ttail(62, 1.96)) produces 0.05449415.

Example

rent	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
avginc	.01158	.0013084	8.85	0.000	.0089646	.0141954
_cons	148.7764	32.09787	4.64	0.000	84.6137	212.9392

- ▶ Stata report the *t*-statistics and the *p*-value for $H_0: \beta = 0$.
- ► To test H_0 whether the coefficient of AvgInc is zero : T = 0.01158/0.0013084 = 8.85.
- ► The *p*-value is extremely close to zero, (display 2*(ttail(62, 8.85)) gives 1.345×10^{-12}), so for all reasonable significance levels α , we reject H_0 that the coefficient of AvgInc is zero.
- ► AvgInc is a statistically significant regressor.

Example

rent	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
avginc	.01158	.0013084	8.85	0.000	.0089646	.0141954
_cons	148.7764	32.09787	4.64	0.000	84.6137	212.9392

- ► Consider now testing H_0 that the coefficient of AvgInc is 0.009 against the alternative that it is different from 0.009.
- $T = (0.01158 0.009) / 0.0013084 \approx 1.97.$
- ► At 5% significance level, $t_{62,0.975} \approx 1.999 > T$ and we accept H_0 .
- ▶ At 10% significance level, $t_{62,0.95} \approx 1.67 < T$ and we reject H_0 .
- ▶ The two sided *p*-value is $2*(ttail(62, 1.97)) \implies \approx 0.053$.
- ► For $\alpha \leq 0.053$ we will accept H_0 and for $\alpha > 0.053$ we will reject H_0 .

Confidence intervals and hypothesis testing

- ► There is one-to-one correspondence between confidence intervals and hypothesis testing.
- ▶ We cannot reject $H_0: \beta_1 = \beta_{1,0}$ against a two-sided alternative if $|T| \le t_{n-2,1-\alpha/2}$ or if and only if:

$$\begin{aligned} -t_{n-2,1-\alpha/2} &\leq \frac{\hat{\beta}_{1} - \beta_{1,0}}{\sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_{1}\right]}} \leq t_{n-2,1-\alpha/2} \\ &\iff \\ \hat{\beta}_{1} - t_{n-2,1-\alpha/2} \sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_{1}\right]} &\leq \beta_{1,0} \leq \hat{\beta}_{1} + t_{n-2,1-\alpha/2} \sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_{1}\right]} \\ &\iff \\ \beta_{1,0} \in \mathit{Cl}_{1-\alpha}. \end{aligned}$$

► Thus, for any $\beta_{1,0} \in CI_{1-\alpha}$, we cannot reject $H_0: \beta_1 = \beta_{1,0}$ against $H_1: \beta_1 \neq \beta_{1,0}$ at significance level α .

Example

```
. rearess rent avainc
                                                   Number of obs =
     Source
      Model | 347069.249 1 347069.249
   Residual İ
             274693.188 62 4430.53529
                                                   R-squared
                                                   Adi R-squared =
      Total |
              621762.438 63 9869.24504
                                                   ROOT MSE
                  coef.
                         Std. Err.
                                            P>|t|
                                                      [95% Conf. Interval
     avginc
                 .01158
                        .0013084
                                  8.85 0.000
                                                    .0089646
                         32.09787
                                  4.64 0.000
      _cons |
              148.7764
                                                     84.6137
```

- ► The 95% confidence interval for the coefficient of Avglnc is [0.0089646,0.0141954].
- ▶ A significance level 5% test of $H_0: \beta_1 = \beta_{1,0}$ against $H_1: \beta_1 \neq \beta_{1,0}$ will not reject H_0 if $\beta_{1,0} \in [0.0089646, 0.0141954]$.

- ▶ Consider testing $H_0: \beta_1 \leq \beta_{1,0}$ against $H_1: \beta_1 > \beta_{1,0}$.
- ▶ It is reasonable to reject H_0 when $\hat{\beta}_1 \beta_{1,0}$ is large and positive or when

$$\mathcal{T} = rac{\hat{eta}_1 - eta_{1,0}}{\sqrt{\widehat{\operatorname{Var}}\left[\hat{eta}_1
ight]}} > c_{1-lpha}$$

where $c_{1-\alpha}$ is a positive constant.

- ▶ The null hypothesis H_0 is composite. The probability of rejection under H_0 depends on β_1 .
- ▶ We pick the critical value $c_{1-\alpha}$ so that

$$\Pr\left[\frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_1\right]}} > c_{1-\alpha} \mid \beta_1 \leq \beta_{1,0}\right] \leq \alpha$$

for all $\beta_1 \leq \beta_{1,0}$.

▶ For all $\beta_1 \leq \beta_{1,0}$,

$$\frac{\beta_1 - \beta_{1,0}}{\sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_1\right]}} \le 0,$$

and

$$\Pr\left[\frac{\hat{\beta}_{1} - \beta_{1,0}}{\sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_{1}\right]}} > c_{1-\alpha} \mid \beta_{1} \leq \beta_{1,0}\right]$$

$$= \Pr\left[\frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_{1}\right]}} + \frac{\beta_{1} - \beta_{1,0}}{\sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_{1}\right]}} > c_{1-\alpha} \mid \beta_{1} \leq \beta_{1,0}\right]$$

$$\leq \Pr\left[\frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_{1}\right]}} > c_{1-\alpha} \mid \beta_{1} \leq \beta_{1,0}\right]$$

$$= \alpha \text{ if } c_{1-\alpha} = t_{p-2,1-\alpha}.$$

► For size α test, we reject $H_0: \beta_1 \leq \beta_{1,0}$ against $H_1: \beta_1 > \beta_{1,0}$ when

$$T = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_1\right]}} > t_{n-2,1-\alpha}.$$

where $t_{n-2,1-\alpha}$ is the critical value corresponding to t-distribution with n-2 degrees of freedom.

- ▶ Note that we use 1α and not $1 \alpha/2$ for choosing critical values in the case of one-sided testing.
- For size α test, we reject $H_0: \beta_1 \geq \beta_{1,0}$ against $H_1: \beta_1 < \beta_{1,0}$ when

$$T = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_1\right]}} < -t_{n-2,1-\alpha}.$$

- ▶ One-sided *p*-values for $H_0: \beta_1 \leq \beta_{1,0}$ against $H_1: \beta_1 > \beta_{1,0}:$
 - 1. Compute T.
 - 2. Find τ such that $T = t_{n-2,1-\tau}$.
 - 3. The *p*-value= τ .