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Null and alternative hypotheses
I Usually, we have two competing hypotheses, and we want to

draw a conclusion, based on the data, as to which of the
hypotheses is true.

I Null hypothesis , denoted as H0: A hypothesis that is held to
be true, unless the data provides a sufficient evidence against
it.

I Alternative hypothesis, denoted as H1: A hypothesis against
which the null is tested. It is held to be true if the null is
found false.

I The two hypotheses are not treated symmetrically. H0 is
favored in the sense that it is only rejected if there is strong
evidence against it.

I H0 summarizes our prior belief about the state of the world.
I H1 corresponds to our belief about how H0 could be wrong.
I The two hypotheses must be disjoint: it should be the case

that either H0 is true or H1 but never together simultaneously.
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Heads or Tails?

I We believe that a coin is fair, unless we see enough evidence
against it.

I In the coin tossing example, let p be the probability of
“Heads”. Our null hypothesis could be H0 : p = 1

2 and our
alternative hypothesis could be H1 : p 6= 1

2 .

I We may believe that the coin is fair, but suspect that it is
biased towards heads if it is biased. In this case, we may pick
H0 : p = 1

2 and H1 : p > 1
2 .
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Hypothesis testing as stochastic proof by contradiction

I Usually, the econometrician has to carry the “burden of
proof” and the case that he is interested in is stated as H1.

I The econometrician has to prove that his assertion (H1) is
true by showing that the data rejects H0.

I As we perform proof by contradiction, we assume
“something” we want to prove that it contradicts to itself.

I In the hypothesis testing, we assume the “null hypothesis”
being true and we want to prove that our data contradicts to
the hypothesis.
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Hypothesis testing procedure

I Suppose we are concerned with a parameter θ ∈ R (e.g. the
population mean of some random variable for which we have
repeated observations).

I We consider hypotheses like H0 : θ ∈ I0 and H1 : θ ∈ I1 with
I0 ∩ I1 = ∅. I0 ∪ I1 is the maintained hypothesis.

I The econometrician has to choose between H0 and H1.

I We consider a test statistic T , which is a function of the data.
T should be informative about the value of θ. T typically has
a known distribution under H0.

I Then we choose a significance level α, with 0 < α < 1. It is
also called the size of the test. By convention, α is chosen to
be a small number.

I α can be interpreted as the probability of a “very
small-probability” event: How small a chance should be
considered small?
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Hypothesis testing procedure
I Then one rejects H0 if the test statistic falls into a critical

region Γα. A critical region is constructed by taking into
account the probability of making a wrong decision, i.e. it
typically depends on α. This is usually a set of possible values
of the test statistic that contains the test statistic with
probability α, under H0, i.e. Pr [T ∈ Γα] = α under H0.
Notice that this requires knowledge about the distribution of
T under H0.

I If the test statistic assumes a value in the critical region,
T ∈ Γα, this is considered to be strong evidence against H0.
In this case, we reject H0 in favor of H1. Otherwise, we fail to
reject H0.

I If α is small and T ∈ Γα, it means that the sample is unlikely
if H0 is true and so we have evidence against it, there are two
possibilities: we observed a very small-probability event or our
assumption (H0) is wrong.
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Hypothesis testing as stochastic proof by contradiction
I If we accept the principle that a very small-probability event

cannot happen in the current state of the world, we accept
the second reasoning: our assumption (H0) is wrong.

I If T /∈ Γα, there is no “significant” contradiction between
data and the null hypothesis. On the other hand, if T ∈ Γα,
there is a “significant” contradiction and we reject H0 like
what we conclude in proof by contradiction.

I Notice that “reject H0” and “fail to reject H0” are used for
conclusions drawn from tests. Such terminology reflects the
asymmetry of H0 and H1.

I We do not say “accept H0” instead of “fail to reject H0” since
if we find T /∈ Γα, we did not “prove” anything and our test
result is non-conclusive, since we did not find a contradiction.

I The decision depends on the significance level α: larger values
of α correspond to bigger critical regions Γα . It is easier to
reject the null for larger values of α.
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A simple example

I Consider a normal population with mean µ and variance σ2

and a random sample from the population. Suppose we know
σ2 for now.

I Consider a one-sided test: H0 : µ = 0 against H1 : µ > 0.

I Consider

T =
X̄

σ/√n
,

which is a N (0, 1) random variable under H0. H1 is more
likely to be true if T is large.

I Consider Γα = [z1−α, ∞), where z1−α is the (1− α)-th
quantile of N (0, 1).

I Under H0, Pr [T ∈ Γα] = α. And notice that Γα is a
sub-interval of Γα′ if α < α′.
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Summary of the steps

I The following are the steps of the hypothesis testing:

1. Specify H0 and H1.
2. Choose the significance level α.
3. Define a decision rule (critical region).
4. Perform the test using the data: given the data compute the

test statistic and see if it falls into the critical region.
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p-Value

I Given a realization t of the test statistic T , we can compute
the lowest significance level consistent with rejecting H0. This
is called the p-value:

p-value=min {0 < α < 1 : t ∈ Γα} .

I The p-value could be viewed as a measure of contradiction.
The smaller the p-value is, the larger the contradiction is. In a
probabilistic model, we use the way of reasoning in proof by
contradiction with a “measure” of contradiction based on
data to carry out the similar reasoning.

I Now if the p-value is smaller than our tolerance(significance
level), then we reject null hypothesis like what we conclude in
proof by contradiction.

10/39



The simple example

I In the simple example, the critical region is Γα = [z1−α, ∞).
Suppose we have a realization t of T .

I Suppose we find that z1−p = t. We would reject H0 for all
significance levels α ≥ p. p is the realized p-value.
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Errors

I There are two types of errors that the econometrician can
make:

Truth

Decision

H0 H1

H0 X Type II error

H1 Type I error X
I Type I error is the error of rejecting H0 when H0 is true.

Pr (Type I error) = Pr (reject H0 | H0 is true) = α.

I Type II error is the error of not rejecting H0 when H1 is true.
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Errors

I The real line is split into two regions: acceptance region and
rejection region (critical region).

I When T /∈ Γα, we accept H0 (and risk making a Type II error).
I When T ∈ Γα, we reject H0 (and risk making a Type I error).
I Unfortunately, the probabilities of Type I and II errors are

inversely related.
I By decreasing the probability of Type I error α, one makes the

critical region smaller, which increases the probability of the
Type II error. Thus it is impossible to make both errors
arbitrary small.

I We require that the test we carry out has to be valid: the
probability of type-I error (Pr [T ∈ Γα] under H0)must be α.

I We want the probability of a type-II error to be as small as
possible for a given probability of a type-I error.
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Power of tests

I Power of a test:

1− Pr (Type II error) = 1− Pr (Accept H0 | H0 is false) .

I We want the power of a test to be as large as possible, for a
given significance level.

I We may not know the distribution of the test statistic under
H1. The distribution typically depends on θ.

I The power function π (θ)of the test is the probability that H0

is rejected as a function of the true parameter value θ.
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The simple example

I For any given value of µ, define

Tµ = T − µ
σ/√n

=
X̄ − µ
σ/√n

,

which is always N (0, 1) if the true mean is µ.

I We reject the test when T ≥ z1−α, which holds if and only if

Tµ = T − µ
σ/√n

≥ z1−α −
µ

σ/√n
.

It follows for this simple example, that the power function is

π (µ) = 1−Φ
(
z1−α −

√
nµ

σ

)
.

I Notice that π (0) = 1−Φ (z1−α) = α, which is simply the
significance level.
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The simple example

I We notice that π (µ) is smaller for all µ if the significance
level α is smaller (and hence z1−α is larger). This reflects the
trade-off between type-I error and type-II error probabilities:
we cannot reduce both simultaneously.

I π (µ) is increasing in µ. For µ’s that are farther away from 0,
the test can detect such deviation at a higher probability.

I As µ→ ∞, the power converges to 1. The test is very likely
to reject H0 if the true mean is very large.

I π (µ) increases with the sample size n. The test can detect
falseness of H0 at a higher probability if our sample contains
more information.
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The simple example

I We consider an alternative critical region: Γ̃α = (−∞,−z1−α].
Notice that under H0, Pr

[
T ∈ Γ̃α

]
= α, so this is a valid test.

I We reject the test when T ≤ −z1−α, which holds if and only if

Tµ = T − µ
σ/√n

≤ −z1−α −
µ

σ/√n
.

I So the power function is

π̃ (µ) = Φ
(
−z1−α −

√
nµ

σ

)
.

I π̃ (µ) is decreasing in both µ and n, which is undesirable.

I For all µ > 0 (remember µ is the true mean), the power is
smaller than α. At the same significance level, the power of
the alternative critical region is much lower.
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Linear model assumptions

I β1 is unknown, and we have to rely on its OLS estimator β̂1.

I We need to know the distribution of β̂1 or of its certain
functions.

I We will assume that the assumptions of the Normal Classical
Linear Regression model are satisfied:

1. Yi = β0 + β1Xi + Ui , i = 1, . . . , n.
2. E [Ui | X1, . . . ,Xn] = 0 for all i ’s.
3. E

[
U2
i | X1, . . . ,Xn

]
= σ2 for all i ’s.

4. E [UiUj | X1, . . . ,Xn] = 0 for all i 6= j .
5. U’s are jointly normally distributed conditional on X ’s.

I Recall that, in this case, conditionally on X ’s:

β̂1 ∼ N
(

β1, Var
[
β̂1

])
, where Var

[
β̂1

]
=

σ2

∑n
i=1 (Xi − X̄ )

2
.
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Two-sided tests

I For Yi = β0 + β1Xi + Ui , consider testing

H0 : β1 = β1,0,

against
H1 : β1 6= β1,0.

I β1 is the true unknown value of the slope parameter.

I β1,0 is a known number specified by the econometrician. (For
example β1,0 is zero if you want to test β1 = 0).

I Such a test is called two-sided because the alternative
hypothesis H1 does not specify in which direction β1 can
deviate from the asserted value β1,0.

19/39



Two-sided tests when σ2 is known (infeasible test)

I Suppose for a moment that σ2 is known.

I Consider the following test statistic:

T =
β̂1 − β1,0√

Var
[
β̂1

] , where Var
[
β̂1

]
=

σ2

∑n
i=1 (Xi − X̄ )

2
.

I Consider the following decision rule (test):

Reject H0 : β1 = β1,0 when |T | > z1−α/2,

where z1−α/2 is the (1− α/2) quantile of the standard normal
distribution (critical value).
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Test validity and power

I We need to establish that:

1. The test is valid, where the validity of a test means that it has
correct size or Pr (Type I error) = α: if β1 = β1,0

Pr [|T | > z1−α/2] = α.

2. The test has power: when β1 6= β1,0 (H0 is false), the test
rejects H0 with probability that exceeds α: if β1 6= β1,0

Pr [|T | > z1−α/2] > α.

I We want Pr [|T | > z1−α/2] when β1 6= β1,0 to be as large as
possible.

I Note that Pr [|T | > z1−α/2] when β1 6= β1,0 depends on the
true value β1.
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The distribution of T when σ2 is known (infeasible test)

I Write

T =
β̂1 − β1,0√

Var
[
β̂1

] =
β̂1 − β1 + β1 − β1,0√

Var
[
β̂1

]

=
β̂1 − β1√
Var

[
β̂1

]+
β1 − β1,0√

Var
[
β̂1

] .

I Under our assumptions and conditionally on X ’s:

β̂1 ∼ N
(

β1, Var
[
β̂1

])
, or

β̂1 − β1√
Var

[
β̂1

] ∼ N (0, 1) .

I We have that conditionally on X ’s: T ∼ N

(
β1−β1,0√

Var[β̂1]
, 1

)
.
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Validity when σ2 is known (infeasible test)

I We have that

T ∼ N


 β1 − β1,0√

Var
[
β̂1

] , 1


 .

I When H0 : β1 = β1,0 is true, T
H0∼ N (0, 1).

I We reject H0 when

|T | > z1−α/2 ⇔ T > z1−α/2 or T < −z1−α/2.

I Let Z ∼ N (0, 1) .

Pr (Reject H0 | H0 is true) = Pr [Z > z1−α/2] + Pr [Z < −z1−α/2]

= α/2 + α/2 = α
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The distribution of T when σ2 is known (infeasible test)

−z1−α/2 z1−α/2 0

Rejection probability equals α
(shaded area)

T

N(0, 1) PDF

Critical 
Region

Critical 
Region
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Power of the test when σ2 is known (infeasible test)
I Under H1, β1 − β1,0 6= 0 and the distribution of T is not

centered zero: T ∼ N

(
β1−β1,0√

Var[β̂1]
, 1

)
.

I When β1 − β1,0 > 0 :

−z1−α/2 z1−α/2 0

N




β1,0 − β1√
V ar

(
β̂1

) , 1


 PDFN(0, 1) PDF

Rejection probability
exceeds α (shaded area)

T
Critical
Region

Critical
Region

I Rejection probability exceeds α under H1: power increases
with the distance from H0 (|β1,0 − β1|) and decreases with
Var

[
β̂1

]
.
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The two-sided t-test

I We are testing H0 : β1 = β1,0 against H1 : β1 6= β1,0.

I When σ2 is unknown, we replace it with s2 = 1
n−2 ∑n

i=1 Û
2
i .

I The t-statistic:

T =
β̂1 − β1,0√

V̂ar
[
β̂1

] =
β̂1 − β1,0√

s2

∑n
i=1(Xi−X̄ )

2

.

I We also replace the standard normal critical values z1−α/2
with the tn−2 critical values tn−2,1−α/2.
However, for large n, tn−2,1−α/2 ≈ z1−α/2.

I The two-sidedt-test:

Reject H0 when |T | > tn−2,1−α/2.
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The two-sided p-value

I The decision to accept or reject H0 depends on the critical
value tn−2,1−α/2.

I If α1> α2 then t1−α1/2 < t1−α2/2.

I Thus, it is easier to reject H0 with the significance level α1

since it corresponds to a smaller acceptance region.

I p-value is the smallest significance level α for which we can
reject H0.
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The two-sided p-value

I In order to find p-value:

1. Compute T .
2. Find τ such that |T | = tn−2,1−τ.
3. The p-value=τ × 2.

I Note that for all α > p-value,

|T | = tn−2,1−(p-value)/2 > tn−2,1−α/2

and we will reject H0.

I For all α ≤ p-value,

|T | = tn−2,1−(p-value)/2 ≤ tn−2,1−α/2

and we will accept H0.
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Example of p-value calculation

Suppose a regression with 19 observations produced the following
output:

------------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

x | -.6725304 .5804943 -1.16 0.263 -1.897266 .5522055

cons | 10.18197 .2509365 40.58 0.000 9.652542 10.7114

------------------------------------------------------------------------------

I Here, β̂1 = −0.6725, β1,0 = 0, and in the 4th column
t = −0.6725/0.5804 = −1.16.

I Thus, |T | = 1.16 and df=17.
I From the t-table, the closest critical value is

t17,1−0.15 = 1.069.
(The probability that a random variable with t17-distribution
lies on the right of 1.16 is ≈ 0.15.)

I The p-value is then ≈ 0.15× 2 = 0.300.
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Stata

I We can compute critical values and p-values using Stata
instead of using the tables.

I To compute standard normal critical values use:

display invnormal(τ),

were τ is a number between 0 and 1.

I For example: display invnormal(1-0.05/2) produces 1.959964.

I For t critical values use

display invttail(df ,τ),

where df is the number of degrees of freedom and τ is a
number between 0 and 1.
Note that here τ is the right-tail probability!

I For example, display invttail(62,0.05/2) produces 1.9989715.

30/39



Stata

I To compute two-sided normal p-values use:

display 2 ∗ (1-normal (T )) .

I For example, display 2*(1-normal(1.96)) produces
0.04999579.

I To compute two-sided t-distribution p-values, use

display 2* (ttail(df ,T )) ,

Note that ttail gives the right tail probabilities!

I For example, display 2*(ttail(62, 1.96)) produces 0.05449415.
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Example

I Stata report the t-statistics and the p-value for H0 : β = 0.

I To test H0 whether the coefficient of AvgInc is zero :
T = 0.01158/0.0013084 = 8.85.

I The p-value is extremely close to zero, (display
2*(ttail(62, 8.85)) gives 1.345×10−12), so for all reasonable
significance levels α, we reject H0 that the coefficient of
AvgInc is zero.

I AvgInc is a statistically significant regressor.
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Example

I Consider now testing H0 that the coefficient of AvgInc is
0.009 against the alternative that it is different from 0.009.

I T = (0.01158− 0.009) /0.0013084 ≈ 1.97.

I At 5% significance level, t62,0.975 ≈ 1.999 > T and we accept
H0.

I At 10% significance level, t62,0.95 ≈ 1.67 < T and we reject
H0.

I The two sided p-value is 2*(ttail(62, 1.97)) =⇒ ≈0.053.

I For α ≤ 0.053 we will accept H0 and for α > 0.053 we will
reject H0.
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Confidence intervals and hypothesis testing

I There is one-to-one correspondence between confidence
intervals and hypothesis testing.

I We cannot reject H0 : β1 = β1,0 against a two-sided
alternative if |T | ≤ tn−2,1−α/2 or if and only if:

−tn−2,1−α/2≤
β̂1 − β1,0√

V̂ar
[
β̂1

]≤ tn−2,1−α/2

⇐⇒

β̂1−tn−2,1−α/2

√
V̂ar

[
β̂1

]
≤ β1,0≤ β̂1+tn−2,1−α/2

√
V̂ar

[
β̂1

]

⇐⇒
β1,0 ∈ CI1−α.

I Thus, for any β1,0 ∈ CI1−α, we cannot reject H0 : β1 = β1,0

against H1 : β1 6= β1,0 at significance level α.
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Example

I The 95% confidence interval for the coefficient of AvgInc is
[0.0089646,0.0141954].

I A significance level 5% test of H0 : β1 = β1,0 against
H1 : β1 6= β1,0 will not reject H0 if
β1,0 ∈ [0.0089646, 0.0141954].
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One-sided tests
I Consider testing H0 : β1 ≤ β1,0 against H1 : β1 > β1,0.
I It is reasonable to reject H0 when β̂1 − β1,0 is large and

positive or when

T =
β̂1 − β1,0√

V̂ar
[
β̂1

] > c1−α

where c1−α is a positive constant.
I The null hypothesis H0 is composite. The probability of

rejection under H0 depends on β1.
I We pick the critical value c1−α so that

Pr


 β̂1 − β1,0√

V̂ar
[
β̂1

] > c1−α | β1 ≤ β1,0


 ≤ α

for all β1 ≤ β1,0.
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One-sided tests
I For all β1 ≤ β1,0,

β1 − β1,0√
V̂ar

[
β̂1

] ≤ 0,

and

Pr


 β̂1 − β1,0√

V̂ar
[
β̂1

] > c1−α | β1 ≤ β1,0




= Pr


 β̂1 − β1√

V̂ar
[
β̂1

] +
β1 − β1,0√

V̂ar
[
β̂1

] > c1−α | β1 ≤ β1,0




≤ Pr


 β̂1 − β1√

V̂ar
[
β̂1

] > c1−α | β1 ≤ β1,0




= α if c1−α = tn−2,1−α.
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One-sided tests

I For size α test, we reject H0 : β1 ≤ β1,0 against
H1 : β1 > β1,0 when

T =
β̂1 − β1,0√

V̂ar
[
β̂1

] > tn−2,1−α.

where tn−2,1−α is the critical value corresponding to
t-distribution with n− 2 degrees of freedom.

I Note that we use 1− α and not 1− α/2 for choosing critical
values in the case of one-sided testing.

I For size α test, we reject H0 : β1 ≥ β1,0 against
H1 : β1 < β1,0 when

T =
β̂1 − β1,0√

V̂ar
[
β̂1
] < −tn−2,1−α.
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One-sided tests

I One-sided p-values for H0 : β1 ≤ β1,0 against H1 : β1 > β1,0 :
1. Compute T .
2. Find τ such that T = tn−2,1−τ.
3. The p-value=τ.
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