Introductory Econometrics Lecture 9: Hypothesis testing for linear regression models

Instructor: Ma, Jun

Renmin University of China

October 18, 2022

Null and alternative hypotheses

- ▶ Usually, we have two competing hypotheses, and we want to draw a conclusion, based on the data, as to which of the hypotheses is true.
- \blacktriangleright Null hypothesis, denoted as H_0 : A hypothesis that is held to be true, unless the data provides a sufficient evidence against it.
- Alternative hypothesis, denoted as H_1 : A hypothesis against which the null is tested. It is held to be true if the null is found false.
- \blacktriangleright The two hypotheses are not treated symmetrically. H_0 is favored in the sense that it is only rejected if there is strong evidence against it.
- \blacktriangleright H₀ summarizes our prior belief about the state of the world.
- \blacktriangleright H₁ corresponds to our belief about how H₀ could be wrong.
- \blacktriangleright The two hypotheses must be disjoint: it should be the case that either H_0 is true or H_1 but never together simultaneously.

Heads or Tails?

- \triangleright We believe that a coin is fair, unless we see enough evidence against it.
- \blacktriangleright In the coin tossing example, let p be the probability of "Heads". Our null hypothesis could be H_0 : $p = \frac{1}{2}$ and our alternative hypothesis could be $H_1: p \neq \frac{1}{2}$.
- \blacktriangleright We may believe that the coin is fair, but suspect that it is biased towards heads if it is biased. In this case, we may pick $H_0: p = \frac{1}{2}$ and $H_1: p > \frac{1}{2}$.

Hypothesis testing as stochastic proof by contradiction

- ▶ Usually, the econometrician has to carry the "burden of proof" and the case that he is interested in is stated as H_1 .
- \blacktriangleright The econometrician has to prove that his assertion (H_1) is true by showing that the data rejects H_0 .
- \triangleright As we perform proof by contradiction, we assume "something" we want to prove that it contradicts to itself.
- \blacktriangleright In the hypothesis testing, we assume the "null hypothesis" being true and we want to prove that our data contradicts to the hypothesis.

Hypothesis testing procedure

- **►** Suppose we are concerned with a parameter $\theta \in \mathbb{R}$ (e.g. the population mean of some random variable for which we have repeated observations).
- \triangleright We consider hypotheses like H_0 : *θ* ∈ *I*₀ and H_1 : *θ* ∈ *I*₁ with $I_0 \cap I_1 = \emptyset$. $I_0 \cup I_1$ is the maintained hypothesis.
- \blacktriangleright The econometrician has to choose between H_0 and H_1 .
- \blacktriangleright We consider a test statistic T, which is a function of the data. T should be informative about the value of *θ*. T typically has a known distribution under H_0 .
- \blacktriangleright Then we choose a significance level *α*, with 0 \lt *α* \lt 1. It is also called the size of the test. By convention, *α* is chosen to be a small number.
- ▶ *^α* can be interpreted as the probability of a "very small-probability" event: How small a chance should be considered small?

Hypothesis testing procedure

- \blacktriangleright Then one rejects H_0 if the test statistic falls into a critical region Γ*α*. A critical region is constructed by taking into account the probability of making a wrong decision, i.e. it typically depends on *α*. This is usually a set of possible values of the test statistic that contains the test statistic with probability α , under H_0 , i.e. $Pr[T \in \Gamma_\alpha] = \alpha$ under H_0 . Notice that this requires knowledge about the distribution of T under H_0 .
- \blacktriangleright If the test statistic assumes a value in the critical region, $T \in \Gamma_{\alpha}$, this is considered to be strong evidence against H_0 . In this case, we reject H_0 in favor of H_1 . Otherwise, we fail to reject H_0 .
- \blacktriangleright If *α* is small and $T \in \Gamma_\alpha$, it means that the sample is unlikely if H_0 is true and so we have evidence against it, there are two possibilities: we observed a very small-probability event or our assumption (H_0) is wrong.

Hypothesis testing as stochastic proof by contradiction

- \blacktriangleright If we accept the principle that a very small-probability event cannot happen in the current state of the world, we accept the second reasoning: our assumption (H_0) is wrong.
- **►** If $T \notin \Gamma_\alpha$, there is no "significant" contradiction between data and the null hypothesis. On the other hand, if $T \in \Gamma_{\alpha}$, there is a "significant" contradiction and we reject H_0 like what we conclude in proof by contradiction.
- \blacktriangleright Notice that "reject H_0 " and "fail to reject H_0 " are used for conclusions drawn from tests. Such terminology reflects the asymmetry of H_0 and H_1 .
- \blacktriangleright We do not say "accept H_0 " instead of "fail to reject H_0 " since if we find $T \notin \Gamma_\alpha$, we did not "prove" anything and our test result is non-conclusive, since we did not find a contradiction.
- \blacktriangleright The decision depends on the significance level α : larger values of *α* correspond to bigger critical regions Γ*^α* . It is easier to reject the null for larger values of *α*.

A simple example

- \blacktriangleright Consider a normal population with mean μ and variance σ^2 and a random sample from the population. Suppose we know σ^2 for now.
- ▶ Consider a one-sided test: $H_0: \mu = 0$ against $H_1: \mu > 0$.
- ▶ Consider

$$
T=\frac{\bar{X}}{\sigma/\sqrt{n}},
$$

which is a $N(0, 1)$ random variable under H_0 . H_1 is more likely to be true if T is large.

- ▶ Consider $\Gamma_{\alpha} = [z_{1-\alpha}, \infty)$, where $z_{1-\alpha}$ is the $(1-\alpha)$ -th quantile of $N(0, 1)$.
- $▶$ Under H_0 , $Pr[T ∈ Γα] = α$. And notice that $Γ_α$ is a sub-interval of $\Gamma_{\alpha'}$ if $\alpha < \alpha'$.

Summary of the steps

 \blacktriangleright The following are the steps of the hypothesis testing:

- 1. Specify H_0 and H_1 .
- 2. Choose the significance level *α*.
- 3. Define a decision rule (a test statistic and a critical region).
- 4. Perform the test using the data: given the data compute the test statistic and see if it falls into the critical region.

p-Value

 \blacktriangleright Given a realization t of the test statistic T, we can compute the lowest significance level consistent with rejecting H_0 . This is called the p-value:

 p -value = min { $0 < \alpha < 1 : t \in \Gamma_\alpha$ }.

- \blacktriangleright The p-value could be viewed as a measure of contradiction. The smaller the p-value is, the larger the contradiction is. In a probabilistic model, we use the way of reasoning in proof by contradiction with a "measure" of contradiction based on data to carry out the similar reasoning.
- \blacktriangleright Now if the p-value is smaller than our tolerance (significance level), then we reject null hypothesis like what we conclude in proof by contradiction.

- **►** In the simple example, the critical region is $\Gamma_{\alpha} = [z_{1-\alpha}, \infty)$. Suppose we have a realization t of T .
- ▶ Suppose we find that $z_{1-p} = t$. We would reject H_0 for all significance levels $\alpha \geq p$. p is the realized p-value.

▶ There are two types of errors that the econometrician can make:

 \blacktriangleright Type I error is the error of rejecting H_0 when H_0 is true.

Pr(Type I error) = Pr(reject H_0 | H_0 is true) = α .

Errors

- ▶ The real line is split into two regions: acceptance region and rejection region (critical region).
	- **►** When $T \notin \Gamma_{\alpha}$, we accept H_0 (and risk making a Type II error).
	- $▶$ When $T \in \Gamma_{\alpha}$, we reject H_0 (and risk making a Type I error).
	- ▶ Unfortunately, the probabilities of Type I and II errors are inversely related.
	- \blacktriangleright By decreasing the probability of Type I error α , one makes the critical region smaller, which increases the probability of the Type II error. Thus it is impossible to make both errors arbitrary small.
- \blacktriangleright We require that the test we carry out has to be valid: the probability of type-I error $(Pr[T \in \Gamma_\alpha]$ under H_0) must be α .
- \triangleright We want the probability of a type-II error to be as small as possible for a given probability of a type-I error.

Power of tests

▶ Power of a test:

 $1 - Pr(T$ ype II error) = $1 - Pr(A$ ccept H_0 | H_0 is false).

- ▶ We want the power of a test to be as large as possible, for a given significance level.
- \blacktriangleright We may not know the distribution of the test statistic under H_1 . The distribution typically depends on θ .
- \blacktriangleright The power function $\pi(\theta)$ of the test is the probability that H_0 is rejected as a function of the true parameter value *θ*.

 \blacktriangleright For any given value of μ , define

$$
T_{\mu} = T - \frac{\mu}{\sigma/\sqrt{n}} = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}},
$$

which is always $N(0, 1)$ if the true mean is μ .

 \triangleright We reject the test when $T \geq z_{1-\alpha}$, which holds if and only if

$$
T_{\mu} = T - \frac{\mu}{\sigma/\sqrt{n}} \geq z_{1-\alpha} - \frac{\mu}{\sigma/\sqrt{n}}.
$$

It follows for this simple example, that the power function is

$$
\pi\left(\mu\right)=1-\Phi\left(z_{1-\alpha}-\frac{\sqrt{n}\mu}{\sigma}\right)
$$

 $▶$ Notice that $π(0) = 1 - Φ(z_{1-α}) = α$, which is simply the significance level.

.

- \blacktriangleright We notice that $\pi(\mu)$ is smaller for all μ if the significance level α is smaller (and hence $z_{1-\alpha}$ is larger). This reflects the trade-off between type-I error and type-II error probabilities: we cannot reduce both simultaneously.
- \blacktriangleright $\pi(\mu)$ is increasing in μ . For μ 's that are farther away from 0, the test can detect such deviation at a higher probability.
- $▶$ As $\mu \rightarrow \infty$, the power converges to 1. The test is very likely to reject H_0 if the true mean is very large.
- \blacktriangleright $\pi(u)$ increases with the sample size *n*. The test can detect falseness of H_0 at a higher probability if our sample contains more information.

- **►** We consider an alternative critical region: $\tilde{\Gamma}_{\alpha} = (-\infty, -z_{1-\alpha})$. Notice that under H_0 , $\Pr\left[\, \mathcal{T} \in \tilde{\Gamma}_\alpha \right] = \alpha$, so this is a valid test.
- \triangleright We reject the test when $T \leq -z_{1-\alpha}$, which holds if and only if

$$
T_{\mu} = T - \frac{\mu}{\sigma/\sqrt{n}} \leq -z_{1-\alpha} - \frac{\mu}{\sigma/\sqrt{n}}.
$$

 \triangleright So the power function is

$$
\tilde{\pi}\left(\mu\right)=\Phi\left(-z_{1-\alpha}-\frac{\sqrt{n}\mu}{\sigma}\right)
$$

.

- \triangleright $\tilde{\pi}(\mu)$ is decreasing in both μ and n , which is undesirable.
- ▶ For all $\mu > 0$ (remember μ is the true mean), the power is smaller than *α*. At the same significance level, the power of the alternative critical region is much lower.

Linear model assumptions

- \blacktriangleright β_1 is unknown, and we have to rely on its OLS estimator $\hat{\beta}_1$.
- \blacktriangleright We need to know the distribution of $\hat{\beta}_1$ or of its certain functions.
- ▶ We will assume that the assumptions of the Normal Classical Linear Regression model are satisfied:

\n- 1.
$$
Y_i = \beta_0 + \beta_1 X_i + U_i
$$
, $i = 1, \ldots, n$.
\n- 2. $E[U_i | X_1, \ldots, X_n] = 0$ for all *i*'s.
\n- 3. $E[U_i^2 | X_1, \ldots, X_n] = \sigma^2$ for all *i*'s.
\n- 4. $E[U_i U_j | X_1, \ldots, X_n] = 0$ for all $i \neq j$.
\n- 5. *U*'s are jointly normally distributed conditional on *X*'s.
\n

 \blacktriangleright Recall that, in this case, conditionally on X's:

$$
\hat{\beta}_1 \sim N\left(\beta_1, \text{Var}\left[\hat{\beta}_1\right]\right)
$$
, where $\text{Var}\left[\hat{\beta}_1\right] = \frac{\sigma^2}{\sum_{i=1}^n (X_i - \bar{X})^2}$.

Two-sided tests

$$
\blacktriangleright
$$
 For $Y_i = \beta_0 + \beta_1 X_i + U_i$, consider testing

$$
H_0: \beta_1=\beta_{1,0},
$$

against

$$
H_1: \beta_1 \neq \beta_{1,0}.
$$

- \triangleright β_1 is the true unknown value of the slope parameter.
- \blacktriangleright $\beta_{1,0}$ is a known number specified by the econometrician. (For example $\beta_{1,0}$ is zero if you want to test $\beta_1 = 0$).
- \blacktriangleright Such a test is called two-sided because the alternative hypothesis H_1 does not specify in which direction β_1 can deviate from the asserted value *β*1,0.

Two-sided tests when σ^2 is known (infeasible test)

- **Suppose for a moment that** σ^2 **is known.**
- \triangleright Consider the following test statistic:

$$
\mathcal{T} = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\text{Var}[\hat{\beta}_1]}}
$$
, where $\text{Var}[\hat{\beta}_1] = \frac{\sigma^2}{\sum_{i=1}^n (X_i - \bar{X})^2}$.

 \triangleright Consider the following decision rule (test):

$$
Reject H_0: \beta_1 = \beta_{1,0} when |T| > z_{1-\alpha/2},
$$

where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ quantile of the standard normal distribution (critical value).

Test validity and power

 \blacktriangleright We need to establish that:

1. The test is valid, where the validity of a test means that it has correct size or Pr (Type I error) = α : if $\beta_1 = \beta_{1,0}$

$$
Pr\left[\left|T\right|>z_{1-\alpha/2}\right]=\alpha.
$$

2. The test has power: when $\beta_1 \neq \beta_{1,0}$ (H_0 is false), the test rejects H₀ with probability that exceeds *α*: if $β_1 ≠ β_{1,0}$

$$
\Pr\left[\left|\left.\mathcal{T}\right|\right.\right.\geqslant z_{1-\alpha/2}\right]\geqslant\alpha.
$$

- $▶$ We want $Pr[|T| > z_{1-\alpha/2}]$ when $\beta_1 \neq \beta_{1,0}$ to be as large as possible.
- ▶ Note that $Pr[|T| > z_{1-\alpha/2}]$ when $β_1 ≠ β_{1,0}$ depends on the true value β_1 .

The distribution of T when σ^2 is known (infeasible test) ▶ Write

$$
\begin{array}{rcl}\n\mathcal{T} &=& \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\text{Var}[\hat{\beta}_1]}} = \frac{\hat{\beta}_1 - \beta_1 + \beta_1 - \beta_{1,0}}{\sqrt{\text{Var}[\hat{\beta}_1]}} \\
&=& \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\text{Var}[\hat{\beta}_1]}} + \frac{\beta_1 - \beta_{1,0}}{\sqrt{\text{Var}[\hat{\beta}_1]}}.\n\end{array}
$$

 \blacktriangleright Under our assumptions and conditionally on X 's:

$$
\hat{\beta}_1 \sim N\left(\beta_1, \text{Var}\left[\hat{\beta}_1\right]\right), \text{ or } \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\text{Var}\left[\hat{\beta}_1\right]}} \sim N\left(0, 1\right).
$$

▶ We have that conditionally on X's: $T \sim N$ $\sqrt{ }$ *β*₁−*β*_{1,0}
/ Var[*β*ˆ 1] $, 1)$.

Validity when σ^2 is known (infeasible test)

 \blacktriangleright We have that

$$
\mathcal{T} \sim N\left(\frac{\beta_1-\beta_{1,0}}{\sqrt{\text{Var}\left[\hat{\beta}_1\right]}},1\right).
$$

$$
\blacktriangleright \text{ When } H_0: \beta_1 = \beta_{1,0} \text{ is true, } \mathcal{T} \stackrel{H_0}{\sim} \mathcal{N}(0,1).
$$

 \triangleright We reject H_0 when

$$
|T|>z_{1-\alpha/2}\Leftrightarrow T>z_{1-\alpha/2} \text{ or } T<-z_{1-\alpha/2}.
$$

▶ Let $Z \sim N(0, 1)$.

$$
\Pr\left(\text{Reject } H_0 \mid H_0 \text{ is true}\right) \\
= \Pr\left[Z > z_{1-\alpha/2}\right] + \Pr\left[Z < -z_{1-\alpha/2}\right] = \alpha/2 + \alpha/2 = \alpha.
$$

23/39

The distribution of T when σ^2 is known (infeasible test)

Power of the test when σ^2 is known (infeasible test)

 $▶$ Under H_1 , $β_1 − β_{1,0} ≠ 0$ and the distribution of T is not centered zero: $T \sim N$ $\sqrt{ }$ *β*₁−*β*_{1,0}
/*V*_{2π}[∂ Var[*β*ˆ 1] $, 1)$.

 \triangleright When $\beta_1 - \beta_{1,0} > 0$:

 \blacktriangleright Rejection probability exceeds α under H_1 : power increases with the distance from H_0 ($|\beta_{1,0} - \beta_1|$) and decreases with Var $\left[\hat{\beta}_1\right]$.

The two-sided t-test

- $▶$ We are testing $H_0: \beta_1 = \beta_{1,0}$ against $H_1: \beta_1 \neq \beta_{1,0}.$
- ▶ When σ^2 is unknown, we replace it with $s^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{U}_i^2$.
- \blacktriangleright The *t*-statistic:

$$
\mathcal{T} = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\widehat{\text{Var}}\left[\hat{\beta}_1\right]}} = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\frac{s^2}{\sum_{i=1}^n (X_i - \bar{X})^2}}}.
$$

- ▶ We also replace the standard normal critical values ^z1−*α*/² with the t_{n-2} critical values $t_{n-2,1-\alpha/2}$. However, for large *n*, $t_{n-2,1-\alpha/2} \approx z_{1-\alpha/2}$.
- \blacktriangleright The two-sided *t*-test:

Reject H₀ when $|T| > t_{n-2,1-\alpha/2}$.

The two-sided *p*-value

- \blacktriangleright The decision to accept or reject H_0 depends on the critical value $t_{n-2,1-\alpha/2}$.
- \triangleright If *α*₁ > *α*₂ then $t_{1-\alpha_1/2} < t_{1-\alpha_2/2}$.
- \blacktriangleright Thus, it is easier to reject H_0 with the significance level α_1 since it corresponds to a smaller acceptance region.
- \blacktriangleright p-value is the smallest significance level α for which we can reject H_0 .

The two-sided *p*-value

 \blacktriangleright In order to find *p*-value:

- 1. Compute T.
- 2. Find τ such that $|T| = t_{n-2,1-\tau}$.
- 3. The *p*-value= $\tau \times 2$.

 $▶$ Note that for all $\alpha > p$ -value,

$$
|T| = t_{n-2,1-(p\text{-value})/2} > t_{n-2,1-\alpha/2}
$$

and we will reject H_0 .

$$
\blacktriangleright \ \text{For all } \alpha \leq p\text{-value},
$$

$$
|T| = t_{n-2,1-(p\text{-value})/2} \le t_{n-2,1-\alpha/2}
$$

and we will accept H_0 .

Example of p-value calculation

Suppose a regression with 19 observations produced the following output:

► Here,
$$
\hat{\beta}_1 = -0.6725
$$
, $\beta_{1,0} = 0$, and in the 4th column $t = -0.6725/0.5804 = -1.16$.

• Thus, $|T| = 1.16$ and df=17.

 \blacktriangleright From the *t*-table, the closest critical value is $t_{17.1-0.15} = 1.069.$ (The probability that a random variable with t_1 ₇-distribution lies on the right of 1.16 is ≈ 0.15 .)

▶ The *p*-value is then $\approx 0.15 \times 2 = 0.300$.

Stata

- \blacktriangleright We can compute critical values and p-values using Stata instead of using the tables.
- \blacktriangleright To compute standard normal critical values use:

```
display invnormal(τ),
```
were *τ* is a number between 0 and 1

- \blacktriangleright For example: display invnormal(1-0.05/2) produces 1.959964.
- \blacktriangleright For t critical values use

```
display invttail(df ,τ),
```
where df is the number of degrees of freedom and *τ* is a number between 0 and 1. Note that here τ is the right-tail probability!

 \blacktriangleright For example, display invttail(62,0.05/2) produces 1.9989715.

 \triangleright To compute two-sided normal p-values use:

```
display 2 * (1-normal (T)).
```
- \blacktriangleright For example, display $2*(1$ -normal (1.96)) produces 0.04999579.
- \blacktriangleright To compute two-sided *t*-distribution *p*-values, use

display 2^* (ttail(df, T)),

Note that ttail gives the right tail probabilities!

 \blacktriangleright For example, display 2^{*}(ttail(62, 1.96)) produces 0.05449415.

Example

- \triangleright Stata report the *t*-statistics and the *p*-value for H_0 : $β = 0$.
- \blacktriangleright To test H_0 whether the coefficient of Avglnc is zero : $T = 0.01158/0.0013084 = 8.85.$
- \blacktriangleright The *p*-value is extremely close to zero, (display $2^*(\text{trial}(62, 8.85))$ gives 1.345×10^{-12} , so for all reasonable significance levels α , we reject H_0 that the coefficient of AvgInc is zero.
- \blacktriangleright Avglnc is a statistically significant regressor.

Example

- \triangleright Consider now testing H_0 that the coefficient of Avglnc is 0.009 against the alternative that it is different from 0.009.
- \blacktriangleright $\top = (0.01158 0.009)/0.0013084 \approx 1.97.$
- ▶ At 5% significance level, $t_{62.0.975} \approx 1.999 > T$ and we accept H_0 .
- ▶ At 10% significance level, $t_{62,0.95} \approx 1.67 < T$ and we reject H_0 .
- **►** The two sided p-value is $2*(\text{trial}(62, 1.97)) \implies \approx 0.053$.
- **►** For α < 0.053 we will accept H_0 and for α > 0.053 we will reject H_0 .

Confidence intervals and hypothesis testing

- ▶ There is one-to-one correspondence between confidence intervals and hypothesis testing.
- $▶$ We cannot reject H_0 : $\beta_1 = \beta_{1,0}$ against a two-sided alternative if $|T| \le t_{n-2,1-\alpha/2}$ or if and only if:

$$
-t_{n-2,1-\alpha/2} \leq \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\widehat{\text{Var}}\left[\hat{\beta}_1\right]}} \leq t_{n-2,1-\alpha/2}
$$

$$
\iff
$$

$$
\hat{\beta}_1 - t_{n-2,1-\alpha/2} \sqrt{\widehat{\text{Var}}\left[\hat{\beta}_1\right]} \leq \beta_{1,0} \leq \hat{\beta}_1 + t_{n-2,1-\alpha/2} \sqrt{\widehat{\text{Var}}\left[\hat{\beta}_1\right]}
$$

$$
\iff
$$

$$
\beta_{1,0} \in Cl_{1-\alpha}.
$$

 $▶$ Thus, for any $β_{1,0} ∈ Cl_{1-α}$, we cannot reject $H_0: β_1 = β_{1,0}$ against H_1 : $\beta_1 \neq \beta_{1,0}$ at significance level *α*.

Example

- \blacktriangleright The 95% confidence interval for the coefficient of Avglnc is [0.0089646,0.0141954].
- $▶$ A significance level 5% test of $H_0: \beta_1 = \beta_{1,0}$ against H_1 : $\beta_1 \neq \beta_{1,0}$ will not reject H_0 if $\beta_{1,0} \in [0.0089646, 0.0141954]$.

- ▶ Consider testing H_0 : $\beta_1 \leq \beta_{1,0}$ against H_1 : $\beta_1 > \beta_{1,0}$.
- ▶ It is reasonable to reject H_0 when $\hat{\beta}_1 \beta_{1,0}$ is large and positive or when

$$
\mathcal{T} = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\widehat{\text{Var}}\left[\hat{\beta}_1\right]}} > c_{1-\alpha}
$$

where c1−*^α* is a positive constant.

- \blacktriangleright The null hypothesis H_0 is composite. The probability of rejection under H_0 depends on β_1 .
- ▶ We pick the critical value ^c1−*^α* so that

$$
\Pr\left[\frac{\hat{\beta}_1-\beta_{1,0}}{\sqrt{\widehat{\mathrm{Var}}\left[\hat{\beta}_1\right]}}>c_{1-\alpha}\mid \beta_1\leq \beta_{1,0}\right]\leq \alpha
$$

for all $\beta_1 \leq \beta_{1,0}$.

$$
\blacktriangleright \text{ For all } \beta_1 \leq \beta_{1,0},
$$
\n
$$
\frac{\beta_1 - \beta_{1,0}}{\sqrt{\widehat{\text{Var}}\left[\widehat{\beta}_1\right]}} \leq 0,
$$

and

$$
\Pr\left[\frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\widehat{\text{Var}}\left[\hat{\beta}_1\right]}} > c_{1-\alpha} \mid \beta_1 \leq \beta_{1,0}\right] \\
= \Pr\left[\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\widehat{\text{Var}}\left[\hat{\beta}_1\right]}} + \frac{\beta_1 - \beta_{1,0}}{\sqrt{\widehat{\text{Var}}\left[\hat{\beta}_1\right]}} > c_{1-\alpha} \mid \beta_1 \leq \beta_{1,0}\right] \\
\leq \Pr\left[\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\widehat{\text{Var}}\left[\hat{\beta}_1\right]}} > c_{1-\alpha} \mid \beta_1 \leq \beta_{1,0}\right] \\
= \alpha \text{ if } c_{1-\alpha} = t_{n-2,1-\alpha}.
$$

37/39

▶ For size *α* test, we reject $H_0: \beta_1 \leq \beta_{1,0}$ against H_1 : $\beta_1 > \beta_{1,0}$ when

$$
\mathcal{T} = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\widehat{\text{Var}}\left[\hat{\beta}_1\right]}} > t_{n-2,1-\alpha}.
$$

where $t_{n-2,1-\alpha}$ is the critical value corresponding to t-distribution with $n-2$ degrees of freedom.

- **►** Note that we use 1α and not $1 \alpha/2$ for choosing critical values in the case of one-sided testing.
- $▶$ For size *α* test, we reject $H_0: \beta_1 \geq \beta_{1,0}$ against H_1 : $\beta_1 < \beta_1$ o when

$$
\mathcal{T} = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\widehat{\text{Var}}\left[\hat{\beta}_1\right]}} < -t_{n-2,1-\alpha}.
$$

 $▶$ One-sided *p*-values for $H_0: \beta_1 \leq \beta_{1,0}$ against $H_1: \beta_1 > \beta_{1,0}$:

- 1. Compute T.
- 2. Find τ such that $T = t_{n-2,1-\tau}$.
- 3. The p-value=*τ*.