Introductory Econometrics

Lecture 2: Review of Probability

Instructor: Ma, Jun

Renmin University of China

September 8, 2021

Randomness

- ► Random experiment: an experiment the outcome of which cannot be predicted with certainty, even if the experiment is repeated under the same conditions.
- ► Event: a collection of outcomes of a random experiment.
- ► Probability: a function (denoted by Pr) from events to [0, 1] interval.
 - If Ω is a collection of all possible outcomes, $Pr(\Omega) = 1$.
 - ▶ If A is an event, $Pr(A) \ge 0$.
 - ► If $A_1, A_2, ...$ is a sequence of *disjoint* events, $Pr(A_1 \text{ or } A_2 \text{ or } ...) = Pr(A_1) + Pr(A_2) + ...$

Randomness

- ► Random variable: a numerical representation of a random experiment.
- ► Coin-flipping example:

Outcome	X	Y	Z
Heads	0	1	-1
Tails	1	0	1

► Rolling a dice:

Outcome	X	Y
1	1	0
2	2	1
3	3	0
4	4	1
5	5	0
6	6	1

Summation operator

► Let $\{x_i : i = 1, ..., n\}$ be a sequence of numbers.

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \ldots + x_n.$$

 \blacktriangleright For a constant c:

$$\sum_{i=1}^{n} c = nc.$$

$$\sum_{i=1}^{n} cx_i = cx_1 + cx_2 + \dots + cx_n$$

$$= c(x_1 + x_2 + \dots + x_n)$$

$$= c\sum_{i=1}^{n} x_i.$$

Summation operator

Let $\{y_i : i = 1, ..., n\}$ be another sequence of numbers, and a, b be two constants:

$$\sum_{i=1}^{n} (ax_i + by_i) = a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} y_i.$$

► But:

$$\sum_{i=1}^{n} x_i y_i \neq \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i.$$

$$\sum_{i=1}^{n} \frac{x_i}{y_i} \neq \frac{\sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} y_i}.$$

$$\sum_{i=1}^{n} x_i^2 \neq \left(\sum_{i=1}^{n} x_i\right)^2.$$

Discrete random variables

We often distinguish between discrete and continuous random variables.

- ► A discrete random variable takes on only a finite or countably infinite number of values.
- ► The distribution of a discrete random variable is a list of all possible values and the probability that each value would occur:

Value	x_1	x_2	 x_n
Probability	p_1	p_2	 p_n

Here p_i denotes the probability of a random variable X taking on value x_i :

$$p_i = \Pr[X = x_i]$$
 Probability Mass Function (PMF).

Each p_i is between 0 and 1, and $\sum_{i=1}^{n} p_i = 1$.

Discrete random variables

► Indicator function:

$$1(x_i \le x) = \begin{cases} 1 & \text{if } x_i \le x \\ 0 & \text{if } x_i > x \end{cases}$$

► Cumulative Distribution Function (CDF):

$$F(x) = \Pr[X \le x] = \sum_{i} p_i 1(x_i \le x).$$

► For discrete random variables, the CDF is a step function.

Continuous random variable

- ► A random variable is continuously distributed if the range of possible values it can take is uncountable infinite (for example, a real line).
- ► A continuous random variable takes on any real value with zero probability.
- ► For continuous random variables, the CDF is continuous and differentiable.
- ► The derivative of the CDF is called the Probability Density Function (PDF):

$$f(x) = \frac{dF(x)}{dx} \text{ and } F(x) = \int_{-\infty}^{x} f(u) du;$$
$$\int_{-\infty}^{\infty} f(x) dx = 1.$$

Joint distribution (discrete)

- ▶ When we have two random variables X and Y, the distribution of the random vector (X, Y) is called the joint distribution and the distributions of the random variables X and Y the marginal distributions.
- ightharpoonup Two random variables X, Y

	<i>y</i> ₁	y_2		y_m	
x_1	p_{11}	p_{12}		p_{1m}	$p_1^X = \sum_{j=1}^m p_{1j} p_2^X = \sum_{j=1}^m p_{2j}$
x_2	p_{21}	p_{22}		p_{2m}	$p_2^X = \sum_{j=1}^m p_{2j}$
:	:	:	:	÷	:
x_n	p_{n1}	p_{n2}		p_{nm}	$p_n^X = \sum_{j=1}^m p_{nj}$

Joint PMF:
$$p_{ij} = \Pr \left[X = x_i, Y = y_j \right]$$
.
Marginal PMF: $p_i^X = \Pr \left[X = x_i \right] = \sum_{j=1}^m p_{ij}$.

Joint distribution (discrete)

▶ Imagine the distribution of (X, Y) (the characteristics of a ball drawn from an urn) is given by the table:

			Y		
		metal	glass	wood	
	red	1/30	1/15	2/15	7/30
X	white	1/15	1/10	1/6	1/3
	black	1/10	3/10	1/5	13/30
		1/5	3/10	1/2	1

- ► The central 3×3 table is the joint distribution. In the right "margin" is the marginal distribution of X. In the bottom margin is the marginal distribution of Y.
- ► Suppose we are given the joint PMF of (X, Y), to obtain the marginal PMF of X, we just "sum out" x: $\Pr[X = x_i] = \sum_{i=1}^{m} \Pr[X = x_i, Y = y_j].$

Joint distribution (continuous)

- ► Joint PDF: $f_{X,Y}(x, y)$ and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x, y) dxdy = 1$.
- ► Marginal PDF: $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy$.
- ► One can recover marginal PDFs from the joint PDF, but the reverse is not true. Knowing marginal PDFs does not mean that the joint PDF is also known.

Independence

ightharpoonup Two (discrete) random variables are independent if for all x, y:

$$Pr[X = x, Y = y] = Pr[X = x] Pr[Y = y].$$

ightharpoonup Two continuous random variables are independent if for all x, y:

$$f_{X,Y}(x,y) = f_X(x) f_Y(y).$$

▶ If X and Y are independent then f(X) and g(Y) are independent for all functions f, g.

Expected value

 \blacktriangleright Let *g* be some function:

$$E[g(X)] = \sum_{i} g(x_{i}) p_{i} \text{ (discrete)}.$$

$$E[g(X)] = \int g(x) f_{X}(x) dx \text{ (continuous)}.$$

Expectation is a constant!

► Mean (measuring center of a distribution):

$$E[X] = \sum_{i} x_{i} p_{i} \text{ or } E[X] = \int x f(x) dx.$$

► Variance (measuring spread of a distribution): $Var[X] = E[(X - E[X])^2]$

$$Var[X] = \sum_{i} (x_i - E[X])^2 p_i \text{ or } Var[X] = \int_{X} (x - E[X])^2 f(x) dx.$$

► Standard deviation: $\sqrt{\text{Var}(X)}$.

Joint and marginal distributions

- ► Suppose we want to calculate E[g(X)].
- ► We calculate:

$$E[g(X)] = \int g(x) f_X(x) dx$$

$$= \int g(x) \left(\int f_{X,Y}(x, y) dy \right) dx$$

$$= \int \int g(x) f_{X,Y}(x, y) dy dx.$$

The first line is the definition of E[g(X)]. The last line is the definition of E[g(X)] if we think of g(X) as a function of (X,Y). They must agree.

Properties

- ► If c is a constant, E[c] = c, and $Var[c] = E[(c - Ec)^2] = (c - c)^2 = 0$.
- ► Linearity:

$$E[a+bX] = \sum_{i} (a+bx_i) p_i$$
$$= a \sum_{i} p_i + b \sum_{i} x_i p_i$$
$$= a + bE[X].$$

- ▶ Suppose $X_1, ..., X_k$ are k random variables, and $a_1, ..., a_k$ are k constants, then we have $E\left[\sum_{i=1}^k a_i X_i\right] = \sum_{i=1}^k a_i E\left[X_i\right]$.
- ► Re-centering: a random variable X E[X] has mean zero: E(X E[X]) = E[X] E[E[X]] = E[X] E[X] = 0.

Properties

► Variance formula: $Var(X) = E[X^2] - (E[X])^2$

$$Var[X] = E[(X - E[X])^{2}]$$

$$= E[(X - E[X])(X - E[X])]$$

$$= E[(X - E[X])X - (X - E[X]) \cdot E[X]]$$

$$= E[(X - E[X])X] - E[(X - E[X]) \cdot E[X]]$$

$$= E[X^{2} - X \cdot E[X]] - E[X] \cdot E[(X - EX)]$$

$$= E[X^{2}] - E[X] \cdot E[X] - E[X] \cdot 0$$

$$= E[X^{2}] - (E[X])^{2}$$

• If E[X] = 0 then $Var[X] = E[X^2]$.

Properties

 $\operatorname{Var}\left[a + bX\right] = b^2 \operatorname{Var}\left[X\right]$

$$Var[a + bX] = E[(a + bX) - E[a + bX]]^{2}$$

$$= E[a + bX - a - bE[X]]$$

$$= E[bX - bE[X]]^{2}$$

$$= E[b^{2}(X - E[X])^{2}]$$

$$= b^{2}E[(X - E[X])^{2}]$$

$$= b^{2}Var[X].$$

▶ Re-scaling: Let $Var[X] = \sigma^2$, so the standard deviation is σ :

$$\operatorname{Var}\left[\frac{X}{\sigma}\right] = \frac{1}{\sigma^2} \operatorname{Var}\left[X\right] = 1.$$

Covariance

► Covariance: Let *X*, *Y* be two random variables.

$$Cov[X, Y] = E[(X - E[X])(Y - E[Y])].$$

$$\operatorname{Cov}\left[X,Y\right] = \sum_{i} \sum_{j} \left(x_{i} - \operatorname{E}\left[X\right]\right) \left(y_{j} - \operatorname{E}\left[Y\right]\right) \cdot \operatorname{P}\left[X = x_{i}, Y = y_{j}\right].$$

$$\operatorname{Cov}\left[X,Y\right] = \int \int \left(x - \operatorname{E}\left[X\right]\right) \left(y - \operatorname{E}\left[Y\right]\right) f_{X,Y}(x,y) \, \mathrm{d}x \mathrm{d}y.$$

$$Cov[X,Y] = E[(X - E[X])(Y - E[Y])]$$

= $E[(X - E[X])Y] - E(X - E[X]) \cdot EY$
= $E[XY] - E[X]E[Y].$

Properties of covariance

- ► Cov[X, c] = 0.
- $ightharpoonup \operatorname{Cov}[X,X] = \operatorname{Var}[X].$
- $ightharpoonup \operatorname{Cov}[X,Y] = \operatorname{Cov}[Y,X].$
- ► Cov[X, Y + Z] = Cov[X, Y] + Cov[X, Z].
- ightharpoonup Cov $[a_1 + b_1 X, a_2 + b_2 Y] = b_1 b_2 \text{Cov}[X, Y]$.
- ▶ If *X* and *Y* are independent then Cov[X, Y] = 0.
- ► X and Y are independent if and only if E[f(X)g(Y)] = E[f(X)]E[g(Y)] for all functions f, g.

Correlation

► Correlation coefficient:

$$Corr[X, Y] = \frac{Cov[X, Y]}{\sqrt{Var[X] Var[Y]}}.$$

► Cauchy-Schwartz inequality: $|\text{Cov}[X, Y]| \le \sqrt{\text{Var}[X] \text{Var}[Y]}$ and therefore

$$-1 \leq \operatorname{Corr}[X, Y] \leq 1$$
.

ightharpoonup Corr $[X,Y] = \pm 1 \Leftrightarrow Y = a + bX$.

Proof of the Cauchy-Schwartz Inequality*

► Claim: $|E[XY]| \le \sqrt{E[X^2]}E[Y^2]$.

Proof: Consider the following two random variables:

$$\frac{X}{\sqrt{\mathbb{E}[X^2]}} + \frac{Y}{\sqrt{\mathbb{E}[Y^2]}}$$
 and $\frac{X}{\sqrt{\mathbb{E}[X^2]}} - \frac{Y}{\sqrt{\mathbb{E}[Y^2]}}$.

$$E\left[\left(\frac{X}{\sqrt{E[X^{2}]}} + \frac{Y}{\sqrt{E[Y^{2}]}}\right)^{2}\right]$$

$$= E\left[\frac{X^{2}}{E[X^{2}]} + \frac{Y^{2}}{E[Y^{2}]} + 2\frac{XY}{\sqrt{E[X^{2}]E[Y^{2}]}}\right]$$

$$= \frac{E[X^{2}]}{E[X^{2}]} + \frac{E[Y^{2}]}{E[Y^{2}]} + 2\frac{E[XY]}{\sqrt{E[X^{2}]E[Y^{2}]}}$$

$$= 2 + 2\frac{E[XY]}{\sqrt{E[X^{2}]E[Y^{2}]}} \ge 0, \text{ or } -\sqrt{E[X^{2}]E[Y^{2}]} \le E[XY].$$

Proof of the Cauchy-Schwartz Inequality*

Similarly,

$$E\left[\left(\frac{X}{\sqrt{E[X^2]}} - \frac{Y}{\sqrt{E[Y^2]}}\right)^2\right]$$

$$= \frac{E[X^2]}{E[X^2]} + \frac{E[Y^2]}{E[Y^2]} - 2\frac{E[XY]}{\sqrt{E[X^2]E[Y^2]}}$$

$$= 2 - 2\frac{E[XY]}{\sqrt{E[X^2]E[Y^2]}} \ge 0, \text{ or}$$

$$E[XY] \le \sqrt{E[X^2]E[Y^2]}.$$

Proof of the Cauchy-Schwartz Inequality*

Together:

$$-\sqrt{\operatorname{E}\left[X^{2}\right]\operatorname{E}\left[Y^{2}\right]}\leq\operatorname{E}\left[XY\right]\leq\sqrt{\operatorname{E}\left[X^{2}\right]\operatorname{E}\left[Y^{2}\right]},$$

or

$$|E[XY]| \le \sqrt{E[X^2]E[Y^2]}.$$

Let U = X - E[X] and V = Y - E[Y]. Then

$$|E[UV]| \le \sqrt{E[U^2]}E[V^2]$$

or,

$$\left| \mathrm{E}\left[\left(X - \mathrm{E}\left[X \right] \right) \left(Y - \mathrm{E}\left[Y \right] \right) \right] \right| \leq \sqrt{ \mathrm{E}\left[\left(X - \mathrm{E}\left[X \right] \right)^2 \right] \mathrm{E}\left[\left(Y - \mathrm{E}\left[Y \right] \right)^2 \right]},$$

or

$$|\operatorname{Cov}[X, Y]| \le \sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}.$$

Normal distribution

► A normal random variable is a continuous random variable that can take on any value. The PDF of a normal random variable *X* is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
, where
 $\mu = E[X] \text{ and } \sigma^2 = Var[X]$.

We usually write $X \sim N(\mu, \sigma^2)$.

► If $X \sim N(\mu, \sigma^2)$, then $a + bX \sim N(a + b\mu, b^2\sigma^2)$.

Standard normal distribution

- ► Standard Normal random variable has $\mu = 0$ and $\sigma^2 = 1$. Its PDF is $\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right)$.
- Symmetric around zero (mean): if $Z \sim N(0, 1)$, Pr[Z > z] = Pr[Z < -z].
- ► Thin tails: $Pr[-1.96 \le Z \le 1.96] = 0.95$.
- If $X \sim N(\mu, \sigma^2)$, then $(X \mu)/\sigma \sim N(0, 1)$.