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Randomness

» Random experiment: an experiment the outcome of which
cannot be predicted with certainty, even if the experiment is
repeated under the same conditions.

» Event: a collection of outcomes of a random experiment.
» Probability: a function (denoted by Pr) from events to [0, 1]
interval.
> If Qs a collection of all possible outcomes, Pr(Q) = 1.
» If Ais an event, Pr(A) > 0.
> If Ay, Ay, ... is a sequence of disjoint events,
Pr(AjorAjor...)=Pr(A;)+Pr(A)+....

2/25



Randomness

» Random variable: a numerical representation of a random
experiment.
» Coin-flipping example:
Outcome | X | Y | Z
Heads
Tails 110]1

]

—
1

—

» Rolling a dice:

Outcome
1

O\ | B W =] M
k=l k=l E=)

NN B WIN
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Summation operator

> Let{x; :i=1,...,n} be asequence of numbers.

n

Zx,-:x1+x2+...+xn.

i=1

» For a constant c:

cx; = cxi+cxo+...+cxy

= c(xi+x+...+x,)
n

:cExi.

i=1
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Summation operator

» Let{y; :i =1,...,n} be another sequence of numbers, and a, b
be two constants:

n n

Z(axi +by;) = ain +bzn:yi-
i=1

i=1 i=1

> But:

=

n n
Xiyi # Z Xi Z Yi-
i=1 =1

i=1
N Xi + 2oy i
P Vi Z?:] )’i'
n n 2
xiz * (Z x,-) .

i=1
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Discrete random variables

We often distinguish between discrete and continuous random
variables.

» A discrete random variable takes on only a finite or countably
infinite number of values.

» The distribution of a discrete random variable is a list of all
possible values and the probability that each value would occur:

Value X1 | x| ... | xn
Probability | p1 | p2 | ... | Pn

Here p; denotes the probability of a random variable X taking on
value x;:

pi = Pr[X = x;] Probability Mass Function (PMF).

Each p; is between O and 1, and 37", p; = 1.
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Discrete random variables

» Indicator function:

1 ifx; <x
l(xi§x)={0 ifxl->x
1

» Cumulative Distribution Function (CDF):

F(x)=Pr[X < x] Zp,l(xl<x)

» For discrete random variables, the CDF is a step function.
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Continuous random variable

» A random variable is continuously distributed if the range of
possible values it can take is uncountable infinite (for example, a
real line).

» A continuous random variable takes on any real value with zero
probability.

» For continuous random variables, the CDF is continuous and
differentiable.

» The derivative of the CDF is called the Probability Density
Function (PDF):

f =L

[Oof(x)dle.

and F (x) = / f (u) du;
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Joint distribution (discrete)

» When we have two random variables X and Y, the distribution of
the random vector (X, Y) is called the joint distribution and the
distributions of the random variables X and Y the marginal
distributions.

» Two random variables X,Y

Y Y2 ... Ym
xt|pn P2 pim | Py =20 P
X2 | P21 P2 --- P2m Pé( = Tzl DP2j
. : : : : om
Xn | Pnl1 Pn2 --+ Pnm | Pn = Zj:] Pnj

Joint PMF: p;; = Pr [X =x,Y = yj] .
Marginal PMF: pX = Pr[X = x;] = 2L pij-
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Joint distribution (discrete)

» Imagine the distribution of (X, Y) (the characteristics of a ball
drawn from an urn) is given by the table:

Y
metal glass wood
red 1/30 1/15 2/15 7/30
X white 1/15 1/10 /6 1/3
black 1/10 3/10 1/5 13/30
1/5 3/10 /2 1

» The central 3 x 3 table is the joint distribution. In the right
“margin” is the marginal distribution of X. In the bottom margin
is the marginal distribution of Y.

» Suppose we are given the joint PMF of (X,Y), to obtain the
marginal PMF of X, we just “sum out” x:
Pr[X = x;] = ZT:I Pr [X =x;,Y = yj] .
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Joint distribution (continuous)

» Joint PDF: fxy (x,y) and f_o; /_O; fxy (x,y)dxdy = 1.

» Marginal PDF: fx (x) = f_O:Q Sxy (x,y)dy.

» One can recover marginal PDFs from the joint PDF, but the
reverse is not true. Knowing marginal PDFs does not mean that
the joint PDF is also known.

11/25



Independence

» Two (discrete) random variables are independent if for all x, y:
Pr(X=x,Y=y]=Pr[X =x]Pr[Y =y].
» Two continuous random variables are independent if for all x, y:

fxy (6,y) = fx (x) fy ().

» If X and Y are independent then f (X) and g (Y) are independent
for all functions f, g.
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Expected value

> Let g be some function:

E g (X)]

Z g (x;) pi (discrete).

E[g (X)]

/ g (x) fx (x) dx (continuous).

Expectation is a constant!
» Mean (measuring center of a distribution):

E[X] = inp,- orE[X] = /xf(x)dx.

i
» Variance (measuring spread of a distribution):
Var[X] =E [(X - E[X])’]

Var [X] = Z (x; —E[X])? p; or Var[X] = / (x —E[X])? f (x)dx.

i

» Standard deviation: /Var (X).
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Joint and marginal distributions

» Suppose we want to calculate E[g (X)].

> We calculate:

Elg (X)] = / ¢ () fi (x) dx

= / g(x) (/ fxy (x,y) dy) dx
= //g (x) fxy (x,y)dydx.

The first line is the definition of E [g (X)]. The last line is the

definition of E [g (X)] if we think of g (X) as a function of (X, Y).

They must agree.

14/25



Properties

» If ¢ is a constant, E[c] = ¢, and
Var [C] =E [(C — EC)Z] = (C — c)2 =0.

> Linearity:

Ela + bX] Z(a+bxi)pi

;
azpi"'bzxipi
; 7

a+bE[X].

» Suppose Xi, ..., Xx are k random variables, and ay, ..., ax are k
constants, then we have E [Zle aiXi] = Zle aE[X:].

> Re-centering: a random variable X — E [X] has mean zero:
E(X-E[X])=E[X]-E[E[X]]=E[X]-E[X]=0.
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Properties

> Variance formula: Var (X) = E [X?]| - (E[X])*

Var[X] = E[(X-E
= E[(X-E

X1)*]

X (X -E[X])]

= E[(X-E[XDX-(X-E[X]-E[X]]
= E[(X-E[XDX]-E[(X-E[X])-E[X]]
= E[X*- X -E[X]] -E[X]-E[(X - EX)]
= E[X*|-E[X]-E[X]-E[X]-0

= E[X*]-(E[X])?

—

— — —

> If E[X] = 0 then Var[X] = E [X?].
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Properties

» Var[a + bX] = b*Var [X]

[(a +bX)-E[a+bX]]?
[a+bX —a—bE[X]]
[bX - E[X])?

[0* (X —E[X])’]

= VE[(X-E[X])?]

= b*Var[X].

Var [a + bX]

E
E
E
E

> Re-scaling: Let Var [X] = 02, so the standard deviation is o :

X 1
Var [—] = — Var [X]=1.
o o
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Covariance

» Covariance: Let X,Y be two random variables.

Cov[X,Y] =E[(X —E[X]) (Y —E[Y])].

Cov[X,Y]

DD i —E[XD (v —E[Y])-P[X = x,¥ = y].
i

Cov[X.¥] = / / (x—E[X])(y ~E[Y]) fiy (x. y) dxdy.
> Cov[X,Y] = E[XY]-E[X]E[Y].

Cov[X.Y] = E[X-E[X])(Y-E[Y])]
E[(X-E[X])Y]-E(X-E[X])-EY
E[XY]-E[X]E[Y].
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Properties of covariance

vV V. vV vV vV vV VY

Cov
Cov

X,c]=0.

X, X] = Var[X].

Cov[X,Y] =Cov][Y, X].
Cov[X,Y+Z]=Cov[X,Y]+Cov[X,Z].
Covla; + b1 X,ar + byY] = b1bpCov [X,Y].

If X and Y are independent then Cov [X,Y] = 0.
Var [X + Y] = Var [X] + Var[Y] = 2Cov [X, Y].
X and Y are independent if and only if

— — — —

E[f(X)g(Y)] = E[f (X)]E[g (¥)] for all functions f, g.
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Correlation

» Correlation coeflicient:

Corr[X,Y] = Cov[X, 7] )
Var [X] Var [Y]

» Cauchy-Schwartz inequality: |[Cov [X,Y]| < v/ Var[X] Var[Y]
and therefore
-1 <Corr[X,Y] < 1.

» Corr[X,Y] =%l &Y =a+bX.
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Proof of the Cauchy-Schwartz Inequality*

> Claim: |[E[XY]| < /E [X2] E[r2].

Proof: Consider the following two random variables:

X 4 Y gpd X _ - Y __
VE[X2]  VE[Y?] VE[X2]  VE[Y?]

e &)
\/E [x2] \/E [r?]

= E X + v +2 XY
& [x*] B[] Ex]E[r]
E[x’] E[r] E[XY]

EpC] B[] Rele ]
- 2 BT 0, or— \E[X2| E[¥?] < E[XY].

E[x?]E[r?]
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Proof of the Cauchy-Schwartz Inequality*

Similarly,

I
\S)
|
)
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Proof of the Cauchy-Schwartz Inequality*

—{E[X?]E[r?] <E[XY] < E[X?]E[r?],
[E[XY]| < {E[X?]E[r?].

LetU=X-E[X]andV =Y —E[Y]. Then

Together:

or

IE[UV]| < {JE[U?| E[V?]

or,

EI(X ~E[XD(¥ ~E[YD]| < JE[(X ~E[X]?] E[(¥ ~E[Y]?],

or

|Cov [X,Y]| < «/Var[X] Var [Y].
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Normal distribution

» A normal random variable is a continuous random variable that
can take on any value. The PDF of a normal random variable X is

1 (x — p)?
fx) = Vo2 ex (— 752 ), where
u = E[X] and 0> = Var[X].

We usually write X ~ N (g, 07%).
» [f X ~N (,u, 0'2), thena + bX ~ N (a + by, bzo'z).
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Standard normal distribution

» Standard Normal random variable has ¢ = 0 and o> = 1. Its PDF
is¢(z) = \/%7 exp (—%)

» Symmetric around zero (mean): if Z ~ N (0, 1),
Pr[Z > z]=Pr[Z < —z].

» Thin tails: Pr[-1.96 < Z < 1.96] = 0.95.

> If X ~ N (u,02), then (X — p) /o ~ N (0, 1).

25/25



