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Randomness

» Random experiment: an experiment the outcome of which
cannot be predicted with certainty, even if the experiment is
repeated under the same conditions.

» Event: a collection of outcomes of a random experiment.
» Probability: a function (denoted by Pr) from events to [0, 1]
interval.
> If Qs a collection of all possible outcomes, Pr (Q) = 1.
» If A is an event, Pr (A) > 0.
> If Ay, Ay, ... is a sequence of disjoint events,
Pr(AjorAsor...)=Pr(A;)+Pr(Ay)+....
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Randomness

» Random variable: a numerical representation of a random
experiment.
» Coin-flipping example:
Outcome | X | Y | Z
Heads
Tails 1101

(e)
1

» Rolling a dice:

Outcome
1

Q|| AW | = >
k=l =l k=l

QN | B W
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Summation operator

> Let{x; :i=1,...,n} be asequence of numbers.

n

in =X +X2+ ...+ X,
i=1

» For a constant c:

EC = nc.

cX; = cxj+cxo+...+cxy

= c(x1+x2+...+xp,)

n

=CE)C,'.

i=1
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Summation operator

» Let {y; :i=1,...,n} be another sequence of numbers, and a, b

be two constants:

n

Z (ax; +by;) = GZ

i=1

> But:

n

i=1

n n
* Z Xi Z Vi
i=1 i=1

Dicy Xi
Z?:] Vi

o

+

n
X +b Zyi.
i=1
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Discrete random variables

We often distinguish between discrete and continuous random
variables.

» A discrete random variable takes on only a finite or countably
infinite number of values.

» The distribution of a discrete random variable is a list of all
possible values and the probability that each value would occur:

Value X1 | x2 | ... | xn
Probability | p1 | p2 | .-+ | pa

Here p; denotes the probability of a random variable X taking on
value x;:

pi = Pr[X = x;] Probability Mass Function (PMF).

Each p; is between O and 1, and 3/, p; = 1.
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Discrete random variables

» Indicator function:

1 ifx; <x
l(xiﬁx):{ 0 ifx >z

» Cumulative Distribution Function (CDF):

F(x)=Pr[X < x] Zpll(xl<x)

» For discrete random variables, the CDF is a step function.
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Continuous random variable

» A random variable is continuously distributed if the range of
possible values it can take is uncountable infinite (for example, a
real line).

» A continuous random variable takes on any real value with zero
probability.

» For continuous random variables, the CDF is continuous and
differentiable.

» The derivative of the CDF is called the Probability Density
Function (PDF):

£ = dF (x)

and F (x) = /xf(u)du;

/_:f(x)dle.
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Joint distribution (discrete)

» When we have two random variables X and Y, the distribution of
the random vector (X, Y) is called the joint distribution and the
distributions of the random variables X and Y the marginal

distributions.

» Two random variables X,Y

Y1 y2. .. Ym
Xt | puo P2 Pim | PY =X P
X2 | pu pu oo Pam | PX =T P2y
: P : L
Xn | Pnl Pn2 .- Pnm | Py = Zj:l Pnj

Joint PMF: p;; =Pr[X =x;,Y = y;].

Marginal PMF: pX = Pr [X = x;] = XL, pij.
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Joint distribution (discrete)

» Imagine the distribution of (X, Y) (the characteristics of a ball
drawn from an urn) is given by the table:

Y
metal glass wood
red 1/30 1/15 2/15 7/30
X white 1/15 1/10 /6 1/3
black 1/10 3/10 1/5 13/30
1/5 3/10 1/2 1

» The central 3 x 3 table is the joint distribution. In the right
“margin” is the marginal distribution of X. In the bottom margin
is the marginal distribution of Y.

» Suppose we are given the joint PMF of (X,Y), to obtain the
marginal PMF of X, we just “sum out” x:
PriX=x]=3"Pr[X=0x.,Y=y,].
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Joint distribution (continuous)

> Joint PDF: fxy (x,y)and [~ [* fxy (x,y)dxdy = L.

» Marginal PDF: fx (x) = /_0; fxy (x,y)dy.

» One can recover marginal PDFs from the joint PDF, but the
reverse is not true. Knowing marginal PDFs does not mean that
the joint PDF is also known.
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Independence

» Two (discrete) random variables are independent if for all x, y:
Pr[X=x,Y=y]=Pr[X=x]Pr[Y =y].
» Two continuous random variables are independent if for all x, y:

fxy (6y) = fx (X) fr ().

» If X and Y are independent then f (X) and g (Y) are independent
for all functions f, g.
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Expected value

» Let g be some function:

E[g (X)]

Z g (x;) pi (discrete).

E[g (X)] / g (x) fx (x) dx (continuous).

Expectation is a constant!
» Mean (measuring center of a distribution):

EX]= ) wiprorE[X] = [ xfic (v

4

» Variance (measuring spread of a distribution):
Var [X] =E [(X —E [X])?]

Var[X] = Y (6~ E X1 pyor Var[X] = [ (v~ E[XD? f () d.

» Standard deviation: +/Var [X].
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Joint and marginal distributions

» Suppose we want to calculate E [g (X)].

> We calculate:

E[g (X)]

/g(x) fx () dx

[ew ( [ s dy) dx

[ [ ¢ sier oy ava

The first line is the definition of E [g (X)]. The last line is the
definition of E [g (X)] if we think of g (X) as a function of
(X,Y). They must agree.
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Properties

» If ¢ is a constant, E [¢] = ¢, and
Var[c] =E[(c —E[c])*] = (c —=¢)* = 0.
» Linearity:

Ela+bX] = Z(a+in)Pi

1
aZPi+beipi
7 7

a+b-E[X].

» Suppose X1, ..., Xj are k random variables, and ay, ..., ag are k
constants, then we have E [Zf‘:l ain-] = fozl a;E[X;].

> Re-centering: a random variable X — E [ X] has mean zero:
E(X-E[X])=E[X]-E[E[X]]=E[X]-E[X]=0.
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Properties

> Variance formula: Var [X] = E[X?]| - (E[X])*

)]

) (X -E[X])]

(X-E[X]) X - (X-E[X] E[X]]

= E[(X-E[X])X]-E[(X-E[X])-E[X]]
= E[X*-X -E[X]]-E[X] -E[(X - EX)]
= E[X?]-E[X]-E[X]-E[X]-0

= E[X?]-(E[X])?

Var [X] = (X-E

E| X
= E[(X-E
E[

X

_— — — —

> IfE[X] =0 then Var [X] = E [X?].
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Properties

» Var [a+bX] = b*Var [X]

Var[a+bX] = E[(a+bX)-E[a+bX]]?

= Ela+bX-a-bE[X]]

= E[bX -bE[X])?

= E[p*(X-E[X])?]

= LE[(X-E[X])?]

= b>Var[X].
» Re-scaling: Let Var [X] = o2, so the standard deviation is o:
X 1
Var [—] = — Var [X]=1.
o o
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Covariance

» Covariance: Let X,Y be two random variables.

Cov[X.Y] =E[(X-E[X]) (Y —E[¥])].

Cov [X,Y]

2.2, (i —EIXD (v, ~E[Y]) -P[X =xi.¥ = y,].
i

Cov[X.Y] = / / (x—E[X]) (y —E[¥]) fxy (x.y) dxdy.
> Cov[X,Y] =E[XY] -E[X]E[Y].

Cov[X,Y] = E[(X-E[X])(Y-E[Y])]
= E[(X-E[X])Y]-E(X-E[X])-EY
= E[XY]-E[X]E[Y].
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Properties of covariance

vV Vv vV vV VvV VY

Cov
Cov

X,c] =0.

X, X] = Var [X].

Cov [X,Y] =Cov [V, X].

Cov [X,Y+Z] =Cov [X,Y]+Cov [X,Z].
Cov[a;+b1X,ay+byY] = b1b,Cov [X,Y].

If X and Y are independent then Cov [X,Y] = 0.
Var [X + Y] = Var [X] + Var [Y] £2Cov [ X, Y].
X and Y are independent if and only if

— — — —

E[f(X)g(Y)]=E[f (X)]E[g (Y)] for all functions f,g.
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Correlation

» Correlation coeflicient:

Corr [X,Y] = Cov X, Y] )
Var [ X] Var [Y]

» Cauchy-Schwartz inequality: [Cov [X, Y]| < +/Var [X] Var [Y]
and therefore
-1 < Corr [X,Y] < 1.

» Corr[X,Y] =+l Y =a+bX.
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Proof of the Cauchy-Schwartz Inequality*

> Claim: [E[XY]| < {/E [X2] E[¥2].
Proof: Consider the following two ria/ndom variables:

VT Ve M Ve Ve

. X .\ Y : _ X2 .\ Y? 2 XY
\/E [x2] \/E 2] E[x*] E[r’] ~ [E[x2|E[r]
_E[¥’ E[?]  E[xv)

TR RN Bl
BRIt N 0, or—JE [X2] E[¥?] < E[XY].

E[xX?]E[r?]
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Proof of the Cauchy-Schwartz Inequality*

Similarly,

ellox ¥ 2
\/E X2 \/E Y?]
_Elx?| E[Y?]

E [XY]
E[] B[] ,/ [x2] E[r?] ,/E[XZ]E[W]
E[XY] < \E[X2]E[r2].

>0, or
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Proof of the Cauchy-Schwartz Inequality*

~JE[X2]E[r?] <E[XY] < {E[X2|E[r?],
[E[XY]| < {E[X2] E[r2].

LetU=X—-E[X]andV =Y —E [Y]. Then

Together:

or

[E[UV]] < JE[U?| E [V?]

or,

E[(X ~E[X]) (Y ~E[¥D]] < E [(X ~E[X])’| E[(¥ ~E[Y])?],

or

|Cov [X,Y]| < +/Var [X] Var [Y].
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Normal distribution

» A normal random variable is a continuous random variable that
can take on any value. The PDF of a normal random variable X is

! (x—p)?
fx) = WGX (— xzo_lzl ), where
u = E[X] and 0% = Var [X] .

We usually write X ~ N (i, 0?).
> If X ~ N (p,0?), thena+bX ~ N (a+bu,b*c?).
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Standard normal distribution

» Standard Normal random variable has ¢ = 0 and o> = 1. Its PDF
is¢(z) =7 exp( 2).

» Symmetric around zero (mean): if Z ~ N (0, 1),
Pr[Z>z]=Pr[Z < -Z].

» Thin tails: Pr[-1.96 < Z < 1.96] = 0.95.

> If X ~ N (u,0?), then (X — u) /o ~ N (0,1).
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