Introductory Econometrics

Lecture 4: Simple Linear Regression and OLS

Instructor: Ma, Jun

Renmin University of China

September 16, 2021

Introduction

- ► The simple linear regression model is used to study the relationship between two variables.
- ► It has many limitations, but nevertheless there examples in the literature where the simple linear regression is applied (e.g. stock returns predictability).
- ► It is also a good starting point to learning the regression technique.

Definitions

TABLE 2.1

Terminology for Simple Regression

У	x	
Dependent variable	Independent variable	
Explained variable	Explanatory variable	
Response variable	Control variable	
Predicted variable	Predictor variable	
Regressand	Regressor	

Sample and population

► The econometrician observes random data:

observation	dependent variable	regressor
1	Y_1	X_1
2	Y_2	X_2
÷	÷	÷
n	Y_n	X_n

- ightharpoonup A pair X_i, Y_i is called an observation.
- ► Sample: $\{(X_i, Y_i) : i = 1, ..., n\}$.
- ► The population is the joint distribution of the sample.

The model

▶ We model the relationship between *Y* and *X* using the conditional expectation:

$$\mathrm{E}\left[Y_i\mid X_i\right]=\alpha+\beta X_i.$$

- ► Intercept: $\alpha = E[Y_i \mid X_i = 0]$.
- ▶ Slope: β measures the effect of a unit change in X on Y:

$$\beta = E[Y_i | X_i = x + 1] - E[Y_i | X_i = x]$$

= $[\alpha + \beta(x + 1)] - [\alpha + \beta x].$

▶

$$\beta = \frac{d\mathbf{E}\left[Y_i \mid X_i\right]}{dX_i}.$$

 \blacktriangleright The effect is the same for all x!

The model

- $ightharpoonup \alpha$ and β in E $[Y_i \mid X_i] = \alpha + \beta X_i$ are unknown!
- ► Residual (error):

$$U_i = Y_i - \mathbb{E}\left[Y_i \mid X_i\right] = Y_i - (\alpha + \beta X_i).$$

 U_i 's are unobservable!

► The model:

$$\begin{array}{rcl} Y_i & = & \alpha + \beta X_i + U_i, \\ \mathrm{E} \left[U_i \mid X_i \right] & = & 0. \end{array}$$

Functional form

- We consider a model that is linear in the coefficients $\alpha, \beta: Y_i = \alpha + \beta X_i + U_i$.
- ► The dependent variable and the regressor can be nonlinear functions of some other variables.
- ► The most popular function is log.

Functional form: the log-linear model

► Consider the following model:

$$\log Y_i = \alpha + \beta X_i + U_i.$$

► In this case

$$\beta = \frac{d (\log Y_i)}{dX_i}$$
$$= \frac{dY_i/Y_i}{dX_i} = \frac{dY_i/dX_i}{Y_i}.$$

- ightharpoonup measures percentage change in Y as a response to a unit change in X.
- ► In this model, it is assumed that the percentage change in *Y* is the same for all values of *X* (constant).
- ► In log (Wage_i) = $\alpha + \beta \times \text{Education}_i + U_i$, β measures the return to education.

Functional form: the log-log model

► Consider the following model:

$$\log Y_i = \alpha + \beta \log X_i + U_i.$$

► In this model,

$$\beta = \frac{d \log Y_i}{d \log X_i} = \frac{dY_i/Y_i}{dX_i/X_i} = \frac{dY_i}{dX_i} \frac{X_i}{Y_i}.$$

- \blacktriangleright β measures the elasticity: the percentage change in Y as a response to 1% change in X. Here, the elasticity is assumed to be the same for all values of X.
- ► Example: Cobb-Douglas production function: $Y = \alpha K^{\beta_1} L^{\beta_2} \Longrightarrow \log Y = \log \alpha + \beta_1 \log K + \beta_2 \log L$ (two regressors log of capital and log of labour).

Orthogonality of residuals

The model

$$Y_i = \alpha + \beta X_i + U_i$$
.

We assume that $E[U_i \mid X_i] = 0$.

ightharpoonup E $[U_i] = 0$.

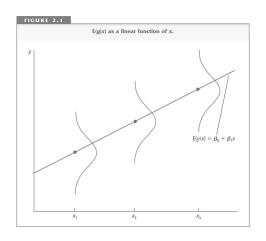
$$E[U_i]$$
 Law of Iterated Expectation $= E[E[U_i \mid X_i]] = E[0] = 0.$

► Cov $[X_i, U_i] = E[X_iU_i] = 0$.

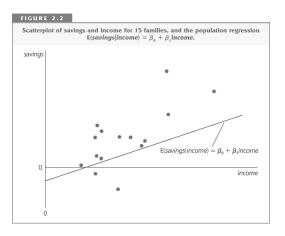
$$E[X_iU_i] \stackrel{\text{Law of Iterated Expectation}}{=} E[E[X_iU_i \mid X_i]]$$
$$= E[X_iE[U_i \mid X_i]] = E[X_i0] = 0.$$

The model

$$Y_i = \underbrace{\alpha + \beta X_i}_{\text{Predicted by } X} + \underbrace{U_i}_{\text{Orthogonal to } X}$$



Estimation problem



Problem: estimate the unknown parameters α and β using the data (n observations) on Y and X.

Method of moments

▶ We assume that

$$E[U_i] = E[Y_i - \alpha - \beta X_i] = 0.$$

$$E[X_i U_i] = E[X_i (Y_i - \alpha - \beta X_i)] = 0.$$

- An estimator is a function of the observable data, it can depend only on observable X and Y. Let $\hat{\alpha}$ and $\hat{\beta}$ denote the estimators of α and β .
- ► Method of moments: Replace expectations with averages. Normal equations:

$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{\alpha} - \hat{\beta} X_i) = 0.$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i (Y_i - \hat{\alpha} - \hat{\beta} X_i) = 0.$$

Solution

- ► Let $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ and $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ (averages).
- $\blacktriangleright \frac{1}{n} \sum_{i=1}^{n} (Y_i \hat{\alpha} \hat{\beta} X_i) = 0 \text{ implies}$

$$\frac{1}{n}\sum_{i=1}^{n}Y_{i} - \frac{1}{n}\sum_{i=1}^{n}\hat{\alpha} - \hat{\beta}\frac{1}{n}\sum_{i=1}^{n}X_{i} = 0 \text{ or }$$

$$\bar{Y} - \hat{\alpha} - \hat{\beta}\bar{X} = 0.$$

► The fitted regression line goes through the averages:

$$\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}.$$

Solution

 $\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}$ and therefore

$$0 = \frac{1}{n} \sum_{i=1}^{n} X_{i} (Y_{i} - \hat{\alpha} - \hat{\beta}X_{i})$$

$$= \sum_{i=1}^{n} X_{i} (Y_{i} - (\bar{Y} - \hat{\beta}\bar{X}) - \hat{\beta}X_{i})$$

$$= \sum_{i=1}^{n} X_{i} [(Y_{i} - \bar{Y}) - \hat{\beta} (X_{i} - \bar{X})]$$

$$= \sum_{i=1}^{n} X_{i} (Y_{i} - \bar{Y}) - \hat{\beta} \sum_{i=1}^{n} X_{i} (X_{i} - \bar{X}).$$

Solution

 $0 = \sum_{i=1}^{n} X_i \left(Y_i - \bar{Y} \right) - \hat{\beta} \sum_{i=1}^{n} X_i \left(X_i - \bar{X} \right) \text{ or}$ $\hat{\beta} = \frac{\sum_{i=1}^{n} X_i \left(Y_i - \bar{Y} \right)}{\sum_{i=1}^{n} X_i \left(X_i - \bar{X} \right)}.$

► Since

$$\sum_{i=1}^{n} X_{i} (Y_{i} - \bar{Y}) = \sum_{i=1}^{n} (X_{i} - \bar{X}) (Y_{i} - \bar{Y}) = \sum_{i=1}^{n} (X_{i} - \bar{X}) Y_{i} \text{ and}$$

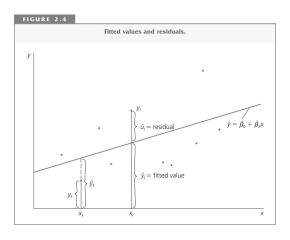
$$\sum_{i=1}^{n} X_{i} (X_{i} - \bar{X}) = \sum_{i=1}^{n} (X_{i} - \bar{X}) (X_{i} - \bar{X}) = \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

we can also write

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) Y_i}{\sum_{i=1}^{n} (X_i - \bar{X})^2}.$$

Fitted line

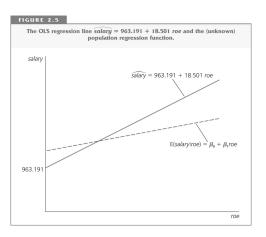
- Fitted values: $\hat{Y}_i = \hat{\alpha} + \hat{\beta} X_i$.
- Fitted residuals: $\hat{U}_i = Y_i \hat{\alpha} \hat{\beta}X_i$.



True line and fitted line

► True: $Y_i = \alpha + \beta X_i + U_i$, $E[U_i] = E[X_iU_i] = 0$.

► Fitted: $Y_i = \hat{\alpha} + \hat{\beta} X_i + \hat{U}_i$, $\sum_{i=1}^n \hat{U}_i = \sum_{i=1}^n X_i \hat{U}_i = 0$.



Ordinary Least Squares (OLS)

- ► Minimize $Q(a,b) = \sum_{i=1}^{n} (Y_i a bX_i)^2$ w.r.t. a and b.
- ► Derivatives:

$$\frac{dQ(a,b)}{da} = -2\sum_{i=1}^{n} (Y_i - a - bX_i).$$

$$\frac{dQ(a,b)}{db} = -2\sum_{i=1}^{n} (Y_i - a - bX_i) X_i.$$

► First-order conditions:

$$0 = \sum_{i=1}^{n} (Y_i - \hat{\alpha} - \hat{\beta}X_i) = \sum_{i=1}^{n} \hat{U}_i.$$

$$0 = \sum_{i=1}^{n} (Y_i - \hat{\alpha} - \hat{\beta}X_i) X_i = \sum_{i=1}^{n} \hat{U}_i X_i.$$

► Method of moments = OLS

$$\hat{\beta} = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) Y_i}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \text{ and } \hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}.$$