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The OLS estimators are random variables

▶ The model

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 +𝑈𝑖 ,
E [𝑈𝑖 | 𝑋1, . . . , 𝑋𝑛] = 0.

Conditioning on 𝑋 in E [𝑈𝑖 | 𝑋1, . . . , 𝑋𝑛] = 0 allows us to treat
all 𝑋’s as fixed, but 𝑌 is still random.

▶ The estimators

𝛽 =

∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�

)
𝑌𝑖∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2 and �̂� = 𝑌 − 𝛽�̄�

are random because they are functions of random data.
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The estimators are linear
▶ Since 𝛽 =

∑𝑛
𝑖=1(𝑋𝑖−�̄�)𝑌𝑖∑𝑛
𝑖=1(𝑋𝑖−�̄�)2 , we can write 𝛽 =

∑𝑛
𝑖=1 𝑤𝑖𝑌𝑖 , where

𝑤𝑖 =
𝑋𝑖 − �̄�∑𝑛

𝑙=1
(
𝑋𝑙 − �̄�

)2 .

After conditioning on 𝑋’s, 𝑤𝑖’s are not random.
▶ For �̂�,

�̂� = 𝑌 − 𝛽�̄�

=
1
𝑛

𝑛∑︁
𝑖=1

𝑌𝑖 −
(

𝑛∑︁
𝑖=1

𝑤𝑖𝑌𝑖

)
�̄�

=

𝑛∑︁
𝑖=1

(
1
𝑛
− �̄�𝑤𝑖

)
𝑌𝑖

=

𝑛∑︁
𝑖=1

(
1
𝑛
− �̄�

𝑋𝑖 − �̄�∑𝑛
𝑙=1

(
𝑋𝑙 − �̄�

)2

)
𝑌𝑖 .
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Unbiasedness
▶ 𝛽 is called an unbiased estimator if E

[
𝛽
]
= 𝛽.

▶ Suppose that 𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 +𝑈𝑖 , E [𝑈𝑖 | 𝑋1, . . . , 𝑋𝑛] = 0. Then
E

[
𝛽
]
= 𝛽.

𝛽 =

∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�

)
𝑌𝑖∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2

=

∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�

)
(𝛼 + 𝛽𝑋𝑖 +𝑈𝑖)∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2

= 𝛼

∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�

)∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�

)2 + 𝛽

∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�

)
𝑋𝑖∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2 +
∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)
𝑈𝑖∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2

= 𝛼
0∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2 + 𝛽

∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�

)2∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�

)2 +
∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)
𝑈𝑖∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2 ,

▶ or

𝛽 = 𝛽 +
∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)
𝑈𝑖∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2 .
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Unbiasedness
▶ Once we condition on 𝑋1, . . . , 𝑋𝑛, all 𝑋’s in

𝛽 = 𝛽 +
∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)
𝑈𝑖∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2

can be treated as fixed.
▶ Thus,

E
[
𝛽 | 𝑋1, . . . , 𝑋𝑛

]
= E

[
𝛽 +

∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�

)
𝑈𝑖∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2 | 𝑋1, . . . , 𝑋𝑛

]
= 𝛽 + E

[∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�

)
𝑈𝑖∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2 | 𝑋1, . . . , 𝑋𝑛

]
= 𝛽 +

∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�

)
E [𝑈𝑖 | 𝑋1, . . . , 𝑋𝑛]∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2 .
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Unbiasedness

▶ Thus, with E [𝑈𝑖 | 𝑋1, . . . , 𝑋𝑛] = 0, we have

E
[
𝛽 | 𝑋1, . . . , 𝑋𝑛

]
= 𝛽 +

∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�

)
E [𝑈𝑖 | 𝑋1, . . . , 𝑋𝑛]∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2

= 𝛽 +
∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)
· 0∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2

= 𝛽.

▶ By the LIE, E
[
𝛽
]
= E

[
E

[
𝛽 | 𝑋1, . . . , 𝑋𝑛

] ]
= E [𝛽] = 𝛽.
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Strong exogeneity of regressors

▶ The regressor 𝑋 is strongly exogenous if E [𝑈𝑖 | 𝑋1, . . . , 𝑋𝑛] = 0.
▶ Alternatively, we can assume that E [𝑈𝑖 | 𝑋𝑖] = 0 and all

observations are independent:

E [𝑈1 | 𝑋1, . . . , 𝑋𝑛] = E [𝑈1 | 𝑋1] ,
E [𝑈2 | 𝑋1, . . . , 𝑋𝑛] = E [𝑈2 | 𝑋2] and etc.

▶ The OLS estimator is in general biased if the strong exogeneity
assumption is violated.
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Variance of 𝛽

▶ If 𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 +𝑈𝑖 , E [𝑈𝑖 | 𝑋1, . . . , 𝑋𝑛] = 0, and

E
[
𝑈2
𝑖 | 𝑋1, . . . , 𝑋𝑛

]
= 𝜎2 = constant,

and for 𝑖 ≠ 𝑗

E
[
𝑈𝑖𝑈 𝑗 | 𝑋1, . . . , 𝑋𝑛

]
= 0,

Then
Var

[
𝛽 | 𝑋1, . . . , 𝑋𝑛

]
=

𝜎2∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�

)2 .

▶ The assumption E
[
𝑈2
𝑖
| 𝑋1, . . . , 𝑋𝑛

]
= 𝜎2 =constant is called

(conditional) homoskedasticity.
▶ The assumption E

[
𝑈𝑖𝑈 𝑗 | 𝑋1, . . . , 𝑋𝑛

]
= 0 for 𝑖 ≠ 𝑗 can be

replaced by the assumption that the observations are independent.
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Variance of 𝛽

Var
[
𝛽 | 𝑋1, . . . , 𝑋𝑛

]
=

𝜎2∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�

)2 .

▶ The variance of 𝛽 is positively related to the variance of the
errors 𝜎2 = Var [𝑈𝑖].

▶ The variance of 𝛽 is smaller when 𝑋’s are more dispersed.
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Variance of 𝛽

▶ We are going to condition on 𝑋’s and will treat them as constants.
All expectations below are implicitly conditional on 𝑋’s.

▶ We have 𝛽 = 𝛽 +
∑𝑛

𝑖=1(𝑋𝑖−�̄�)𝑈𝑖∑𝑛
𝑖=1(𝑋𝑖−�̄�)2 and E

[
𝛽
]
= 𝛽, conditional on

𝑋’s,

Var
[
𝛽
]

= E
[ (
𝛽 − E

[
𝛽
] )2

]
= E


(∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)
𝑈𝑖∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2

)2
=

(
1∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2

)2

E

(

𝑛∑︁
𝑖=1

(
𝑋𝑖 − �̄�

)
𝑈𝑖

)2 .
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Variance of 𝛽
▶ (

𝑛∑︁
𝑖=1

(
𝑋𝑖 − �̄�

)
𝑈𝑖

)2

=

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(
𝑋𝑖 − �̄�

) (
𝑋 𝑗 − �̄�

)
𝑈𝑖𝑈 𝑗

=

𝑛∑︁
𝑖=1

(
𝑋𝑖 − �̄�

)2
𝑈2
𝑖 +

𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

(
𝑋𝑖 − �̄�

) (
𝑋 𝑗 − �̄�

)
𝑈𝑖𝑈 𝑗 .

▶ Since E
[
𝑈𝑖𝑈 𝑗

]
= 0 for 𝑖 ≠ 𝑗 ,

E

(

𝑛∑︁
𝑖=1

(
𝑋𝑖 − �̄�

)
𝑈𝑖

)2 =

𝑛∑︁
𝑖=1

(
𝑋𝑖 − �̄�

)2 E
[
𝑈2
𝑖

]
+ 0

=

𝑛∑︁
𝑖=1

(
𝑋𝑖 − �̄�

)2
𝜎2
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Variance of 𝛽
We have

Var
[
𝛽
]
=

(
1∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2

)2

E

(

𝑛∑︁
𝑖=1

(
𝑋𝑖 − �̄�

)
𝑈𝑖

)2 ,

E

(

𝑛∑︁
𝑖=1

(
𝑋𝑖 − �̄�

)
𝑈𝑖

)2 = 𝜎2
𝑛∑︁
𝑖=1

(
𝑋𝑖 − �̄�

)2 ,

and therefore,

Var
[
𝛽
]

=

(
1∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2

)2

𝜎2
𝑛∑︁
𝑖=1

(
𝑋𝑖 − �̄�

)2

=

(
1∑𝑛

𝑖=1
(
𝑋𝑖 − �̄�

)2

)
𝜎2
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Normality of 𝛽

▶ Assume that 𝑈𝑖’s are jointly normally distributed conditional on
𝑋’s.

▶ Then 𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 +𝑈𝑖 are also jointly normally distributed.
▶ Since 𝛽 =

∑𝑛
𝑖=1 𝑤𝑖𝑌𝑖 , where 𝑤𝑖 =

𝑋𝑖−�̄�∑𝑛
𝑙=1(𝑋𝑙−�̄�)2 depend only on

𝑋’s, 𝛽 is also normally distributed conditional on 𝑋’s.
▶ Conditional on 𝑋1, . . . , 𝑋𝑛

𝛽 ∼ N
(
E

[
𝛽
]

, Var
[
𝛽
] )

∼ N

(
𝛽,

𝜎2∑𝑛
𝑖=1

(
𝑋𝑖 − �̄�

)2

)
.
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