Introductory Econometrics Lecture 5: Properties of OLS

Instructor: Ma, Jun

Renmin University of China

October 4, 2022

The OLS estimators are random variables

▶ The model

$$
Y_i = \alpha + \beta X_i + U_i,
$$

E [U_i | X₁,...,X_n] = 0.

Conditioning on X in E $[U_i | X_1, \ldots, X_n] = 0$ allows us to treat all X 's as fixed, but Y is still random.

 \blacktriangleright The estimators

$$
\hat{\beta} = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) Y_i}{\sum_{i=1}^{n} (X_i - \bar{X})^2}
$$
 and $\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}$

are random because they are functions of random data.

The estimators are linear

$$
\blacktriangleright \text{ Since } \hat{\beta} = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) Y_i}{\sum_{i=1}^{n} (X_i - \bar{X})^2}, \text{ we can write } \hat{\beta} = \sum_{i=1}^{n} w_i Y_i \text{, where}
$$

$$
w_i = \frac{X_i - \bar{X}}{\sum_{l=1}^n (X_l - \bar{X})^2}.
$$

After conditioning on X 's, w_i 's are not random.

 \blacktriangleright For $\hat{\alpha}$,

$$
\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}
$$
\n
$$
= \frac{1}{n} \sum_{i=1}^{n} Y_i - \left(\sum_{i=1}^{n} w_i Y_i\right) \bar{X}
$$
\n
$$
= \sum_{i=1}^{n} \left(\frac{1}{n} - \bar{X}w_i\right) Y_i
$$
\n
$$
= \sum_{i=1}^{n} \left(\frac{1}{n} - \bar{X}\frac{X_i - \bar{X}}{\sum_{l=1}^{n} (X_l - \bar{X})^2}\right) Y_i.
$$

Unbiasedness

- \triangleright $\hat{\beta}$ is called an unbiased estimator if E $[\hat{\beta}] = \beta$.
- Suppose that $Y_i = \alpha + \beta X_i + U_i$, $E[U_i | X_1, \ldots, X_n] = 0$. Then $E[\hat{\beta}] = \beta.$

$$
\hat{\beta} = \frac{\sum_{i=1}^{n} (X_i - \bar{X}) Y_i}{\sum_{i=1}^{n} (X_i - \bar{X})^2}
$$
\n
$$
= \frac{\sum_{i=1}^{n} (X_i - \bar{X}) (\alpha + \beta X_i + U_i)}{\sum_{i=1}^{n} (X_i - \bar{X})^2}
$$
\n
$$
= \alpha \frac{\sum_{i=1}^{n} (X_i - \bar{X})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} + \beta \frac{\sum_{i=1}^{n} (X_i - \bar{X}) X_i}{\sum_{i=1}^{n} (X_i - \bar{X})^2} + \frac{\sum_{i=1}^{n} (X_i - \bar{X}) U_i}{\sum_{i=1}^{n} (X_i - \bar{X})^2}
$$
\n
$$
= \alpha \frac{0}{\sum_{i=1}^{n} (X_i - \bar{X})^2} + \beta \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2} + \frac{\sum_{i=1}^{n} (X_i - \bar{X}) U_i}{\sum_{i=1}^{n} (X_i - \bar{X})^2},
$$

 \triangleright or

$$
\hat{\beta} = \beta + \frac{\sum_{i=1}^{n} (X_i - \bar{X}) U_i}{\sum_{i=1}^{n} (X_i - \bar{X})^2}.
$$

Unbiasedness

• Once we condition on X_1, \ldots, X_n , all X's in

$$
\hat{\beta} = \beta + \frac{\sum_{i=1}^{n} (X_i - \bar{X}) U_i}{\sum_{i=1}^{n} (X_i - \bar{X})^2}
$$

can be treated as fixed.

 \blacktriangleright Thus,

$$
E[\hat{\beta} | X_1, ..., X_n] = E\left[\beta + \frac{\sum_{i=1}^n (X_i - \bar{X}) U_i}{\sum_{i=1}^n (X_i - \bar{X})^2} | X_1, ..., X_n \right]
$$

= $\beta + E\left[\frac{\sum_{i=1}^n (X_i - \bar{X}) U_i}{\sum_{i=1}^n (X_i - \bar{X})^2} | X_1, ..., X_n \right]$
= $\beta + \frac{\sum_{i=1}^n (X_i - \bar{X}) E[U_i | X_1, ..., X_n]}{\sum_{i=1}^n (X_i - \bar{X})^2}.$

Unbiasedness

• Thus, with E $[U_i | X_1, \ldots, X_n] = 0$, we have

$$
E[\hat{\beta} | X_1, ..., X_n] = \beta + \frac{\sum_{i=1}^n (X_i - \bar{X}) E[U_i | X_1, ..., X_n]}{\sum_{i=1}^n (X_i - \bar{X})^2}
$$

= $\beta + \frac{\sum_{i=1}^n (X_i - \bar{X}) \cdot 0}{\sum_{i=1}^n (X_i - \bar{X})^2}$
= β .

 \triangleright By the LIE, E $[\hat{\beta}] = E [E [\hat{\beta} | X_1, \dots, X_n]] = E [\beta] = \beta$.

Strong exogeneity of regressors

- \blacktriangleright The regressor X is strongly exogenous if E [U_i | X₁, ..., X_n] = 0.
- Alternatively, we can assume that $E[U_i | X_i] = 0$ and all observations are independent:

$$
E[U_1 | X_1,...,X_n] = E[U_1 | X_1],
$$

\n
$$
E[U_2 | X_1,...,X_n] = E[U_2 | X_2]
$$
 and etc.

▶ The OLS estimator is in general biased if the strong exogeneity assumption is violated.

• If
$$
Y_i = \alpha + \beta X_i + U_i
$$
, E [$U_i | X_1, ..., X_n$] = 0, and
E [$U_i^2 | X_1, ..., X_n$] = σ^2 = constant,
and for $i \neq j$

$$
E[U_iU_j | X_1,\ldots,X_n]=0,
$$

Then

$$
\operatorname{Var}\left[\hat{\beta}\mid X_1,\ldots,X_n\right]=\frac{\sigma^2}{\sum_{i=1}^n\left(X_i-\bar{X}\right)^2}.
$$

- \blacktriangleright The assumption E $[U_i^2 | X_1, \ldots, X_n] = \sigma^2$ = constant is called (conditional) homoskedasticity.
- \blacktriangleright The assumption E $[U_i U_j | X_1, \ldots, X_n] = 0$ for $i \neq j$ can be replaced by the assumption that the observations are independent.

$$
\operatorname{Var}\left[\hat{\beta}\mid X_1,\ldots,X_n\right]=\frac{\sigma^2}{\sum_{i=1}^n\left(X_i-\bar{X}\right)^2}.
$$

- \triangleright The variance of $\hat{\beta}$ is positively related to the variance of the errors σ^2 = Var [U_i].
- \blacktriangleright The variance of $\hat{\beta}$ is smaller when X's are more dispersed.

 \triangleright We are going to condition on X's and will treat them as constants. All expectations below are implicitly conditional on X 's.

• We have
$$
\hat{\beta} = \beta + \frac{\sum_{i=1}^{n} (X_i - \bar{X}) U_i}{\sum_{i=1}^{n} (X_i - \bar{X})^2}
$$
 and E $[\hat{\beta}] = \beta$, conditional on *X*'s,

$$
\begin{split}\n\text{Var}\left[\hat{\beta}\right] &= \mathbb{E}\left[\left(\hat{\beta} - \mathbb{E}\left[\hat{\beta}\right]\right)^{2}\right] \\
&= \mathbb{E}\left[\left(\frac{\sum_{i=1}^{n} \left(X_{i} - \bar{X}\right) U_{i}}{\sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)^{2}}\right)^{2}\right] \\
&= \left(\frac{1}{\sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)^{2}}\right)^{2} \mathbb{E}\left[\left(\sum_{i=1}^{n} \left(X_{i} - \bar{X}\right) U_{i}\right)^{2}\right].\n\end{split}
$$

▶

$$
\left(\sum_{i=1}^{n} (X_i - \bar{X}) U_i\right)^2
$$
\n
$$
= \sum_{i=1}^{n} \sum_{j=1}^{n} (X_i - \bar{X}) (X_j - \bar{X}) U_i U_j
$$
\n
$$
= \sum_{i=1}^{n} (X_i - \bar{X})^2 U_i^2 + \sum_{i=1}^{n} \sum_{j \neq i} (X_i - \bar{X}) (X_j - \bar{X}) U_i U_j.
$$

 \blacktriangleright Since E $[U_i U_j] = 0$ for $i \neq j$,

$$
E\left[\left(\sum_{i=1}^{n} \left(X_{i} - \bar{X}\right) U_{i}\right)^{2}\right] = \sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)^{2} E\left[U_{i}^{2}\right] + 0
$$

$$
= \sum_{i=1}^{n} \left(X_{i} - \bar{X}\right)^{2} \sigma^{2}
$$

We have

$$
\text{Var}\left[\hat{\beta}\right] = \left(\frac{1}{\sum_{i=1}^{n} (X_i - \bar{X})^2}\right)^2 \mathbb{E}\left[\left(\sum_{i=1}^{n} (X_i - \bar{X}) U_i\right)^2\right],
$$
\n
$$
\mathbb{E}\left[\left(\sum_{i=1}^{n} (X_i - \bar{X}) U_i\right)^2\right] = \sigma^2 \sum_{i=1}^{n} (X_i - \bar{X})^2,
$$

and therefore,

$$
\operatorname{Var}\left[\hat{\beta}\right] = \left(\frac{1}{\sum_{i=1}^{n} (X_i - \bar{X})^2}\right)^2 \sigma^2 \sum_{i=1}^{n} (X_i - \bar{X})^2
$$

$$
= \left(\frac{1}{\sum_{i=1}^{n} (X_i - \bar{X})^2}\right) \sigma^2
$$

Normality of $\hat{\beta}$

- Assume that U_i 's are jointly normally distributed conditional on X 's.
- Then $Y_i = \alpha + \beta X_i + U_i$ are also jointly normally distributed.
- Since $\hat{\beta} = \sum_{i=1}^n w_i Y_i$, where $w_i = \frac{X_i \bar{X}}{\sum_{i=1}^n (X_i \bar{X})^2}$ depend only on X 's. $\hat{\beta}$ is also normally distributed conditional on X's.
- \blacktriangleright Conditional on X_1, \ldots, X_n

$$
\hat{\beta} \sim N(E[\hat{\beta}], Var[\hat{\beta}])
$$

$$
\sim N\left(\beta, \frac{\sigma^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)
$$