Introductory Econometrics

Lecture 6: Gauss-Markov Theorem

Instructor: Ma, Jun

Renmin University of China

September 23, 2021

1/14



There are many alternatives estimators

» The OLS estimator is not the only estimator we can construct.

There are alternative estimators with some desirable properties.

» Example: Using only the first two observations, suppose that

Xo # Xi. iy
5 »—Y
B=5—-
X2 - Xy
> [ is linear:
B =c1Y1+caYa,
where .
ci=———andcy) = ———.
X2 — X X, - Xy
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Unbiasedness of /3

> IfY; =a+pBX;+U; andE[U; | X1,...,X,] =0, then 3 is
unbiased:
~ -1
B
X — X
(@+BXr+Uy) — (a+BX+U))
X — X
B(X2-X1) U,-U,
X, — X X, — X;
U, - U,
+ b
B X> — X

and

E 5] X, X;] B+E

U, -U;
| X1, X2
Xo - X

N E[U> | X1, Xo] —E[U; | X1, X2]
X — X
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An optimality criterion

» Among all linear and unbiased estimators, an estimator with the
smallest variance is called the Best Linear Unbiased Estimator
(BLUE).

> Note that the statement is conditional on X’s:

» The estimators are unbiased conditionally on X’s.
» The variance is conditional on X’s.
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Gauss-Markov Theorem

Suppose that
> Y, =a+pBX; +U,.
» E[U; | X1,...,X,] =0.
> E|U? | Xi1,...,X,| =c?foralli=1,...,n (homoskedasticity).
> Foralli# j,E[U;U; | X1,...,Xa] =0.
Then, conditionally on X’s, the OLS estimators are BLUE.
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Gauss-Markov Theorem

» We already know that the OLS estimator £ is linear and unbiased

(conditionally on X’s).

> Let 3 be any other estimator of 3 such that

> Fis linear:
n

B= ZciYi,

i=1
where ¢’s depend only on X’s.
> [ is unbiased:
E[A] =5
where expectation is conditional on X’s.

> We need to show that for any such § # §,

Var [B] > Var [,é] ,

where the variance is conditional on X’s.
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An outline of the proof*

> First, we are going to show that the ¢’s in 3 = 2, ¢iY; satisfy
Yispci=0and 37, c;X; = 1.

» Using the results of Step 1, we will show that conditionally on
X’s, Cov [ﬁ,ﬁ] = Var [,@] .

» Using the results of Step 2, we will show that conditionally on
X’s, Var [B] > Var [B].

> Lastly, we will show that Var [3] = Var 3] if and only if 5 = j.
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Proof: Step 1*
> Since 5 = iy ciYi,

n

D cila+BX;+Up)

i=1

(ZZCi +ﬂZn:CiXi +Zn:CiUi-
i=1 i=1

i=1

B

» Conditionally on X’s,

E G’anci+ﬂznlcixi+znlci(]i
i=1 i=1 i=1

n n n
QZCi+,BZCiXi+ZC,‘EUi

i=1 i=1 i=1

n n
aZci+BZciXi.

i=1 i=1

EAl
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Proof: Step 1*

» From the linearity we have that, conditionally on X’s,

E[B] =aici+ﬁiciXi.
i=1 i=1

» From the unbiasedness we have that conditionally on X’s,

B=E|[A] :azn:ci+,82nlcixi-
i=1 =1

» Since this has to be true for any « and g, it follows now that

n

ZC,’ = 0,

i=1
ZCiX[ = 1.
i=1
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Proof: Step 2*

> We have

B = ,8+iciUiv with Zn:c,- ZO,Zn:c,»Xi =1.
i=1 i=1 i=1

» Conditionally on X’s,

E[(B-B)(B-5)]

e (S (Syme

i=1

ZCWE[UZ] ZZCW] UU

i=1 j#i

ov [ﬁ,ﬁ]
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Proof: Step 2*

» Since E [Ulz] = o2 for all i’s:

n n

Z c;w;E [U,z] =2 Z ciw;.

i=1 i=1

> Since E [U;U;] = 0foralli # j,

i > eow B [UiU;] = 0.

i=1 j#i

» Thus,

n

Cov [ﬁ,/:?] =02 Z Cciw;.
i=1
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Proof: Step 2*

Conditionally on X’s:

i=1 j=
T Y-
= Ci Xl -X
;’L:l (Xj _X)2 i=1
0_2 n n
= — ciXi—-X cl)
T (X=X \iT i=1
2
- T (1+X-0)
n
j=1 (Xj_X)
= Var [B]
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Proof: Step 3*

> We know now that for any linear and unbiased S,

ov [B,B] = Var [B].

> Let’s consider Var [3 - 3]

Var[,g—,@] = Var[ ]+Var[ ] 2C0V[~,,BA]
Var [S] + Var [ 8] = 2Var [ 3]
Var [/3] — Var [ ]

> But since Var [5 - ] >

Var [,8~] — Var [,@] >0

or
Var [B] > Var [B] .
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Proof: Step 4 (Uniqueness)*

Suppose that Var [ﬁ] = Var [B]
» Then,
Var [ - B] = Var [§] - Var [3] = 0.

» Thus, 3 — f3 is not random or
B - 8 = constant.

» This constant also has to be zero because

E [B] + constant

= [+ constant,

EAl

and in order for 3 to be unbiased

constant=0 or 3 = 3.
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