Introductory Econometrics Lecture 6: Gauss-Markov Theorem

Instructor: Ma, Jun

Renmin University of China

October 5, 2022

There are many alternatives estimators

- The OLS estimator is not the only estimator we can construct. There are alternative estimators with some desirable properties.
- Example: Using only the first two observations, suppose that $X_2 \neq X_1$.

$$\tilde{\beta} = \frac{Y_2 - Y_1}{X_2 - X_1}.$$

• $\tilde{\beta}$ is linear:

$$\tilde{\beta} = c_1 Y_1 + c_2 Y_2,$$

where

$$c_1 = -\frac{1}{X_2 - X_1}$$
 and $c_2 = \frac{1}{X_2 - X_1}$.

Unbiasedness of $\tilde{\beta}$

• If $Y_i = \alpha + \beta X_i + U_i$ and $E[U_i | X_1, \dots, X_n] = 0$, then $\tilde{\beta}$ is unbiased:

$$\begin{split} \tilde{\beta} &= \frac{Y_2 - Y_1}{X_2 - X_1} \\ &= \frac{(\alpha + \beta X_2 + U_2) - (\alpha + \beta X_1 + U_1)}{X_2 - X_1} \\ &= \frac{\beta \left(X_2 - X_1\right)}{X_2 - X_1} + \frac{U_2 - U_1}{X_2 - X_1} \\ &= \beta + \frac{U_2 - U_1}{X_2 - X_1}, \text{ and} \end{split}$$

$$E\left[\tilde{\beta} \mid X_{1}, X_{2}\right] = \beta + E\left[\frac{U_{2} - U_{1}}{X_{2} - X_{1}} \mid X_{1}, X_{2}\right]$$

= $\beta + \frac{E\left[U_{2} \mid X_{1}, X_{2}\right] - E\left[U_{1} \mid X_{1}, X_{2}\right]}{X_{2} - X_{1}}$
= β .

An optimality criterion

- Among all linear and unbiased estimators, an estimator with the smallest variance is called the Best Linear Unbiased Estimator (BLUE).
- ► Note that the statement is conditional on *X*'s:
 - ► The estimators are unbiased conditionally on *X*'s.
 - ► The variance is conditional on *X*'s.

Gauss-Markov Theorem

Suppose that

- $\blacktriangleright Y_i = \alpha + \beta X_i + U_i.$
- $\blacktriangleright E[U_i \mid X_1, \ldots, X_n] = 0.$
- $E\left[U_i^2 \mid X_1, \dots, X_n\right] = \sigma^2$ for all $i = 1, \dots, n$ (homoskedasticity).
- For all $i \neq j$, $\mathbb{E}\left[U_i U_j \mid X_1, \dots, X_n\right] = 0$.

Then, conditionally on X's, the OLS estimators are BLUE.

Gauss-Markov Theorem

- We already know that the OLS estimator β̂ is linear and unbiased (conditionally on X's).
- Let $\tilde{\beta}$ be any other estimator of β such that
 - $\tilde{\beta}$ is linear:

$$\tilde{\beta} = \sum_{i=1}^{n} c_i Y_i,$$

where *c*'s depend only on *X*'s.

• $\tilde{\beta}$ is unbiased:

 $\mathbf{E}\left[\tilde{\beta}\right] =\beta,$

where expectation is conditional on X's.

• We need to show that for any such $\tilde{\beta} \neq \hat{\beta}$,

$$\operatorname{Var}\left[\hat{\beta}\right] > \operatorname{Var}\left[\hat{\beta}\right],$$

where the variance is conditional on X's.

An outline of the proof*

- First, we are going to show that the *c*'s in $\tilde{\beta} = \sum_{i=1}^{n} c_i Y_i$ satisfy $\sum_{i=1}^{n} c_i = 0$ and $\sum_{i=1}^{n} c_i X_i = 1$.
- ► Using the results of Step 1, we will show that conditionally on X's, Cov $[\tilde{\beta}, \hat{\beta}] = \text{Var} [\hat{\beta}]$.
- Using the results of Step 2, we will show that conditionally on X's, Var [β̃] ≥ Var [β̂].
- Lastly, we will show that $\operatorname{Var}\left[\hat{\beta}\right] = \operatorname{Var}\left[\hat{\beta}\right]$ if and only if $\tilde{\beta} = \hat{\beta}$.

Proof: Step 1*

• Since
$$\tilde{\beta} = \sum_{i=1}^{n} c_i Y_i$$
,

$$\tilde{\beta} = \sum_{i=1}^{n} c_i \left(\alpha + \beta X_i + U_i\right)$$
$$= \alpha \sum_{i=1}^{n} c_i + \beta \sum_{i=1}^{n} c_i X_i + \sum_{i=1}^{n} c_i U_i.$$

► Conditionally on *X*'s,

$$E\left[\tilde{\beta}\right] = E\left[\alpha \sum_{i=1}^{n} c_{i} + \beta \sum_{i=1}^{n} c_{i}X_{i} + \sum_{i=1}^{n} c_{i}U_{i}\right]$$
$$= \alpha \sum_{i=1}^{n} c_{i} + \beta \sum_{i=1}^{n} c_{i}X_{i} + \sum_{i=1}^{n} c_{i}E\left[U_{i}\right]$$
$$= \alpha \sum_{i=1}^{n} c_{i} + \beta \sum_{i=1}^{n} c_{i}X_{i}.$$

Proof: Step 1*

► From the linearity we have that, conditionally on *X*'s,

$$\mathbf{E}\left[\tilde{\beta}\right] = \alpha \sum_{i=1}^{n} c_i + \beta \sum_{i=1}^{n} c_i X_i.$$

► From the unbiasedness we have that conditionally on *X*'s,

$$\beta = \mathbf{E}\left[\tilde{\beta}\right] = \alpha \sum_{i=1}^{n} c_i + \beta \sum_{i=1}^{n} c_i X_i.$$

• Since this has to be true for any α and β , it follows now that

$$\sum_{i=1}^{n} c_i = 0,$$
$$\sum_{i=1}^{n} c_i X_i = 1.$$

Proof: Step 2*

► We have

$$\tilde{\beta} = \beta + \sum_{i=1}^{n} c_i U_i$$
, with $\sum_{i=1}^{n} c_i = 0$, $\sum_{i=1}^{n} c_i X_i = 1$.

► Conditionally on *X*'s,

$$Cov \left[\tilde{\beta}, \hat{\beta}\right] = E \left[\left(\tilde{\beta} - \beta\right) \left(\hat{\beta} - \beta\right) \right]$$
$$= E \left[\left(\sum_{i=1}^{n} c_{i} U_{i} \right) \left(\sum_{i=1}^{n} w_{i} U_{i} \right) \right]$$
$$= \sum_{i=1}^{n} c_{i} w_{i} E \left[U_{i}^{2} \right] + \sum_{i=1}^{n} \sum_{j \neq i} c_{i} w_{j} E \left[U_{i} U_{j} \right].$$

Proof: Step 2*

$$\operatorname{Cov}\left[\tilde{\beta},\hat{\beta}\right] = \sum_{i=1}^{n} c_{i} w_{i} \operatorname{E}\left[U_{i}^{2}\right] + \sum_{i=1}^{n} \sum_{j \neq i} c_{i} w_{j} \operatorname{E}\left[U_{i} U_{j}\right].$$

• Since $\mathbb{E}\left[U_i^2\right] = \sigma^2$ for all *i*'s:

$$\sum_{i=1}^{n} c_i w_i \mathbb{E}\left[U_i^2\right] = \sigma^2 \sum_{i=1}^{n} c_i w_i.$$

• Since
$$\mathbb{E}\left[U_i U_j\right] = 0$$
 for all $i \neq j$,

$$\sum_{i=1}^n \sum_{j \neq i} c_i w_j \mathbb{E} \left[U_i U_j \right] = 0.$$

► Thus,

$$\operatorname{Cov}\left[\tilde{\beta},\hat{\beta}\right] = \sigma^2 \sum_{i=1}^n c_i w_i.$$

Proof: Step 2*

Conditionally on X's:

$$\operatorname{Cov}\left[\tilde{\beta}, \hat{\beta}\right] = \sigma^{2} \sum_{i=1}^{n} c_{i} w_{i} \text{ and } w_{i} = \frac{X_{i} - \bar{X}}{\sum_{j=1}^{n} (X_{j} - \bar{X})^{2}}.$$

$$\operatorname{Cov}\left[\tilde{\beta}, \hat{\beta}\right] = \sigma^{2} \sum_{i=1}^{n} c_{i} \frac{X_{i} - \bar{X}}{\sum_{j=1}^{n} (X_{j} - \bar{X})^{2}}$$

$$= \frac{\sigma^{2}}{\sum_{j=1}^{n} (X_{j} - \bar{X})^{2}} \sum_{i=1}^{n} c_{i} (X_{i} - \bar{X})$$

$$= \frac{\sigma^{2}}{\sum_{j=1}^{n} (X_{j} - \bar{X})^{2}} \left(\sum_{i=1}^{n} c_{i} X_{i} - \bar{X} \sum_{i=1}^{n} c_{i}\right)$$

$$= \frac{\sigma^{2}}{\sum_{j=1}^{n} (X_{j} - \bar{X})^{2}} (1 + \bar{X} \cdot 0)$$

$$= \operatorname{Var}\left[\hat{\beta}\right].$$

Proof: Step 3*

• We know now that for any linear and unbiased $\tilde{\beta}$,

$$\operatorname{Cov}\left[\tilde{\beta},\hat{\beta}\right] = \operatorname{Var}\left[\hat{\beta}\right].$$

► Let's consider Var
$$[\tilde{\beta} - \hat{\beta}]$$
:
Var $[\tilde{\beta} - \hat{\beta}] = \operatorname{Var} [\tilde{\beta}] + \operatorname{Var} [\hat{\beta}] - 2\operatorname{Cov} [\tilde{\beta}, \hat{\beta}]$
 $= \operatorname{Var} [\tilde{\beta}] + \operatorname{Var} [\hat{\beta}] - 2\operatorname{Var} [\hat{\beta}]$
 $= \operatorname{Var} [\tilde{\beta}] - \operatorname{Var} [\hat{\beta}].$

• But since $\operatorname{Var}\left[\tilde{\beta} - \hat{\beta}\right] \ge 0$,

$$\operatorname{Var}\left[\tilde{\beta}\right] - \operatorname{Var}\left[\hat{\beta}\right] \ge 0$$

or

$$\operatorname{Var}\left[\tilde{\beta}\right] \geq \operatorname{Var}\left[\hat{\beta}\right]$$
.

Proof: Step 4 (Uniqueness)*

Suppose that
$$\operatorname{Var}\left[\tilde{\beta}\right] = \operatorname{Var}\left[\hat{\beta}\right]$$
.

► Then,

$$\operatorname{Var}\left[\tilde{\beta} - \hat{\beta}\right] = \operatorname{Var}\left[\tilde{\beta}\right] - \operatorname{Var}\left[\hat{\beta}\right] = 0.$$

• Thus, $\tilde{\beta} - \hat{\beta}$ is not random or

$$\tilde{\beta} - \hat{\beta} = \text{constant.}$$

This constant also has to be zero because

$$E\left[\tilde{\beta}\right] = E\left[\hat{\beta}\right] + \text{constant}$$
$$= \beta + \text{constant},$$

and in order for $\tilde{\beta}$ to be unbiased

constant=0 or
$$\tilde{\beta} = \hat{\beta}$$
.