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There are many alternatives estimators

» The OLS estimator is not the only estimator we can construct.

There are alternative estimators with some desirable properties.

» Example: Using only the first two observations, suppose that

Xo # Xi. iy
= »—Y
B=5—-
X2 - Xy
> [ is linear:
B =c1Y1+caYa,
where .
ci=———andcp) = ———.
X2 — X X, - X

2/14



Unbiasedness of /3

> IfY; =a+pBX;+U; andE[U; | X1,...,X,] =0, then 3 is
unbiased:
- Y, -
B
X - Xi
(a/+ﬁX2+U2)—(C¥+,3X1+U1)
X, - X
B(X2-X1) U,-U
X — X X — X,
U, - U,
+ b
B X5 — X

and

E 5] X, X;] B+E

U, -U;
| X1, X2
Xo - X

N E[U> | X1, Xo] —E[U; | X1, X2]
X — X
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An optimality criterion

» Among all linear and unbiased estimators, an estimator with the
smallest variance is called the Best Linear Unbiased Estimator
(BLUE).

> Note that the statement is conditional on X’s:

» The estimators are unbiased conditionally on X’s.
» The variance is conditional on X’s.
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Gauss-Markov Theorem

Suppose that
» Yi=a+BX;+U;.
» E[U; | X1,...,X,] =0.
> E|U? | Xi1,...,X,| =c?foralli=1,...,n (homoskedasticity).
> Foralli# j,E[U;U; | X1,...,Xa] =0.
Then, conditionally on X’s, the OLS estimators are BLUE.
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Gauss-Markov Theorem

> We already know that the OLS estimator f is linear and unbiased

(conditionally on X’s).

> Let S be any other estimator of 3 such that

> [is linear:
n

B= ZCiYi,

i=1
where ¢’s depend only on Xs.
» [ is unbiased:
E[A] =85,
where expectation is conditional on X’s.

> We need to show that for any such g # S,

Var [B] > Var [B] ,

where the variance is conditional on X's.
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An outline of the proof*

> First, we are going to show that the ¢’s in 3 = 2, ¢iY; satisfy
Yispci=0and 37, c;X; = 1.

» Using the results of Step 1, we will show that conditionally on
X’s, Cov [E,B] = Var [,@] .

» Using the results of Step 2, we will show that conditionally on
X’s, Var [B] > Var [B].

> Lastly, we will show that Var [3] = Var 3] if and only if 5 = j.
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Proof: Step 1*
> Since B =Y, ¢iYi,

n

Zci (CY+BXi+Ui)

i=1

aZci+ﬂZn:CiXi+Zn1CiUi-
i=1 i=1

i=1

p

S

» Conditionally on X’s,

E aiCﬁﬁanciXﬁanciUi
i=1 i=1 i=1

Q'Zn:Ci+,BZn:Cl-Xi+Zn:CiE [Ui]
i=1 i=1 i=1
QZn:Ci+,BZn:CiXi.
i=1 i=1

EAl
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Proof: Step 1*

» From the linearity we have that, conditionally on X’s,

E[E] :aici+ﬁici&-.
i=1 i=1

» From the unbiasedness we have that conditionally on X’s,

B=E|A] :azn:ci+,82nlcixi-
i=1 =1

» Since this has to be true for any « and S, it follows now that

n

ZC,‘ = O,

ni:l
ZC,‘XI" = 1.
i=1
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Proof: Step 2*

> We have

ﬁN = ,3+ZCiUi, with Zci :O,ZCiXi =1.
i=1 i=1 i=1
» Conditionally on X’s,
E[(B-5)(6-8)]

E (iciUi iwiU,-
ZCW,E[UZ] Zch] UU

i=1 j#i

Cov 5. 4]
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Proof: Step 2*

» Since E [Ulz] = o2 for all i’s:

n n

Z c;w;E [Ulz] =g’ Z ciw;.

i=1 i

1l
—_

» Since E [Uin] =0foralli #j,

Zn: > eow B [UU;] = 0.

i=1 j#i

» Thus,
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Proof: Step 2*

Conditionally on

ov [B.B] =

ov [3.5]

X’s:

-X
ZZC wi andwl——.
n

)
Jj=1 (XJ_X)
n _
UZZC" n n o2 o2
i=1 j=1 (XJ_X)
o e (-x)
~ Ci X, -X
;’L:l (Xj _X)2 i=1
0_2 n n
— ciXi—X cl)
?:1 (Xj _X) i=1 i=1
2
T (1+X-0)
n
j=1 (Xj_X)
Var [B]
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Proof: Step 3*

> We know now that for any linear and unbiased S,

ov [B,B] = Var [B].

> Let’s consider Var [3 - 3]

Var [-B] = Var|[B]+ Var[B] -2Cov |3, 5]
Var [S] + Var [ 8] = 2Var [ 3]
Var [/3] — Var [ ]

> But since Var [5 - ] >

Var [,8~] — Var [ﬁ] >0

or
Var [B] > Var [B] .
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Proof: Step 4 (Uniqueness)*

Suppose that Var [ﬁ] = Var [B]
» Then,
Var [ - B] = Var 5] - Var [3] = 0.

» Thus, 3 — f is not random or
B - 3 = constant.

» This constant also has to be zero because

E [B] + constant

= [+ constant,

EAl

and in order for 3 to be unbiased

constant=0 or 3 = 3.
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