Introductory Econometrics

Lecture 8: Confidence intervals

Instructor: Ma, Jun

Renmin University of China

September 27, 2021

Point estimation

► Our model:

1.
$$Y_i = \beta_0 + \beta_1 X_i + U_i$$
, $i = 1, ..., n$.

- 2. $E[U_i|X_1,...,X_n] = 0$ for all *i*'s.
- 3. $E\left[U_i^2|X_1,\ldots,X_n\right] = \sigma^2$ for all *i*'s.
- 4. $E\left[U_iU_j|X_1,\ldots,X_n\right]=0$ for all $i\neq j$.
- 5. *U*'s are jointly normally distributed conditional on *X*'s.
- ► The OLS estimator $\hat{\beta}_1$ is a point estimator of β_1 .
- ► For our model, conditional on *X*'s:

$$\hat{\beta}_{1} \sim N(\beta_{1}, \text{Var}[\hat{\beta}_{1}]),$$

$$\text{Var}[\hat{\beta}_{1}] = \frac{\sigma^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}.$$

▶ With probability one, we have that $\hat{\beta}_1 \neq \beta_1$.

Interval estimation problem

- We want to construct an interval estimator for β_1 :
 - ► The interval estimator is called a confidence interval (CI).
 - ▶ A CI contains the true value β_1 with some pre-specified probability 1α , where α is a small probability of error.
 - For example, if $\alpha = 0.05$, then the random CI will contain β_1 with probability 0.95.
- ▶ 1α is called the coverage probability.
- ► Confidence interval: $CI_{1-\alpha} = [LB_{1-\alpha}, UB_{1-\alpha}]$. The lower bound (LB) and upper bound (UB) should depend on the coverage probability 1α .
- ► The formal definition of CI: It is a random interval $CI_{1-\alpha}$ such that conditional on X's,

$$\Pr\left[\beta_1 \in CI_{1-\alpha}\right] = 1 - \alpha.$$

Note that the random element is $CI_{1-\alpha}$.

► Sometimes, a CI is defined as $\Pr [\beta_1 \in CI_{1-\alpha}] \ge 1 - \alpha$.

Symmetric CIs

• One approach to constructing CIs is to consider a symmetric interval around the estimator $\hat{\beta}_1$:

$$CI_{1-\alpha} = \left[\hat{\beta}_1 - c_{1-\alpha}, \hat{\beta}_1 + c_{1-\alpha}\right]$$

- ▶ The problem is choosing $c_{1-\alpha}$ such that $\Pr[\beta_1 \in CI_{1-\alpha}] = 1 \alpha$.
- ► In choosing $c_{1-\alpha}$ we will be relying on the fact that given our assumptions and conditionally on X's:

$$\hat{\beta}_1 \sim N(\beta_1, \text{Var}[\hat{\beta}_1]) \text{ and } \text{Var}[\hat{\beta}_1] = \frac{\sigma^2}{\sum_{i=1}^n (X_i - \bar{X})^2}.$$

► Note that conditionally on *X*'s:

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\operatorname{Var}\left[\hat{\beta}_1\right]}} \sim \operatorname{N}(0, 1).$$

Quantiles (percentiles) of the standard normal distribution.

Let $Z \sim N(0, 1)$. The τ -th quantile (percentile) of the standard normal distribution is z_{τ} such that

$$\Pr\left[Z \leq z_{\tau}\right] = \tau.$$

- ► Median: $\tau = 0.5$ and $z_{0.5} = 0$. (Pr $[Z \le 0] = 0.5$).
- ▶ If $\tau = 0.975$ then $z_{0.975} = 1.96$. Due to symmetry, if $\tau = 0.025$ then $z_{0.025} = -1.96$.

σ^2 is known (infeasible CIs)

- ► Suppose (for a moment) that σ^2 is known, and we can compute exactly the variance of $\hat{\beta}_1$ as $\text{Var}\left[\hat{\beta}_1\right] = \sigma^2/\sum_{i=1}^n \left(X_i \bar{X}\right)^2$.
- ► Consider the following CI:

$$CI_{1-\alpha} = \left[\hat{\beta}_1 - z_{1-\alpha/2} \sqrt{\operatorname{Var}\left[\hat{\beta}_1\right]}, \hat{\beta}_1 + z_{1-\alpha/2} \sqrt{\operatorname{Var}\left[\hat{\beta}_1\right]}\right].$$

For example, if $1 - \alpha = 0.95 \iff \alpha = 0.05 \iff z_{1-\alpha/2} = z_{0.975} = 1.96$, and

$$CI_{0.95} = \left[\hat{\beta}_1 - 1.96\sqrt{\text{Var}\left[\hat{\beta}_1\right]}, \hat{\beta}_1 + 1.96\sqrt{\text{Var}\left[\hat{\beta}_1\right]}\right].$$

Validity of the infeasible CIs (σ^2 is known)

- We need to show that $\Pr\left[\beta_1 \in \left[\hat{\beta}_1 z_{1-\alpha/2} \sqrt{\operatorname{Var}\left[\hat{\beta}_1\right]}, \hat{\beta}_1 + z_{1-\alpha/2} \sqrt{\operatorname{Var}\left[\hat{\beta}_1\right]}\right]\right] = 1 \alpha.$
- ► Next,

$$\begin{split} \hat{\beta}_{1} - z_{1-\alpha/2} \sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]} &\leq \beta_{1} \leq \hat{\beta}_{1} + z_{1-\alpha/2} \sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]} \\ \iff & -z_{1-\alpha/2} \sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]} \leq \beta_{1} - \hat{\beta}_{1} \leq z_{1-\alpha/2} \sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]} \\ \iff & -z_{1-\alpha/2} \sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]} \leq \hat{\beta}_{1} - \beta_{1} \leq z_{1-\alpha/2} \sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]} \\ \iff & -z_{1-\alpha/2} \leq \frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]}} \leq z_{1-\alpha/2} \end{split}$$

► We have that

$$\beta_{1} \in \left[\hat{\beta}_{1} - z_{1-\alpha/2} \sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]}, \hat{\beta}_{1} + z_{1-\alpha/2} \sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]}\right]$$

$$\iff -z_{1-\alpha/2} \leq \frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]}} \leq z_{1-\alpha/2}.$$

► Let $Z = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\text{Var}[\hat{\beta}_1]}} \sim \text{N}(0, 1)$.

$$\Pr \left[-z_{1-\alpha/2} \le \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\operatorname{Var} \left[\hat{\beta}_1 \right]}} \le z_{1-\alpha/2} \right]$$

$$= \Pr \left[-z_{1-\alpha/2} \le Z \le z_{1-\alpha/2} \right]$$

$$= \Pr \left[z_{\alpha/2} \le Z \le z_{1-\alpha/2} \right]$$

$$= 1 - \alpha/2 - \alpha/2 = 1 - \alpha.$$

Feasible confidence intervals (σ^2 is unknown)

 \blacktriangleright Since σ^2 is unknown, we must estimate it from the data:

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{n} \hat{U}_{i}^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} X_{i})^{2}.$$

• We can replace σ^2 by s^2 , however, the result does not have a normal distribution any more:

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_1\right]}} \sim t_{n-2}, \text{ where } \widehat{\operatorname{Var}}\left[\hat{\beta}_1\right] = \frac{s^2}{\sum_{i=1}^n \left(X_i - \bar{X}\right)^2}.$$

Here t_{n-2} denotes the *t*-distribution with n-2 degrees of freedom.

- ► The degrees of freedom depend on
 - ightharpoonup the sample size (n),
 - ▶ and the number of parameters one have to estimate to compute s^2 (two in this case, β_0 and β_1).

Let $t_{df,\tau}$ be the τ -th quantile of the t-distribution with the number of degrees of freedom df: If $T \sim t_{df}$ then

$$\Pr\left[T \leq t_{df,\tau}\right] = \tau.$$

- Similarly to the normal distribution, the *t*-distribution is centered at zero and is symmetric around zero: $t_{n-2,1-\alpha/2} = -t_{n-2,\alpha/2}$.
- We can now construct a feasible confidence interval with 1α coverage as:

$$CI_{1-\alpha} = \begin{bmatrix} \hat{\beta}_1 - t_{n-2,1-\alpha/2} \sqrt{\widehat{\operatorname{Var}} \left[\hat{\beta}_1 \right]}, \hat{\beta}_1 + t_{n-2,1-\alpha/2} \sqrt{\widehat{\operatorname{Var}} \left[\hat{\beta}_1 \right]} \end{bmatrix},$$
where $\widehat{\operatorname{Var}} \left[\hat{\beta}_1 \right] = \frac{s^2}{\sum_{i=1}^n (X_i - \bar{X})^2}.$

Example: Rent rates and average income

► Data (RENTAL.DTA): 128 cities in 1990, Rent = average rent, AvgInc = per capita income: Rent_i = $\beta_0 + \beta_1$ AvgInc_i + U_i .

. regress rent avginc						
Source	SS	df	MS		Number of obs = 64 F(1, 62) = 78.34	
Model Residual	347069.249 274693.188		69.249 .53529		Prob > F = 0.0000 R-squared = 0.5582 Adi R-squared = 0.5513	2
Total	621762.438	63 9869	. 24504		Root MSE = 66.562	
rent	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]	1
avginc _cons	.01158 148.7764	.0013084 32.09787	8.85 4.64	0.000 0.000	.0089646 .0141954 84.6137 212.9392	

- ► $t_{62,0.975} \approx 2.00$ \Longrightarrow The 95% confidence interval for β_1 is $[0.0115 2 \times 0.0013, 0.0115 + 2 \times 0.0013] = [0.0089, 0.0141].$
- ► $t_{62,0.95} \approx 1.671$ ⇒ The 90% confidence interval for β_1 is $[0.0115 1.671 \times 0.0013, 0.0115 + 1.671 \times 0.0013] = [0.0093, 0.0137].$

The effect of estimation of σ^2

► The *t*-distribution has heavier tails than normal. The graphs of normal (solid line), *t*₅ (dashed line), and *t*₁ (dotted line) PDFs:

- $ightharpoonup t_{df,1-\alpha/2} > z_{1-\alpha/2}$, but as df increases $t_{df,1-\alpha/2} \to z_{1-\alpha/2}$.
- ▶ When the sample size *n* is large, $t_{n-2,1-\alpha/2}$ can be replaced with $z_{1-\alpha/2}$.

Interpretation of confidence intervals

- ► The confidence interval $CI_{1-\alpha}$ is a function of the sample $\{(Y_i, X_i) : i = 1, ..., n\}$, and therefore is random. This allows us to talk about probability of $CI_{1-\alpha}$ containing the true value of β_1 .
- ▶ Once the confidence interval is computed given the data, we have its one realization. The realization of $CI_{1-\alpha}$ or (computed confidence interval) is not random, and it does not make sense anymore to talk about the probability that it includes the true β_1 .
- Once the confidence interval is computed, it either contains the true value β_1 or it does not.