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Point estimation

» Our model:
1. Yi=Bo+B/Xi+Us, i=1,...,n
2. E[Ui|Xy,...,X,] =0forall i’s.
3. E[U?|X),...,X,| = o2 forall i’s.
4. E|U;Uj|Xy, ..., Xn] =0foralli # j.

5. U’s are jointly normally distributed conditional on X’s.

» The OLS estimator f3; is a point estimator of f;.

» For our model, conditional on X’s:

Bi ~ N(Bi,Var[Bi]).
141 i
Var (] = ————.
?:1 (Xi _X)2

» With probability one, we have that 8, # S;.
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Interval estimation problem

» We want to construct an interval estimator for 5; :

» The interval estimator is called a confidence interval (CI).

» A CI contains the true value 8; with some pre-specified
probability 1 — @, where « is a small probability of error.

» For example, if @ = 0.05, then the random CI will contain 8; with
probability 0.95.

» 1 — a is called the coverage probability.

» Confidence interval: CIi_, = [LBi_4, UB1_,]. The lower
bound (LB) and upper bound (UB) should depend on the
coverage probability 1 — a.

» The formal definition of CI: It is a random interval CI;_, such
that conditional on X’s,

Pr [,31 € CII_Q] =1-a.

Note that the random element is CI;_,,.
» Sometimes, a Cl is defined as Pr[8; € Cl_o] > 1 —a.
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Symmetric CIs

» One approach to constructing Cls is to consider a symmetric
interval around the estimator f3;:

Cli—a = [B1 = Ci—a» 1+ C1-a]

» The problem is choosing ¢_, such that Pr[3; € CI|_,] =1 -«

» In choosing c;_, we will be relying on the fact that given our
assumptions and conditionally on X’s:

B ~N (B, Var [B1]) and Var 5] =

» Note that conditionally on X’s:

BB
Var [ﬁl]

~N(0,1).
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Quantiles (percentiles) of the standard normal distribution.

TABLE 1 The Cumulative Standard Normal Distribution Function, ®(z) = Pr(Z < z)

0

Second Decimal Value of

0 1 2 3 a 5 6 o 8 9

29
28

» Let Z ~ N (0, 1). The 7-th quantile (percentile) of the standard
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normal distribution is z, such that

PriZ<z;]=71

» Median: T =0.5and zo5 =0. (Pr[Z < 0] =0.5).

» If 7 = 0.975 then z9.975 = 1.96. Due to symmetry, if 7 = 0.025

then zg g5 = —1.96.
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o2 is known (infeasible CIs)

> Suppose (for a moment) that o2 is known, and we can compute
exactly the variance of B as Var 1] = o2/X0, (Xi - X')z )
» Consider the following CI:

Clyo = [31 e Var [Br] B+ 21apafVar [m] |

» For example, if
1-=095 = =005 Zl-a/2 = 20975 = 1.96, and

Cloos = [31 —1.96\Var [B1]. B +1.96Var [m] .
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Validity of the infeasible Cls (02 is known)

» We need to show that

Pr [ﬁl ; [,él o Var [Bi]. B + 21oaponVar [@]H _

1-a.
> Next,
Bi = zi—appr/Var [Bi] < B1 < Bi+2zi_aj2/Var [Bi]
& —zi—apyVar [Bi] < B1 =P < 21-q2 Var [Bi]
& —zi_apVar [Bi] < B1 =B < zi—aj2/Var [Bi]
— —Zl-q2 = M < Zl-a)2

A/ Var [Bl]
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» We have that

Bie [ﬁl et Var [B1]. B + 21-a o Var [m]

B - B

& ~l-e2 S T/———= S Z-a/2-
A/ Var [ﬁl]
> Let Z = LB N(0,1).
U2 atay N OD
Pr|-zi—ap < Lﬂj < Zi—a)2
Var [ﬁl]

= Pr [_Z]—a/Z <Z< Zl—a/Z]
Pr(zap < Z < 21-ap]
l-a/2-a/2=1-a.
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Feasible confidence intervals (o2 is unknown)

2

» Since o~ is unknown, we must estimate it from the data:

1 <o, 1 < s A o2
2 _ § lﬂ_ § - — B — B1 X;
g _n—2l_:1 i_n—2i:] (i = o =1 Xi)".

> We can replace o by s2, however, the result does not have a
normal distribution any more:

Bi - Bi 52

~ ta_n, Where Var [ﬁl] =
Var 1] (X - X)?

Here #,,_5 denotes the ¢-distribution with n — 2 degrees of
freedom.
» The degrees of freedom depend on
> the sample size (n),

» and the number of parameters one have to estimate to compute 52
(two in this case, By and B1).
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> Lett,r . be the 7-th quantile of the z-distribution with the
number of degrees of freedom df: If T ~ 14+ then

Pr [T < tdf,T] =T.

» Similarly to the normal distribution, the ¢-distribution is centered
at zero and is symmetric around zero: 7, 3 1-q/2 = ~ly-2,q/2-

» We can now construct a feasible confidence interval with 1 — «
coverage as:

Cli_o =
= [Bl - tn—2,1—(1/2\/\75r [ﬁl],ﬁl +ln—2,1—a/2\/\75r [31]} )
—_— A S2
where Var [/5’1] =

?:1 (Xi - X)T
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Example: Rent rates and average income

» Data (RENTAL.DTA): 128 cities in 1990, Rent = average rent,
Avglnc = per capita income: Rent; = S5y + 1 Avglnc; + U;.

. regress remt avgine

source | 55 df MS mMumber of ohs = a4
F{ 1, 62) = 78.34

model | 347069.249 1 347089.249 Prob > F = 0.0000
rResidual | 274693.188 62 4430.53529 R-sguared = 0.5582
Adj R-sguared = 0.5511

Total | 621762.438 63  GBE69.24504 ROOT MSE = 66.562

|

rent | coef. std. Err. T P=T] [95% conf. Interval]
avging | .01158 -0013084 B8.85 0. 000 -00BGE4G 20141954
_cons | 148.7764 32.08787 4.64 0.000 84,6137 212.5382

> 162.0.975 = 2.00 =The 95% confidence interval for §; is
[0.0115 —-2%0.0013,0.0115 +2x0.0013] = [0.0089,0.0141].

> 162,095 = 1.671 =The 90% confidence interval for 8 is
[0.0115-1.671x0.0013,0.0115 +1.671x0.0013] =
[0.0093,0.0137].
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The effect of estimation of o2

» The z-distribution has heavier tails than normal. The graphs of
normal (solid line), 75 (dashed line), and ¢ (dotted line) PDFs:

> fqf.1-a/2 > Zl-a/2, Dutas df increases fy¢ 1—q/2 = Zl-a/2-
» When the sample size n is large, 1,5 1—/2 can be replaced with
2l-a/2-
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Interpretation of confidence intervals

» The confidence interval CI;_,, is a function of the sample
{(¥;,X;) :i=1,...,n}, and therefore is random. This allows us
to talk about probability of CI;_, containing the true value of §;.

» Once the confidence interval is computed given the data, we have
its one realization. The realization of C1,_, or (computed
confidence interval) is not random, and it does not make sense
anymore to talk about the probability that it includes the true ;.

» Once the confidence interval is computed, it either contains the
true value B; or it does not.
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