Introductory Econometrics Lecture 8: Confidence intervals

Instructor: Ma, Jun

Renmin University of China

October 8, 2021

Point estimation

- ► Our model:
 - 1. $Y_i = \beta_0 + \beta_1 X_i + U_i$, i = 1, ..., n. 2. $E[U_i|X_1, ..., X_n] = 0$ for all *i*'s. 3. $E[U_i^2|X_1, ..., X_n] = \sigma^2$ for all *i*'s. 4. $E[U_iU_j|X_1, ..., X_n] = 0$ for all $i \neq j$. 5. *U*'s are jointly normally distributed conditional on *X*'s.
- The OLS estimator $\hat{\beta}_1$ is a point estimator of β_1 .
- ► For our model, conditional on *X*'s:

$$\hat{\beta}_{1} \sim \mathrm{N}\left(\beta_{1}, \mathrm{Var}\left[\hat{\beta}_{1}\right]\right),$$

$$\mathrm{Var}\left[\hat{\beta}_{1}\right] = \frac{\sigma^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}.$$

• With probability one, we have that $\hat{\beta}_1 \neq \beta_1$.

Interval estimation problem

- We want to construct an interval estimator for β_1 :
 - ► The interval estimator is called a confidence interval (CI).
 - A CI contains the true value β₁ with some pre-specified probability 1 − α, where α is a small probability of error.
 - For example, if $\alpha = 0.05$, then the random CI will contain β_1 with probability 0.95.
- 1α is called the coverage probability.
- ► Confidence interval: $CI_{1-\alpha} = [LB_{1-\alpha}, UB_{1-\alpha}]$. The lower bound (LB) and upper bound (UB) should depend on the coverage probability 1α .
- The formal definition of CI: It is a random interval $CI_{1-\alpha}$ such

$$\Pr\left[\beta_1 \in CI_{1-\alpha}\right] = 1 - \alpha.$$

Note that the random element is $CI_{1-\alpha}$.

Sometimes, a CI is defined as $\Pr [\beta_1 \in CI_{1-\alpha}] \ge 1 - \alpha$.

Symmetric CIs

One approach to constructing CIs is to consider a symmetric interval around the estimator β₁:

$$CI_{1-\alpha} = \left[\hat{\beta}_1 - c_{1-\alpha}, \hat{\beta}_1 + c_{1-\alpha}\right]$$

- The problem is choosing $c_{1-\alpha}$ such that $\Pr[\beta_1 \in CI_{1-\alpha}] = 1 \alpha$.
- In choosing c_{1-α} we will be relying on the fact that given our assumptions and conditionally on X's:

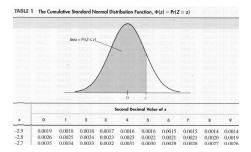
$$\hat{\beta}_1 \sim \mathrm{N}\left(\beta_1, \mathrm{Var}\left[\hat{\beta}_1\right]\right) \text{ and } \mathrm{Var}\left[\hat{\beta}_1\right] = \frac{\sigma^2}{\sum_{i=1}^n \left(X_i - \bar{X}\right)^2}.$$

► Conditionally on *X*'s:

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\operatorname{Var}\left[\hat{\beta}_1\right]}} \sim \operatorname{N}\left(0, 1\right).$$

• Note that the unconditional (marginal) distribution of $\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\operatorname{Var}[\hat{\beta}_1]}}$ is also N (0, 1).

Quantiles (percentiles) of the standard normal distribution.



 Let Z ~ N (0, 1). The τ-th quantile (percentile) of the standard normal distribution is z_τ such that

$$\Pr\left[Z \leq z_{\tau}\right] = \tau.$$

- Median: $\tau = 0.5$ and $z_{0.5} = 0$. (Pr $[Z \le 0] = 0.5$).
- If $\tau = 0.975$ then $z_{0.975} = 1.96$. Due to symmetry, if $\tau = 0.025$ then $z_{0.025} = -1.96$.

 σ^2 is known (infeasible CIs)

Suppose (for a moment) that σ^2 is known, and we can compute exactly the variance of $\hat{\beta}_1$ as Var $[\hat{\beta}_1] = \sigma^2 / \sum_{i=1}^n (X_i - \bar{X})^2$.

• Consider the following CI:

$$CI_{1-\alpha} = \left[\hat{\beta}_1 - z_{1-\alpha/2}\sqrt{\operatorname{Var}\left[\hat{\beta}_1\right]}, \hat{\beta}_1 + z_{1-\alpha/2}\sqrt{\operatorname{Var}\left[\hat{\beta}_1\right]}\right].$$

For example, if
$$1 - \alpha = 0.95 \iff \alpha = 0.05 \iff z_{1-\alpha/2} = z_{0.975} = 1.96$$
, and

$$CI_{0.95} = \left[\hat{\beta}_1 - 1.96\sqrt{\operatorname{Var}\left[\hat{\beta}_1\right]}, \hat{\beta}_1 + 1.96\sqrt{\operatorname{Var}\left[\hat{\beta}_1\right]}\right].$$

Validity of the infeasible CIs (σ^2 is known)

• We need to show that $\Pr\left[\beta_1 \in \left[\hat{\beta}_1 - z_{1-\alpha/2}\sqrt{\operatorname{Var}\left[\hat{\beta}_1\right]}, \hat{\beta}_1 + z_{1-\alpha/2}\sqrt{\operatorname{Var}\left[\hat{\beta}_1\right]}\right]\right] = 1 - \alpha.$

► Next,

$$\begin{aligned} \hat{\beta}_{1} - z_{1-\alpha/2}\sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]} &\leq \beta_{1} \leq \hat{\beta}_{1} + z_{1-\alpha/2}\sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]} \\ &\longleftrightarrow \quad -z_{1-\alpha/2}\sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]} \leq \beta_{1} - \hat{\beta}_{1} \leq z_{1-\alpha/2}\sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]} \\ &\longleftrightarrow \quad -z_{1-\alpha/2}\sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]} \leq \hat{\beta}_{1} - \beta_{1} \leq z_{1-\alpha/2}\sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]} \\ &\longleftrightarrow \quad -z_{1-\alpha/2} \leq \frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]}} \leq z_{1-\alpha/2} \end{aligned}$$

► We have that

$$\beta_{1} \in \left[\hat{\beta}_{1} - z_{1-\alpha/2}\sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]}, \hat{\beta}_{1} + z_{1-\alpha/2}\sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]}\right]$$
$$\longleftrightarrow \quad -z_{1-\alpha/2} \leq \frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{\operatorname{Var}\left[\hat{\beta}_{1}\right]}} \leq z_{1-\alpha/2}.$$

• Let
$$Z = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\operatorname{Var}[\hat{\beta}_1]}} \sim \operatorname{N}(0, 1).$$

$$\Pr\left[-z_{1-\alpha/2} \le \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\operatorname{Var}\left[\hat{\beta}_1\right]}} \le z_{1-\alpha/2}\right]$$
$$= \Pr\left[-z_{1-\alpha/2} \le Z \le z_{1-\alpha/2}\right]$$
$$= \Pr\left[z_{\alpha/2} \le Z \le z_{1-\alpha/2}\right]$$
$$= 1 - \alpha/2 - \alpha/2 = 1 - \alpha.$$

Feasible confidence intervals (σ^2 is unknown)

• Since σ^2 is unknown, we must estimate it from the data:

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{n} \hat{U}_{i}^{2} = \frac{1}{n-2} \sum_{i=1}^{n} \left(Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} X_{i} \right)^{2}.$$

• We can replace σ^2 by s^2 , however, the result does not have a normal distribution any more:

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\operatorname{Var}\left[\hat{\beta}_1\right]}} \sim t_{n-2}, \text{ where } \widehat{\operatorname{Var}}\left[\hat{\beta}_1\right] = \frac{s^2}{\sum_{i=1}^n \left(X_i - \bar{X}\right)^2}.$$

Here t_{n-2} denotes the *t*-distribution with n-2 degrees of freedom.

- ► The degrees of freedom depend on
 - the sample size (n),
 - and the number of parameters one have to estimate to compute s² (two in this case, β₀ and β₁).

• Let $t_{df,\tau}$ be the τ -th quantile of the *t*-distribution with the number of degrees of freedom df: If $T \sim t_{df}$ then

$$\Pr\left[T \le t_{df,\tau}\right] = \tau.$$

- Similarly to the normal distribution, the *t*-distribution is centered at zero and is symmetric around zero: $t_{n-2,1-\alpha/2} = -t_{n-2,\alpha/2}$.
- We can now construct a feasible confidence interval with 1α coverage as:

$$CI_{1-\alpha} = \begin{bmatrix} \hat{\beta}_1 - t_{n-2,1-\alpha/2} \sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_1\right]}, \hat{\beta}_1 + t_{n-2,1-\alpha/2} \sqrt{\widehat{\operatorname{Var}}\left[\hat{\beta}_1\right]} \end{bmatrix},$$

where $\widehat{\operatorname{Var}}\left[\hat{\beta}_1\right] = \frac{s^2}{\sum_{i=1}^n (X_i - \bar{X})^2}.$

Example: Rent rates and average income

. regress rent avginc

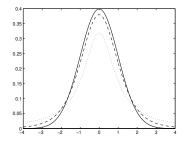
► Data (RENTAL.DTA): 64 cities in 1990, Rent = average rent, AvgInc = per capita income: Rent_i = $\beta_0 + \beta_1$ AvgInc_i + U_i .

Source Model Residual Total	55 347069.249 274693.188 621762.438	62	MS 347069.249 4430.53529 9869.24504		Number of obs F(1, 62) Prob > F R-squared Adj R-squared Root MSE		64 78.34 0.0000 0.5582 0.5511 66.562
rent	Coef.	Std. E	rr. t	P> t	[95% Conf.	Int	terval]
avginc _cons	.01158 148.7764	.00130 32.097		0.000 0.000	.0089646 84.6137		0141954 12.9392

- ► $t_{62,0.975} \approx 2.00 \implies$ The 95% confidence interval for β_1 is $[0.0115 2 \times 0.0013, 0.0115 + 2 \times 0.0013] = [0.0089, 0.0141].$
- ► $t_{62,0.95} \approx 1.671 \implies$ The 90% confidence interval for β_1 is [0.0115 - 1.671×0.0013, 0.0115 + 1.671×0.0013] = [0.0093, 0.0137].

The effect of estimation of σ^2

The *t*-distribution has heavier tails than normal. The graphs of normal (solid line), t₅ (dashed line), and t₁ (dotted line) PDFs:



- $t_{df,1-\alpha/2} > z_{1-\alpha/2}$, but as df increases $t_{df,1-\alpha/2} \rightarrow z_{1-\alpha/2}$.
- When the sample size *n* is large, $t_{n-2,1-\alpha/2}$ can be replaced with $z_{1-\alpha/2}$.

Interpretation of confidence intervals

- The confidence interval CI_{1-α} is a function of the sample {(Y_i, X_i) : i = 1,...,n}, and therefore is random. This allows us to talk about probability of CI_{1-α} containing the true value of β₁.
- Once the confidence interval is computed given the data, we have its one realization. The realization of CI_{1-α} or (computed confidence interval) is not random, and it does not make sense anymore to talk about the probability that it includes the true β₁.
- Once the confidence interval is computed, it either contains the true value β₁ or it does not.