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Why we need a multiple regression model

I There are many factors affecting the outcome variable 𝑌 .
I If we want to estimate the marginal effect of one of the factors

(regressors), we need to control for other factors.
I Suppose that we are interested in the effect of 𝑋1 on 𝑌 , but 𝑌 is

affected by both 𝑋1 and 𝑋2:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 +𝑈𝑖 .

I Suppose we regress 𝑌 only against 𝑋1:

𝛽1 =

∑𝑛
𝑖=1

(
𝑋1,𝑖 − 𝑋̄1

)
𝑌𝑖∑𝑛

𝑖=1
(
𝑋1,𝑖 − 𝑋̄1

)2 .
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Omitted variable bias
Since 𝑌 depends on 𝑋2 : 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 +𝑈𝑖 ,
I We have:

𝛽1 =

∑𝑛
𝑖=1

(
𝑋1,𝑖 − 𝑋̄1

) (
𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖+𝑈𝑖

)∑𝑛
𝑖=1

(
𝑋1,𝑖 − 𝑋̄1

)2
= 𝛽1 + 𝛽2

∑𝑛
𝑖=1

(
𝑋1,𝑖 − 𝑋̄1

)
𝑋2,𝑖∑𝑛

𝑖=1
(
𝑋1,𝑖 − 𝑋̄1

)2 +
∑𝑛

𝑖=1
(
𝑋1,𝑖 − 𝑋̄1

)
𝑈𝑖∑𝑛

𝑖=1
(
𝑋1,𝑖 − 𝑋̄1

)2 .

I Assume that E
[
𝑈𝑖 | 𝑋1,𝑖 , 𝑋2,𝑖

]
= 0. Now, conditional on 𝑋’s:

E
[
𝛽1
]
= 𝛽1 + 𝛽2

∑𝑛
𝑖=1

(
𝑋1,𝑖 − 𝑋̄1

)
𝑋2,𝑖∑𝑛

𝑖=1
(
𝑋1,𝑖 − 𝑋̄1

)2 ≠ 𝛽1.

The exception is when
𝑛∑︁
𝑖=1

(
𝑋1,𝑖 − 𝑋̄1

)
𝑋2,𝑖 = 0.
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Omitted variable bias
I When the true model is

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 +𝑈𝑖 ,

but we regress only on 𝑋1,

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 +𝑉𝑖 ,

where 𝑉𝑖 is the new error term:

𝑉𝑖 = 𝛽2𝑋2,𝑖 +𝑈𝑖 .

I If 𝑋1 and 𝑋2 are related, we can no longer say that
E
[
𝑉𝑖 | 𝑋1,𝑖

]
= 0.

I When 𝑋1 changes, 𝑋2 changes as well, which contaminates
estimation of the effect of 𝑋1 on 𝑌 .

I As a result, 𝛽1 from the regression of 𝑌 on 𝑋1 alone is biased.
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Multiple linear regression model

I The econometrician observes the data:{(
𝑌𝑖 , 𝑋1,𝑖 , 𝑋2,𝑖 , . . . , 𝑋𝑘,𝑖

)
: 𝑖 = 1, . . . , 𝑛

}
.

I The model:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 ,
E
[
𝑈𝑖 | 𝑋1,𝑖 , 𝑋2,𝑖 , . . . , 𝑋𝑘,𝑖

]
= 0.

I We also assume no multicollinearity: None of the regressors are
constant and there are no exact linear relationships among the
regressors.
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Interpretation of the coefficients

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 .

I 𝛽 𝑗 is a partial (marginal) effect of 𝑋 𝑗 on 𝑌 :

𝛽 𝑗 =
𝜕𝑌𝑖

𝜕𝑋 𝑗,𝑖
.

I For example, 𝛽1 is the effect of 𝑋1 on 𝑌 while holding the other
regressors constant (or controlling for 𝑋2, . . . , 𝑋𝑘)

Δ𝑌= 𝛽1Δ𝑋1.

I In data, the values of all regressors usually change from
observation to observation. If we do not control for other factors,
we cannot identify the effect of 𝑋1.
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Changing more than one regressor simultaneously

I There are cases when we want to change more than one regressor
at the same time to find an effect on 𝑌 .

I Example 3.2: the results from 526 observations on workers�log (𝑊𝑎𝑔𝑒) = 0.284+ 0.92 · 𝑒𝑑𝑢 + 0.0041 · 𝑒𝑥𝑝𝑒𝑟 + 0.22 · 𝑡𝑒𝑛𝑢𝑟𝑒.

I The effect of staying one more year at the same firm: increasing
both exper and tenure.

I Holding edu fixed,�log (𝑊𝑎𝑔𝑒) = 0.0041 · Δ𝑒𝑥𝑝𝑒𝑟 + 0.22 · Δ𝑡𝑒𝑛𝑢𝑟𝑒.
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Modelling nonlinear effects
I Recall that in 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 +𝑈𝑖 , the effect of 𝑋𝑖 on 𝑌𝑖 is linear:

𝑑𝑌𝑖/𝑑𝑋𝑖 = 𝛽1 and constant for all values of 𝑋𝑖 .
Multiple regression can be used to model nonlinear effects of
regressors.

I To model nonlinear returns to education, consider the following
equation:

log
(
Wage𝑖

)
= 𝛽0 + 𝛽1Education𝑖 + 𝛽2Education2

𝑖 +𝑈𝑖 ,

were Education𝑖 = years of education of individual 𝑖.
I In this case, the return to education is:

𝑑 log
(
Wage𝑖

)
𝑑Education𝑖

= 𝛽1 + 2𝛽2Education𝑖 .

Now, return to education depends on years of education. For
example, diminishing returns to education correspond to 𝛽2 < 0.
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OLS estimation
I The OLS estimators 𝛽0, 𝛽1, . . . , 𝛽𝑘 are the values that minimize

the squared errors function:

min
𝑏0,𝑏1,...,𝑏𝑘

𝑄𝑛 (𝑏0, 𝑏1, . . . , 𝑏𝑘) , where

𝑄𝑛 (𝑏0, 𝑏1, . . . , 𝑏𝑘) =
𝑛∑︁
𝑖=1

(
𝑌𝑖 − 𝑏0 − 𝑏1𝑋1,𝑖 − . . . − 𝑏𝑘𝑋𝑘,𝑖

)2 .

I The partial derivative with respect to 𝑏0 is

𝜕𝑄𝑛 (𝑏0, 𝑏1, . . . , 𝑏𝑘)
𝜕𝑏0

= −2
𝑛∑︁
𝑖=1

(
𝑌𝑖 − 𝑏0 − 𝑏1𝑋1,𝑖 − . . . − 𝑏𝑘𝑋𝑘,𝑖

)
.

I The partial derivative with respect to 𝑏 𝑗 , 𝑗 = 1, . . . , 𝑘 is

𝜕𝑄𝑛 (𝑏0, 𝑏1, . . . , 𝑏𝑘)
𝜕𝑏 𝑗

= −2
𝑛∑︁
𝑖=1

(
𝑌𝑖 − 𝑏0 − 𝑏1𝑋1,𝑖 − . . . − 𝑏𝑘𝑋𝑘,𝑖

)
𝑋 𝑗,𝑖 .
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Normal equations (first-order conditions for OLS)

The OLS estimators 𝛽0, 𝛽1, . . . , 𝛽𝑘 are obtained by solving the
following system of normal equations:

𝑛∑︁
𝑖=1

(
𝑌𝑖 − 𝛽0 − 𝛽1𝑋1,𝑖 − . . . − 𝛽𝑘𝑋𝑘,𝑖

)
= 0,

𝑛∑︁
𝑖=1

(
𝑌𝑖 − 𝛽0 − 𝛽1𝑋1,𝑖 − . . . − 𝛽𝑘𝑋𝑘,𝑖

)
𝑋1,𝑖 = 0,

... =
...

𝑛∑︁
𝑖=1

(
𝑌𝑖 − 𝛽0 − 𝛽1𝑋1,𝑖 − . . . − 𝛽𝑘𝑋𝑘,𝑖

)
𝑋𝑘,𝑖 = 0.
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Normal equations (first-order conditions for OLS)
I Since the fitted residuals are

𝑈̂𝑖 = 𝑌𝑖 − 𝛽0 − 𝛽1𝑋1,𝑖 − . . . − 𝛽𝑘𝑋𝑘,𝑖 ,

the normal equations can be written as

𝑛∑︁
𝑖=1

𝑈̂𝑖 = 0,

𝑛∑︁
𝑖=1

𝑈̂𝑖𝑋1,𝑖 = 0,

... =
...

𝑛∑︁
𝑖=1

𝑈̂𝑖𝑋𝑘,𝑖 = 0.

I We choose 𝛽0, 𝛽1, . . . , 𝛽𝑘 so that 𝑈̂’s and regressors are
orthogonal (uncorrelated in sample).
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Partitioned regression
I A representation for individual 𝛽’s can be obtained through the

partitioned regression result. Suppose we want to obtain an
expression for 𝛽1.

I Consider first regressing 𝑋1,𝑖 against other regressors and a
constant:

𝑋1,𝑖 = 𝛾̂0 + 𝛾̂2𝑋2,𝑖 + . . . + 𝛾̂𝑘𝑋𝑘,𝑖 + 𝑋̃1,𝑖 ,

where 𝛾̂0, 𝛾̂2, . . . , 𝛾̂𝑘 are the OLS coefficients, and 𝑋̃1,𝑖 is the
fitted OLS residual:

𝑛∑︁
𝑖=1

𝑋̃1,𝑖 = 0, and
𝑛∑︁
𝑖=1

𝑋̃1,𝑖𝑋 𝑗,𝑖 = 0 for 𝑗 = 2, . . . , 𝑘 .

I Then 𝛽1 can be written as

𝛽1 =

∑𝑛
𝑖=1 𝑋̃1,𝑖𝑌𝑖∑𝑛
𝑖=1 𝑋̃

2
1,𝑖

.
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Proof of the partitioned regression result

I We can write 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 + 𝑈̂𝑖 , where∑𝑛
𝑖=1 𝑈̂𝑖 =

∑𝑛
𝑖=1 𝑈̂𝑖𝑋1,𝑖 = . . . =

∑𝑛
𝑖=1 𝑈̂𝑖𝑋𝑘,𝑖 = 0.

I Now,∑𝑛
𝑖=1 𝑋̃1,𝑖𝑌𝑖∑𝑛
𝑖=1 𝑋̃

2
1,𝑖

=∑𝑛
𝑖=1 𝑋̃1,𝑖

(
𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 + 𝑈̂𝑖

)∑𝑛
𝑖=1 𝑋̃

2
1,𝑖

= 𝛽0

∑𝑛
𝑖=1 𝑋̃1,𝑖∑𝑛
𝑖=1 𝑋̃

2
1,𝑖

+ 𝛽1

∑𝑛
𝑖=1 𝑋̃1,𝑖𝑋1,𝑖∑𝑛

𝑖=1 𝑋̃
2
1,𝑖

+

+ 𝛽2

∑𝑛
𝑖=1 𝑋̃1,𝑖𝑋2,𝑖∑𝑛

𝑖=1 𝑋̃
2
1,𝑖

+ . . . + 𝛽𝑘

∑𝑛
𝑖=1 𝑋̃1,𝑖𝑋𝑘,𝑖∑𝑛

𝑖=1 𝑋̃
2
1,𝑖

+
∑𝑛

𝑖=1 𝑋̃1,𝑖𝑈̂𝑖∑𝑛
𝑖=1 𝑋̃

2
1,𝑖

.
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Proof of the partitioned regression result

∑𝑛
𝑖=1 𝑋̃1,𝑖𝑌𝑖∑𝑛
𝑖=1 𝑋̃

2
1,𝑖

= 𝛽0

∑𝑛
𝑖=1 𝑋̃1,𝑖∑𝑛
𝑖=1 𝑋̃

2
1,𝑖

+ 𝛽1

∑𝑛
𝑖=1 𝑋̃1,𝑖𝑋1,𝑖∑𝑛

𝑖=1 𝑋̃
2
1,𝑖

+

+ 𝛽2

∑𝑛
𝑖=1 𝑋̃1,𝑖𝑋2,𝑖∑𝑛

𝑖=1 𝑋̃
2
1,𝑖

+ . . . + 𝛽𝑘

∑𝑛
𝑖=1 𝑋̃1,𝑖𝑋𝑘,𝑖∑𝑛

𝑖=1 𝑋̃
2
1,𝑖

+
∑𝑛

𝑖=1 𝑋̃1,𝑖𝑈̂𝑖∑𝑛
𝑖=1 𝑋̃

2
1,𝑖

.

We will show that:
1.

∑𝑛
𝑖=1 𝑋̃1,𝑖 = 0.

2.
∑𝑛

𝑖=1 𝑋̃1,𝑖𝑋2,𝑖 = . . . =
∑𝑛

𝑖=1 𝑋̃1,𝑖𝑋𝑘,𝑖 = 0.
3.

∑𝑛
𝑖=1 𝑋̃1,𝑖𝑋1,𝑖 =

∑𝑛
𝑖=1 𝑋̃

2
1,𝑖 .

4.
∑𝑛

𝑖=1 𝑋̃1,𝑖𝑈̂𝑖 = 0.
Then ∑𝑛

𝑖=1 𝑋̃1,𝑖𝑌𝑖∑𝑛
𝑖=1 𝑋̃

2
1,𝑖

= 𝛽1.
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Proof of the partitioned regression result (steps 1-2)
I 𝑋̃1,𝑖 is the fitted OLS residual:

𝑋1,𝑖 = 𝛾̂0 + 𝛾̂2𝑋2,𝑖 + . . . + 𝛾̂𝑘𝑋𝑘,𝑖 + 𝑋̃1,𝑖 ,

where 𝛾̂0, 𝛾̂2, . . . , 𝛾̂𝑘 are the OLS coefficients.
I The normal equations for this regression are:

𝑛∑︁
𝑖=1

𝑋̃1,𝑖 = 0,

𝑛∑︁
𝑖=1

𝑋̃1,𝑖𝑋2,𝑖 = 0,

... =
...

𝑛∑︁
𝑖=1

𝑋̃1,𝑖𝑋𝑘,𝑖 = 0.
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Proof of the partitioned regression result (step 3)

Again, because 𝑋̃1,𝑖 are the OLS residuals (fitted) from the regression
of 𝑋1 against 𝑋2, . . . , 𝑋𝑘 :

𝑛∑︁
𝑖=1

𝑋̃1,𝑖𝑋1,𝑖 =

𝑛∑︁
𝑖=1

𝑋̃1,𝑖
(
𝛾̂0 + 𝛾̂2𝑋2,𝑖 + . . . + 𝛾̂𝑘𝑋𝑘,𝑖 + 𝑋̃1,𝑖

)
= 𝛾̂0

𝑛∑︁
𝑖=1

𝑋̃1,𝑖 + 𝛾̂2

𝑛∑︁
𝑖=1

𝑋̃1,𝑖𝑋2,𝑖 + . . . + 𝛾̂𝑘

𝑛∑︁
𝑖=1

𝑋̃1,𝑖𝑋𝑘,𝑖 +
𝑛∑︁
𝑖=1

𝑋̃1,𝑖 𝑋̃1,𝑖

= 𝛾̂0 · 0 + 𝛾̂2 · 0 + . . . + 𝛾̂𝑘 · 0 +
𝑛∑︁
𝑖=1

𝑋̃2
1,𝑖 =

𝑛∑︁
𝑖=1

𝑋̃2
1,𝑖 ,

because of the normal equations for the 𝑋1 regression.
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Proof of the partitioned regression result (step 4)

Lastly, because 𝑈̂ are the fitted residuals from the regression of 𝑌
against all 𝑋’s:

𝑛∑︁
𝑖=1

𝑈̂𝑖 =

𝑛∑︁
𝑖=1

𝑈̂𝑖𝑋1,𝑖 = . . . =

𝑛∑︁
𝑖=1

𝑈̂𝑖𝑋𝑘,𝑖 = 0.

𝑛∑︁
𝑖=1

𝑋̃1,𝑖𝑈̂𝑖 =

𝑛∑︁
𝑖=1

(
𝑋1,𝑖 − 𝛾̂0 − 𝛾̂2𝑋2,𝑖 − . . . − 𝛾̂𝑘𝑋𝑘,𝑖

)
𝑈̂𝑖

=

𝑛∑︁
𝑖=1

𝑋1,𝑖𝑈̂𝑖 − 𝛾̂0

𝑛∑︁
𝑖=1

𝑈̂𝑖 − 𝛾̂2

𝑛∑︁
𝑖=1

𝑋2,𝑖𝑈̂𝑖 − . . . − 𝛾̂𝑘

𝑛∑︁
𝑖=1

𝑋𝑘,𝑖𝑈̂𝑖

= 0 − 𝛾̂0 · 0 − 𝛾̂2 · 0 − . . . − 𝛾̂𝑘 · 0 = 0.
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"Partialling out"

𝛽1 =

∑𝑛
𝑖=1 𝑋̃1,𝑖𝑌𝑖∑𝑛
𝑖=1 𝑋̃

2
1,𝑖

1. First, we regress 𝑋1 against the rest of the regressors (and a
constant) and keep 𝑋̃1 which is the "part" of 𝑋1 that is
uncorrelated with other regressors (in sample, or orthogonal to
other regressors).

2. Then, to obtain 𝛽1, we regress 𝑌 against 𝑋̃1 which is "clean" from
correlation with other regressors (no intercept).

3. 𝛽1 measures the effect of 𝑋1 after the effects of 𝑋2, . . . , 𝑋𝑘 have
been partialled out or netted out.
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