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Fitted values
I Consider the multiple regression model with 𝑘 regressors:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 .
I Let 𝛽0, 𝛽1, . . . , 𝛽𝑘 be the OLS estimators.
I The fitted (or predicted) by the model value of 𝑌 is:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 .
I The residual is: �̂�𝑖 = 𝑌𝑖 −𝑌𝑖 .
I Consider the average of 𝑌 :

¯̂𝑌 =
1
𝑛

𝑛∑︁
𝑖=1

𝑌𝑖

=
1
𝑛

𝑛∑︁
𝑖=1

(
𝑌𝑖 − �̂�𝑖

)
= 𝑌 − 1

𝑛

𝑛∑︁
𝑖=1

�̂�𝑖 = 𝑌

because when there is an intercept,
∑𝑛

𝑖=1 �̂�𝑖 = 0.
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Sum-of-Squares
I The total variation of 𝑌 in the sample is:

𝑆𝑆𝑇 =

𝑛∑︁
𝑖=1

(
𝑌𝑖 −𝑌

)2 (Total Sum-of-Squares).

I The explained variation of 𝑌 in the sample is:

𝑆𝑆𝐸 =

𝑛∑︁
𝑖=1

(
𝑌𝑖 −𝑌

)2 (Explained or Model Sum-of-Squares).

I The residual (unexplained or error) variation of 𝑌 in the sample
is:

𝑆𝑆𝑅 =

𝑛∑︁
𝑖=1

�̂�2
𝑖 (Residual Sum-of-Squares).

I If the regression contains an intercept:

𝑆𝑆𝑇 = 𝑆𝑆𝐸 + 𝑆𝑆𝑅.
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Proof of 𝑆𝑆𝑇 = 𝑆𝑆𝐸 + 𝑆𝑆𝑅

I First,

𝑆𝑆𝑇 =

𝑛∑︁
𝑖=1

(
𝑌𝑖 −𝑌

)2
=

𝑛∑︁
𝑖=1

(
𝑌𝑖 + �̂�𝑖 −𝑌

)2
=

𝑛∑︁
𝑖=1

( (
𝑌𝑖 −𝑌

)
+ �̂�𝑖

)2
=

𝑛∑︁
𝑖=1

(
𝑌𝑖 −𝑌

)2 + 𝑛∑︁
𝑖=1

�̂�2
𝑖 +2

𝑛∑︁
𝑖=1

(
𝑌𝑖 −𝑌

)
�̂�𝑖 .

I Next, we will show that
∑𝑛

𝑖=1
(
𝑌𝑖 −𝑌

)
�̂�𝑖 = 0.
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Proof of 𝑆𝑆𝑇 = 𝑆𝑆𝐸 + 𝑆𝑆𝑅

I Since 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 ,

𝑛∑︁
𝑖=1

(
𝑌𝑖 −𝑌

)
�̂�𝑖 =

𝑛∑︁
𝑖=1

( (
𝛽0 + 𝛽1𝑋1,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖

)
−𝑌

)
�̂�𝑖

= 𝛽0

𝑛∑︁
𝑖=1

�̂�𝑖 + 𝛽1

𝑛∑︁
𝑖=1

𝑋1,𝑖�̂�𝑖 + . . . + 𝛽𝑘

𝑛∑︁
𝑖=1

𝑋𝑘,𝑖�̂�𝑖 −𝑌

𝑛∑︁
𝑖=1

�̂�𝑖 .

I The OLS normal equations for a model with an intercept:

𝑛∑︁
𝑖=1

�̂�𝑖 =

𝑛∑︁
𝑖=1

𝑋1,𝑖�̂�𝑖 = . . . =

𝑛∑︁
𝑖=1

𝑋𝑘,𝑖�̂�𝑖 = 0.

I It follows that
∑𝑛

𝑖=1
(
𝑌𝑖 −𝑌

)
�̂�𝑖 = 0.
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𝑅2

I Consider the following measure of goodness of fit:

𝑅2 =

∑𝑛
𝑖=1

(
𝑌𝑖 −𝑌

)2∑𝑛
𝑖=1

(
𝑌𝑖 −𝑌

)2
=

𝑆𝑆𝐸

𝑆𝑆𝑇

= 1 − 𝑆𝑆𝑅

𝑆𝑆𝑇

= 1 −
∑𝑛

𝑖=1 �̂�
2
𝑖∑𝑛

𝑖=1
(
𝑌𝑖 −𝑌

)2 .

I 0 ≤ 𝑅2 ≤ 1.
I 𝑅2 measures the proportion of variation in 𝑌 in the sample

explained by the 𝑋’s.
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𝑅2 is a non-decreasing function of the number of the
regressors

I Consider two models:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + �̃�𝑖 ,
𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + �̂�𝑖 .

I We will show that
𝑛∑︁
𝑖=1

�̃�2
𝑖 ≥

𝑛∑︁
𝑖=1

�̂�2
𝑖

and therefore 𝑅2 that corresponds to the regression with one
regressor is less or equal than 𝑅2 that corresponds to the
regression with two regressors.

I This can be generalized to the case of 𝑘 and 𝑘 + 1 regressors.
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Proof

I Consider
𝑛∑︁
𝑖=1

(
�̃�𝑖 − �̂�𝑖

)2
=

𝑛∑︁
𝑖=1

�̃�2
𝑖 +

𝑛∑︁
𝑖=1

�̂�2
𝑖 − 2

𝑛∑︁
𝑖=1

�̃�𝑖�̂�𝑖 .

I We will show that
𝑛∑︁
𝑖=1

�̃�𝑖�̂�𝑖 =

𝑛∑︁
𝑖=1

�̂�2
𝑖 .

I Then,

0 ≤
𝑛∑︁
𝑖=1

(
�̃�𝑖 − �̂�𝑖

)2
=

𝑛∑︁
𝑖=1

�̃�2
𝑖 −

𝑛∑︁
𝑖=1

�̂�2
𝑖 ,

or
𝑛∑︁
𝑖=1

�̃�2
𝑖 ≥

𝑛∑︁
𝑖=1

�̂�2
𝑖 .
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Proof

𝑛∑︁
𝑖=1

�̃�𝑖�̂�𝑖 =

𝑛∑︁
𝑖=1

(
𝑌𝑖 − 𝛽0 − 𝛽1𝑋1,𝑖

)
�̂�𝑖

=

𝑛∑︁
𝑖=1

𝑌𝑖�̂�𝑖 − 𝛽0

𝑛∑︁
𝑖=1

�̂�𝑖 − 𝛽1

𝑛∑︁
𝑖=1

𝑋1,𝑖�̂�𝑖

=

𝑛∑︁
𝑖=1

𝑌𝑖�̂�𝑖 − 𝛽0 · 0 − 𝛽1 · 0

=

𝑛∑︁
𝑖=1

(
𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + �̂�𝑖

)
�̂�𝑖

= 𝛽0 · 0 + 𝛽1 · 0 + 𝛽2 · 0 +
𝑛∑︁
𝑖=1

�̂�2
𝑖

=

𝑛∑︁
𝑖=1

�̂�2
𝑖 .
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Adjusted 𝑅2

I Since 𝑅2 cannot decrease when more regressors are added, even
if the additional regressors are irrelevant, an alternative measure
of goodness-of-fit has been developed.

I Adjusted 𝑅2: the idea is to adjust 𝑆𝑆𝑅 and 𝑆𝑆𝑇 for degrees of
freedom:

�̄�2 = 1 − 𝑆𝑆𝑅/(𝑛 − 𝑘 − 1)
𝑆𝑆𝑇/(𝑛 − 1) .

I �̄�2 < 𝑅2.
I �̄�2 can decrease when more regressors are added.
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Estimation of 𝜎2

I In the multiple linear regression model, we can estimate
𝜎2 = E

[
𝑈2
𝑖

]
as follows:

Let
�̂�𝑖 = 𝑌𝑖 − 𝛽0−𝛽1𝑋1,𝑖 − 𝛽2𝑋2,𝑖 − . . . − 𝛽𝑘𝑋𝑘,𝑖 .

An estimator for 𝜎2 is

𝑠2 =
1

𝑛 − 𝑘 − 1

𝑛∑︁
𝑖=1

�̂�2
𝑖

=
𝑆𝑆𝑅

𝑛 − 𝑘 − 1
.

I The adjustment 𝑘 + 1 is for the number of parameters we have to
estimate in order to construct �̂�’s:

𝛽0, 𝛽1, . . . , 𝛽𝑘 .
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Estimation of 𝜎2

𝑠2 =
1

𝑛 − 𝑘 − 1

𝑛∑︁
𝑖=1

�̂�2
𝑖 .

I 𝑠2 is an unbiased estimator of 𝜎2 (i.e., E
[
𝑠2] = 𝜎2) when the

following conditions hold:
1. 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1,𝑖 + 𝛽2𝑋2,𝑖 + . . . + 𝛽𝑘𝑋𝑘,𝑖 +𝑈𝑖 .
2. Conditional on 𝑋’s, E [𝑈𝑖] = 0 for all 𝑖’s.
3. Conditional on 𝑋’s, E

[
𝑈2
𝑖

]
= 𝜎2 for all 𝑖’s (homoskedasticity).

4. Conditional on 𝑋’s E
[
𝑈𝑖𝑈 𝑗

]
= 0 for all 𝑖 ≠ 𝑗 .
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Stata

I We have 64 observations (𝑛 = 64) and 3 regressors (𝑘 = 3).
I SSE is displayed under Model SS (Sum of Squares): 368241.042.
I The Model df (degrees of freedom) is 𝑘 = 3.
I The Model MS (Mean Squares) is

𝑆𝑆𝐸/𝑘 = 368241.042/3 = 122747.014.
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Stata

I SSR is displayed under Residual SS: 253521.396.
I The Residual df is 𝑛 − 𝑘 − 1 = 64 − 3 − 1 = 60.
I The Residual MS is 𝑆𝑆𝑅/(𝑛 − 𝑘 − 1) = 𝑠2.
I The Residual MS is 253521.396/60 = 4225.35659.
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Stata

I SST is displayed under Total SS: 621762.438.
I The Total df is 𝑛 − 1 = 64 − 1 = 63.
I The Total MS is 𝑆𝑆𝑇/(𝑛 − 1) = 621762.438/63 = 9869.24504.
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Stata

I 𝑅2 = 1 − 𝑆𝑆𝑅
𝑆𝑆𝑇

= 1 − 253521.396
621762.438 = 0.5923.

I �̄�2 = 1 − 𝑆𝑆𝑅/(𝑛−𝑘−1)
𝑆𝑆𝑇 /(𝑛−1) = 1 − 253521.396/60

621762.438/63 = 0.5719.
I Root MSE (Mean Squared Error) is

𝑠 =
√
𝑠2 =

√
4225.35659 = 65.003.
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